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CERTAIN COMPLEX EQUATIONS CREATED BY INTEGRAL
OPERATOR AND SOME OF THEIR APPLICATIONS

TO ANALYTIC FUNCTIONS

HÜSEYİN IRMAK

In this work, several novel results relating to complex equations con-
stituted by an integral operator are first presented and some of their ap-
plications concerning multivalent functions which are analytic in the unit
disk U are then emphasized.

1. Introduction, Notations and Definitions

Let us denote by N, R, U,H(U),Hp and Ap the set of natural numbers, the set
of real numbers, the unit open disk which is the set

{
z ∈ C : |z|< 1

}
, the set of

all functions which are analytic in the disk U, the set of analytic functions in the
form:

Hp =
{

f ∈H(U) : f (z) = p+
∞

∑
n=p

bnzn (z ∈ U)
}
, (1)

and the set of multivalently analytic functions in the form:

Ap =
{

f ∈H(U) : f (z) = zp +
∞

∑
n=p+1

bnzn (z ∈ U)
}
, (2)
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respectively. Also let H :=H1 and R∗ := R \ {0}. It is clear that Hp ⊂ H(U)
and Ap ⊂H(U).

For γ > 0 and f ∈ Ap, we now recall the following integral operator:

Pγ [ f ] := Pγ [ f (z)] =
(p+1)γ

zΓ(z)

∫ z

0

(
log
(
z/κ
))γ−1

f (κ) dκ, (3)

where the function Γ is well-known gamma function. When the operator given
by (3) applies to a function f ∈ Ap, we easily obtain that

Pγ [ f ] = zp +
∞

∑
n=p+1

( p+1
n+1

)γ

anzn, (4)

for some γ > 0 and for all f ∈ Ap. For the details and also some examples, one
may look over the results or the works in the references in [4, 5]. In view of
(4) and after some basic calculations, the following identity in relation with the
integral operator:

z
d
dz

(
Pγ [ f ]

)
= z
(
Pγ [ f ]

)′
= (p+1)Pγ−1[ f ]−Pγ [ f ] (5)

can be easily obtained, where γ > 0 and f ∈ Ap.
In the present investigation, several results related to both certain complex

(differential) equations created by integral operator defined by (5) and (multi-
valently) analytic functions in the disk U are first determined and a number of
those consequences are then pointed out.

For the main results, there is a need to recall the following result obtained
by M. Nunokawa in [3].

Lemma 1.1. Let q(z) be in the classH. If there exists a point z0 in U such that

ℜe
(

q(z)
)
> 0

(
|z|< |z0|

)
, ℜe

(
q(z0)

)
= 0 and q(z0) 6= 0,

then

q(z0) = ia and
zq′(z)
q(z)

∣∣∣∣
z=z0

= iκ
(

a+
1
a

)
,

where κ ≥ 1
2 and a ∈ R∗.

2. The Main Results and Certain Applications

Now, we begin by setting and then by proving the following main result con-
cerning certain complex (differential) equations and multivalently analytic func-
tions.
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Theorem 2.1. Let a function Ψ(z) belonging to the classH
(
U
)

satisfy any one
of the cases of the following inequality:

ℜe
(

Ψ(z)
)
>


α

2(α− p)
for 0≤ α ≤ p

2

α− p
2α

for p
2 ≤ λ < p

(6)

If a function f ∈ Ap is a solution for the following complex equation:(
p+1

)
·
(
Pγ−1[ f ]

)
−
(

p+1+Ψ(z)
)
·
(
Pγ [ f ]

)
= 0 (7)

then

ℜe
(
Pγ [ f ]

zp

)
>

α

p

(
0≤ α < p; p ∈ N;z ∈ U

)
. (8)

Proof. With the help of (2) and (4), we define a function q(z) by

Pγ [ f ] = zp
[
1+

∞

∑
n=1

( p+1
n+ p+1

)γ

an+pzn
]

= zp
[

α

p
+
(

1− α

p

)
q(z)

]
, (9)

where z ∈ U, γ > 0, 0 ≤ α < p and f (z) ∈ Ap. It is obvious that the function
q(z) is in the class H. Shortly, q(z) is analytic in U and q(0) = 1. By means of
(9) together with (5), it is easily established that

z
(

z−pPγ [ f ]
)′

z−pPγ [ f ]
=

z
(
Pγ [ f ]

)′
Pγ [ f ]

− p

or, equivalently,

z
(

z−pPγ [ f ]
)′

z−pPγ [ f ]
=

(p+1)Pγ−1[ f ]
Pγ [ f ]

− (p+1)
(
=: Ψ(z)

)
. (10)

In consideration of (10), it is clear that the complex function Ψ(z) satisfies the
complex equation given by (7). By the help of (9) and (10), we then obtain

(p+1)Pγ−1[ f ]
Pγ [ f ]

− (p+1) =
(1−α/p)zq′(z)

α/p+(1−α/p)q(z)

(
=: Ψ(z)

)
. (11)

Now, suppose that there exists a point z0 in U such that

ℜe
(

q(z)
)
> 0

(
|z|< |z0|

)
, ℜe

(
q(z0)

)
= 0 and q(z0) 6= 0.
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By applying the assertions of Lemma 1.1, which are

q(z0) = ia and
zq′(z)
q(z)

∣∣∣∣
z=z0

= ic
(

a+
1
a

) (
c≥ 1

2
;a ∈ R∗

)
and using the following inequalities:

0≤ α ≤ p
2

=⇒ 1+a2

a2 +
(

α/p
1−α/p

)2 ≥ 1

and
p
2
≤ α < p =⇒ 1+a2

1+a2
(1−α/p

α/p

)2 ≥ 1,

respectively, (11) yields that

ℜe
(

Ψ(z0)
)
= ℜe

[
zq′(z)
q(z)

· (1−α/p)q(z)
α/p+(1−α/p)q(z)

∣∣∣
z=z0

]
= ℜe

[
ic
(

a+
1
a

)
· ia(1−α/p)

α/p+ ia(1−α/p)

]
=

cα

p

(
α

p −1
)(

1+a2
)(

α

p

)2
+a2

(
1− α

p

)2

≤
α

p

(
α

p −1
)(

1+a2
)

2
[(

α

p

)2
+a2

(
1− α

p

)2
]

≤

{
α

2(α−p) f or 0≤ α ≤ p
2

α−p
2α

f or p
2 ≤ λ < p

, (12)

since c ≥ 1/2 and α/p− 1 < 0. It is quite obvious that the inequalities given
by (12) contradict with the assumptions given by (6), respectively. Hence, the
statement given by (9) requires the following inequality:

ℜe
(

q(z)
)
= ℜe

 Pγ [ f ]
zp − α

p

1− α

p

> 0
(
0≤ α < p; p ∈ N;z ∈ U

)
,

which implies that the inequality given by (8). This completes the proof of
Theorem 2.1.
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If we again define the related function q(z), respectively, by the following
form: (

Pγ [ f ]
)′

zp−1 = α +(p−α)q(z)

(
0≤ α < p ; p ∈ N ; γ > 0 ; z ∈ U ; f (z) ∈ Ap

)
,

z
(
Pγ [ f ]

)′
Pγ [ f ]

= α +(p−α)q(z)

(
0≤ α < p ; p ∈ N ; γ > 0 ; z ∈ U ; f (z) ∈ Ap

)
,

Pγ [ f ]
Pβ [ f ]

=
α

p
+
(

1− α

p

)
q(z)

(
0≤ α < p ; p ∈ N ; γ > 0 ; β > 0 ; z ∈ U ; f (z) ∈ Ap

)
,

and (
Pγ [ f ]

)′(
Pβ [ f ]

)′ = α

p
+
(

1− α

p

)
q(z)

(
0≤ α < p ; p ∈ N ; γ > 0 ; β > 0 ; z ∈ U ; f (z) ∈ Ap

)
,

and then follow the ways and/or steps used in the proof of Theorem 2.1, we can
easily arrive at the desired proofs. Their details are here omitted.

Theorem 2.2. Let a function Ψ(z) belonging to the classH
(
U
)

satisfy any one
of the cases of the following inequality

ℜe
(

Ψ(z)
)
>


pα

2(α− p)
for 0≤ α ≤ p

2

p(α− p)
2α

for p
2 ≤ λ < p

(13)

If a function f ∈ Ap is a solution for the following complex equation:

z
(
Pγ [ f ]

)′′
−
(

p−1+Ψ(z)
)(
Pγ [ f ]

)′
= 0,

then

ℜe

((
Pγ [ f ]

)′
zp−1

)
> α

(
0≤ α < p; p ∈ N;z ∈ U

)
.
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Theorem 2.3. Let a function Ψ(z) belonging to the classH
(
U
)

satisfy any one
of the cases of the inequality in (13). If a function f ∈ Ap is a solution for the
following complex equation:

zPγ [ f ]
[
z
(
Pγ [ f ]

)′]′− z
[
z
(
Pγ [ f ]

)′]2
− zΨ(z)Pγ [ f ]

(
Pγ [ f ]

)′
= 0,

then

ℜe

(
z
(
Pγ [ f ]

)′
Pγ [ f ]

)
> α

(
0≤ α < p; p ∈ N;z ∈ U

)
.

Theorem 2.4. Let a function Ψ(z) belonging to the classH
(
U
)

satisfy any one
of the cases of the inequality in (6). If a function f ∈ Ap is a solution for the
following complex equation:

zPβ [ f ]
(
Pγ [ f ]

)′
− zPγ [ f ]

(
Pβ [ f ]

)′
−Ψ(z)Pβ [ f ]Pγ [ f ] = 0,

then

ℜe
(
Pγ [ f ]
Pβ [ f ]

)
>

α

p

(
0≤ α < p; p ∈ N;z ∈ U

)
.

Theorem 2.5. Let a function Ψ(z) belonging to the classH
(
U
)

satisfy any one
of the cases of the inequality in (6). If a function f ∈ Ap is a solution for the
following complex equation:

z
(
Pβ [ f ]

)′(
Pγ [ f ]

)′′
− z
(
Pγ [ f ]

)′(
Pβ [ f ]

)′′
−Ψ(z)

(
Pβ [ f ]

)′(
Pγ [ f ]

)′
= 0,

then

ℜe

((
Pγ [ f ]

)′(
Pβ [ f ]

)′
)

>
α

p

(
0≤ α < p; p ∈ N;z ∈ U

)
.

As applications of all theorems above, when one focuses on Theorems 2.1-
2.5, it is easily seen that there are several consequences of them which will be
interesting in the theories of analytic functions and (certain) complex (differen-
tial) equations. For those, it is enough to choose suitable values of the parame-
ter(s) in all the theorems. Of course, it is not possible to reveal all of them. But,
particularly, for example, we want to present only one of those, which deals with
an interesting result consisting of both certain complex differential equation and
univalent function theory (see, for details, [1, 2, 6]), which is Corollary 2.6 be-
low. The other possible consequences of all theorems (which are here omitted)
are presented to the attention of the researchers who have been working on the
theories of (complex) differential equations and/or analytic functions.

By taking γ → 0− in Theorem 2.3, the following result related to multiva-
lently starlikeness can be then obtained.
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Corollary 2.6. Let a function Ψ(z) belonging to the classH
(
U
)

satisfy any one
of the cases of the inequality in (13). If a function w := w(z) := f (z) ∈ Ap is a
solution of the following nonlinear complex differential equation:

z2ww′′− z
(
zw′
)2

+
(
1−Ψ(z)

)
zww′ = 0,

then w is multivalently starlike function of order α (0≤ α < p; p ∈ N) in U.
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