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ON REDUCIBILITY OF LINEAR DIFFERENCE
SYSTEMS

ALI MAHMUD ATEIWI

We study problems related to the existence of a nondegenerate substitution
(of the Lyapunov type) that reduces a system of linear difference equations
to a system with constant coefficients.

Introduction.

In the present work, we study the problem of the possibility of the
reduction of a linear difference system with variable coefficients in the
Euclidean space R

d to a system with constant coefficients. In this case, it
is important to find a change of variables that does not “spoil” the original
system, i.e., the reduced system must be linear and must possess the same
qualitative properties as the original problem. If, e.g., the original system
is stable, then the reduced system must also be stable. In this connection,
of special importance is the problem of the existence of periodic solutions
of the original system because the same problem for the reduced system
of difference equations (if this reduction is possible) can easily be solved.
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In the theory of differential equations, necessary and sufficient
reducibility conditions are given by the Erugin theorem [1]. For systems
of difference equations, this problem is inadequately studied. In this
connection, one should mention the works [2]–[4], where the problem
of the reducibility of linear difference equations with quasiperiodic
coefficients was investigated. The method proposed in the works indicated
is based on the idea of accelerated convergence, i.e., on constructing
a sequence of quasiperiodic substitutions so that the appearing small
denominators are “canceled out.”

The present work has the following structure: In Sec. 1, we give
necessary definitions and introduce the object of investigation.

In Sec. 2, we prove an analog of the Erugin theorem for a system
of difference equations.

Section 3 is devoted to the investigation of the problem of reducibility
to a system with zero matrix.

We now pass the the presentation of the main results of the work.

1. Statement of the problem.

In the Euclidean space R
d , we consider a system of linear difference

equations with variable coefficients

(1) xn+1 = xn + Anxn,

where n = 0, 1, 2, ..., xn is a vector from R
d and An is a d × d matrix.

Note that the matrix An is variable.
We assume that E + An is nondegenerate for all n ≥ 0. This condition

guarantees the uniqueness of a solution of system (1).

Definition 1. A d × d matrix L n is called a discrete Lyapunov matrix if
the following conditions are satisfied:

1) Ln is bounded for n = 0, 1, 2, ..., i.e.,

sup
n∈N

‖Ln‖ < ∞;
2) |det Ln| ≥ m > 0, where m is a certain positive number.

Note that it follows from the structure of the inverse matrix that the matrix
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L−1
n inverse to the Lyapunov matrix L n is also a Lyapunov matrix.

Definition 2. The linear transformation

(2) y = Ln x,

where Ln is a discrete Lyapunov matrix, is called the Lyapunov trans-
formation.

Remark 1. By virtue of the definition of Lyapunov substitution, one
can easily see that transformation (2) does not spoil the qualitative
characteristics of the original system. For example, if solutions of
the original system are bounded and stable, then the solutions of
the transformed system possess the same properties. This explains the
importance of substitutions of this type.

Definition 3. A linear difference system is called reducible if there exists
a Lyapunov transformation that reduces it to a system with constant
coefficients

(3) yn+1 = yn + Byn,

where B is a constant matrix.
The aim of this work is to establish reducibility conditions for systems

of the type (1).

2. Reducibility of systems. Main result.

The following theorem is true:

Theorem 1. The linear difference system (1) is reducible if and only if
a certain fundamental matrix X n of it is representable in the form

(4) Xn = Ln(E + B)n,

where E is the d × d identity matrix and B is a certain constant d × d
matrix.

Proof. First, we prove the necessity of the conditions of the theorem.
Assume that system (1) is reducible. This means that there exists a

discrete Lyapunov substitution

(5) x = Ln y



44 ALI MAHMUD ATEIWI

that transforms it into a linear system with constant coefficients

(6) yn+1 = yn + Byn,

where B is a certain constant matrix. It follows from (6) that its
fundamental matrices have the form

(7) Yn = (E + B)nC,

where C is an arbitrary nondegenerate d × d matrix. By virtue of (5), a
fundamental matrix for (1) has the form

Xn = Ln(E + B)nC.

Choosing C = E , where E is the identity matrix, we get (4).
The necessity is proved.
Let us prove the sufficiency. Assume that relation (4) is true. It follows

from (4) that

Ln = Xn((E + B)n)−1 = Xn((E + B)−1)n.

In system (1), we perform the substitution

x = Xn
(
(E + B)−1

)n
y.

We have

xn+1 = Xn+1
(
(E + B)−1)n+1

yn+1

= Xn
(
(E + B)−1

)n
yn + An Xn

(
(E + B)−1

)n
yn.

Then

Xn+1
(
(E + B)−1

)n+1
yn+1 = (E + An)Xn

(
(E + B)−1

)n
yn.

Taking into account that X n is a fundamental matrix of system (1), we
conclude that it satisfies the equation

(9) Xn+1 = (E + An)Xn.

Substituting (9) in the last relation, we obtain

(E + An)Xn
(
(E + B)−1)n+1

yn+1 = (E + An)Xn
(
(E + B)−1)n+1

(E + B)yn.

Canceling the nondegenerate matrices on both sides of this relation, we
arrive at a system with constant coefficients:

yn+1 = yn + Byn.

Thus, system (1) is reducible. The theorem is proved.
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3. Reducibility to a system with zero matrix.

Assume that the linear system (1), where E + An is a bounded matrix,
can be reduced by a discrete Lyapunov transformation

x = Ln y

to the system

(10) yn+1 = yn.

Since a general solution of system (10) has the form yn = C , where C
is a constant, we conclude that if system (1) is transformed into (10) by
a discrete Lyapunov substitution, then all solutions of (1) are bounded
for n = 0, 1, 2, ....

The following theorem is true:

Theorem 2. Suppose that the following conditions are satisfied:

1) all solutions of system (1) are bounded for n = 0, 1, 2, ...;

2)
n−1∏
i=0

det (E + Ai) ≥ a > 0, for any n = 0, 1, 2, ..., where a is a

constant.

Then system (1) is reducible to a system with zero matrix.

Proof. Let Xn be a fundamental matrix of system (1). Let us show that,
in this case, Xn is a discrete Lyapunov matrix. Indeed, it follows from
(1) that ‖Xn‖ ≤ C , where C is a certain constant.

Using a discrete analog of the Ostrogradskii–Liouville formula [5],
namely

det Xn = det X0

n−1∏

i=0

det (E + Ai),

and condition 2), we get

|det Xn| = |det X0|
n−1∏

i=0

|det (E + Ai)| ≥ |det X0|a ≥ C2 > 0,

where C2 is a certain constant. According to Definition 1, X n is a
Lyapunov matrix. In equation (1), we perform the substitution

x = Xn y.
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We have
xn+1 = Xn+1yn+1 = Xn yn + An Xn yn.

However, Xn+1 = (E + An)Xn , and, therefore,

(E + An)Xn yn+1 = (E + An)Xn yn.

By virtue of the fact that the matrices (E + An) and Xn are nondegenerate,
the last relation yields

yn+1 = yn.

The theorem is proved.
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