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SOME PROPERTIES OF A NEW SUBCLASS OF ANALYTIC
UNIVALENT FUNCTIONS

SAURABH PORWAL

The purpose of the present paper is to study the integral operator of

the form s
REOY
0 t

where f belongs to the subclass C(n,a, ) and 0 is a real number. We
obtain integral characterization for the subclass C(n, ¢, ) and also prove
distortion, rotation and radii theorem for this class. Relevant connections
of the results presented here with various known results are briefly indi-
cated.

1. Introduction
Let A denote the class of functions f of the form
f@)=z+) a, M
k=2

which are analytic in the open unit disk U = {z:z € C and |z| < 1} and satisfy
the normalization condition f(0) = f'(0) — 1 =0. Let S be the subclass of A
consisting of functions of the form (1) which are also univalent in U.
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A function f of S is said to be starlike of order &¢(0 < ¢ < 1), denoted by
f € S*(a), if and only if
/
7 {10
f2)

and is said to be convex of order @(0 < a < 1), denoted by f € K(a), if and
only if

}>a, zeU,

2f"(2)
f'(2)
The classes S* and K of starlike and convex functions, respectively, are iden-
tified by $*(0) = S* and K(0) =K.
In 1983, Salagean [17], introduced a derivative operator known as Salagean

operator which is defined as follows:
Let f(z) € A and be of the form (1). Then we define :

ER{H— }>(x, zeU.

Thus .
D'f(z) =2+ Y K'ad". )
k=2
A function f of A belongs to the class S(n, o) of functions of the form (1)
satisfying the condition

n-+1
EK{DanJ((Z()Z)}>OC, zeU, 3)

where D" stands for the Salagean operator.

The class S(n, @) was first introduced by Salagean [17] and further studied
by Kadioglu [2].

It should be worthy to note that S(0, ) = S* () and S(1, ) = K (o).

A function f of A belongs to the class C(n,a, ) if there exists a function
F € §*() such that

Br

<7, zeU,

Dn
o210
F(z)
wheren € Np, 0<a<1,0< B <.
By specializing the parameters in C(n, o, 3) we obtain the following known
subclasses of A studied earlier by various researchers.
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(1) C(0,a,B) =CS*(ax, B) studied by Mishra [7].
(2) ¢(1,a,B) =C(a,B) studied by Mishra [7].
(3) €(0,0,B) = CS*(B) studied by Reade [14].
(4) C(1,0,B) =C(P) studied by Kaplan [3].
(5) €(0,0,1) = S* studied by Roberston [15], (see also [1], [19]).
(6) C(1,0,1) =K studied by Roberston [15], (see also [1], [19]).

In the present paper, we study the integral operator

o) = | Z{D J (t)}sdt 4)

where n € Ny and 6 is a real number. For n =0 and n = 1 this integral oper-
ator was studied by Kim [4], Merkes and Wright [6], Mishra [7], Nunokawa
([8], [9]), Pfaltzgraff [11], Royster [16], Patil and Thakare [10] and Shukla and
Kumar [18], (see also [13]).

To prove our main results, we shall require the following definition and
lemmas.

Definition 1.1. Let P(a) denote the class of functions of the form P(z) = 1+
Yo | piz which are regular in U and satisfy R{P(z)} > «, z € U.

Lemma 1.2. Let P(z) = 1+ Z pi* be analytic in U. If R{P(z)} > & in U,
k=1
then

a6, 0) < [ R{Pe)} a0 <2001 - )+ (e -0, ©)

1
where 0 < 0, < 6, <21, z=re'® and 0 < r < 1.

Proof. Since

R{P(2)} >«

it is easy to see that
(R{PR)} )] g =1-a

Then by mean value theorem, we have

0< [ (% {pee*) ) ~a)ao < [T (%]{Pue?)} ~a)a0 = 2m(1—a0)
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or, equivalently

0< /:Z (EK {P(rei")}) 46— a(6,—6,) <21 (1 —a),
or

06(92—9]) </62

R {P(reie)}de <2m(l—a)+a(6—6)).
01

O]

The following lemma is a direct consequence of Lemma 1.2, and improves
a result of Patil and Thakare ([10, Lemma 2.2]).

Lemma 1.3. If f € S*(a), then

a(6— ) < /:ZSK{Z;;S)) }de <m(l—o)+a(6—6),  (6)

where 0 < 0, < 6, <21, z=re'® and 0 <r < 1.
In the following lemma, we obtain integral characterization for the class
C(n,at,B).
Lemma 14. If f € C(n,a, ), then
6, prtl
—Br+a(6,—6) </ 92{ /)

6,

D”f(z)}de <Ppr+2n(l—a)+a(6 —6),

(7)
where 0 < 0, < 6, <27, z =re'® and 0 < r < 1. Conversely, let f be analytic
and satisfying D" f(z) #0in U, if

6 Dn+1f(Z)
/6] m{D”f(z) }d9>—[37r+a(92—61)
then f € C(n,a, ).

Proof. f € C(n, o, ) implies that there exists a function F € $*(¢t) such that

Dl’l
’arg Fj(rz()Z) <l327r’ zeU.

Therefore / |
—Eﬁn <argD"f(z) —argF(z) < Eﬁn.

Let 0 < 6; < 6, < 27. Then with z = re'®, we have

1 ; - 1
—§B7r < argD"f(re'®) — arg F (re'®) < Eﬁn. (8)
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and with z = re'® , we have

—%Bn< —arg D" f(re’®") +arg F(re'®) < %ﬁn, 9)
Combining (8) and (9), we obtain

— Br+argF(re'®) —arg F(re'®)
<argD"f(re'®) —arg D" f (re'®)
< Br+argF(re'®) —arg F(re'®),

or

—[37r+/ dargF (re' / dargD" f(re' )<ﬁ7r+/ dargF (re'?),

or

—Br+ :ZSR{ZF/(Z) }de

F(z)
6 n+1
<J, EK{Dlwf{z(;)}de
<Brm+ 9?29?{Z§;S)}d6. (10)

But F € §*(t), then using Lemma 1.3 in (10), we have

6, n+1
_Br+a(6h—6) </9 m{w

and this completes the proof of direct part of the lemma.
To prove the converse part, we follow the techniques of Kaplan [3] and Patil
and Thakare [10] and can obtain the desired result. O

}de <ﬁ775+2717(1 —OC)+OC(92—91>

Remark 1.5. If we put n =1 in Lemma 1.4, we obtain the following result
If feC(a,pB), then

—[375—1—06(92—91) < /9629{{1-1- f”(Z) }de <ﬁ7’£+2717(1 —(X)+(X(92—91),

f'@)
(1D

where 0< 0, < 6, <27, z=re and 0 <r< 1. Conversely, let f be analytic
and satisfying f'(z) #0in U, if

8 2f"(2)
A 9{{1+ L }d9>—ﬁ7r+a(92—91) (12)

then f € C(a,B).
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2. Main Results
Theorem 2.1. If f € C(n,a,B), then h € C(n,7), provided

- y+2(1—mn)
Frali—a) = S pra(-a) )

The result is sharp when (i) y=0 (ii) n =0,y = 1.

Proof. From relation (3) we have

ERLICY

Applying logarithmic differentiation and then taking real parts of both sides, we

obtain m{HZZN((ZZ)) } _ am{m}+(l—5).

For 6 > 0, using Lemma 1.4, we get

6 zh"(z) 6 (D" f(2)
/9] 9{{1+ o }de_a A m{an(Z) }d9+(1—6)(92—61)

> §[-Br+a(6,—6)]+ (1 5)(6:— 6)
= BT +[1—(1-)8|(6,—6)).

To prove that i € C(n,y), we have to show that the right hand side of the above
inequality is not less than —ym + 1 (6, — 6, ), provided

“pe2i-a) 4w

Similarly, for § < 0, using Lemma 1.4, we get

/:ZSR{IJr ZZ((ZZ)) }de > S[Br+2(1— )+ a6, —0)]+(1—8)(6:— 6,).

To show that & € C(1n,7), we have to prove that the right-hand side of the above
inequality is not less than —ym + 1 (6, — 6, ), provided

-

Combining (14) and (15), we obtain (13).
Thus the proof of Theorem 2.1 is established.
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To show the sharpness, let us take the function f(z) defined by the relation

<

D'f(z) = (SR (16)

then it is easy to see that this function belongs to C(n, &, B) with respect to the

function (I_Z)Zm belonging to S*(a). Then

z dt
h(Z) :/0 (1 _t)[Z(lf(x)JrB]S (17)

and from condition (12) this functions belongs to C(0, 1) if and only if

_71§5§$-
21— a)+p 21— a)+pB

Again for v =0, from (17) we have

H'(2) 1+ [1 —2(1—%)]2

1+ =
n(z) 11—z

and R {1 + ZZ,”((ZZ)) } > 1 if and only if

RU-w B} s 20 -

= 2 “B+2(l-a)

Remark 2.2. The undermentioned results are particular cases of Theorem 2.1.

(i) If we put n =0 and n = 1 in Theorem 2.1 we obtain the corresponding
results of Mishra [7].

(ii) If we putn =1, =0,y =0 we obtain a result of Patil and Thakare [10].
(iii) If we putn =1, = 0,1 = 0 we obtain a result of Patil and Thakare [10].
(iv) If weputn =1, = 0,1 = 0 we obtain a result of Patil and Thakare [10].

(v) If we putn =0, = 0,1 = 0 we obtain a result of Patil and Thakare [10].

(vi)y f we putn =1, =0, =0,1 =0 and vy =1 we obtain a result of
Nunokawa [9] as well as that of Merkes and Wright [6].

(vii) If we put n =0, =0, =0,7 =0 and Yy = 1 we obtain a result of
Nunokawa [9] as well as that of Merkes and Wright [6].
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(viii) If we put n =1, =0, =1,1 =0 and y = 1 we obtain a result of
Nunokawa [9] as well as that of Merkes and Wright [6].

(ix) If we put n =0, = 0, = 0 we obtain a result of Shukla and Kumar
[18].

(x) f weputn=0,0=0,8 =1,1 =0and y = 1 we obtain a result of Kim
[4].

(xi) If we putn=0,00 =1/2, =0,n1 =0 and ¥ = 1 we obtain a result of
Nunokawa [9] as well as that of Merkes and Wright [6].

Theorem 2.3. Let f € C(n,a,B). Then for|z| =r

r(l—kr)’3

r(l—r)’3 .
 <ID'fR)] < =)

(1+r)B+20-a
The result is sharp.

Proof. By definition f € C(n,a,) if and only if there exists a function P €
P(0) and F(z) € S*() such that

D'f(z)

Fr = PEIP

Therefore
D" f(2)| = |P(2)P|F (z)].

Now using the well-known inequalities (see [1])

1—r 1+r
< |P <
T, S PEls =
and
;<\F(z)\<;
(1+r)2(1—a) — - (1 _r)z(l—oc)’

we obtain the required inequalities.
Sharpness follows if we take f(z) connected by the relation

" 2(1+2)P
D@ = G gptw
and
F)=— 0
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Theorem 2.4. If f € C(n, o, ), then

D"f(z)

<

2
‘ < Bsin™! 1+r +2(1—a)sin”'r.

. :

The result is sharp.

Proof. If f € C(n,a, ), then

D"f(z) B
=[P ,
for some P(z) € P(0) and F(z) € S*(a).
Thus
D" F
’arg JZC(Z) ’ < BlargP(z)| + argiz)‘ : (18)
Now using the well-known results
g 2
jarg P(2)] < sin”" +rr2 (19)
and a result of Pinchuk [12]
F
arg ﬁ <2(1—-a) sin~'r, (20)
z

using (19) and (20) in (18) we get the required result.
Sharpness follows if we take f(z) to be the same as in Theorem 2.3. O

Theorem 2.5. If f € C(n,, ), then f € S(n,0) for |z| < ro, where

1+B—0a)—a?-2Ba+B2+p 1
ro——( ) \/1 > ( ), whenoc;éf2
and
_ ! h oa—l
ro—l 2B when =5

The result is sharp.

Proof. f € C(n,a,B) if and only if there there exists a function P € P(0) and
F(z) € S*(o) such that
D'f(z)
F(z)

D'f(z) = [PR)PF (2). 1)

= [P(2)]P.
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Logarithmic differentation of (21) yields

ADSQ) g Q)
D' f(z) P(z) = F(z)
Now by a result of MacGregor [5], we know that
ZP'(z) 2r
P(z) |~ 1—r%
Therefore
(D" f(2)) F'(2) | o|zP' ()
501> e )P
1—(1-2a)r 2r
= 1+7r —h < 1— r2>
(1—-2a)r* =2(1+B—a)r+1

1—72

The right hand side of the above inequality is not less than or equal to zero pro-
vided |z| = r < ro, where ry is as given in the statement of theorem. Sharpness
follows if we take f(z) to be the same as in Theorem 2.3. O
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