SOME PROPERTIES OF A NEW SUBCLASS OF ANALYTIC UNIVALENT FUNCTIONS

SAURABH PORWAL

The purpose of the present paper is to study the integral operator of the form

$$
\int_{0}^{z}\left\{\frac{D^{n} f(t)}{t}\right\}^{\delta} d t
$$

where f belongs to the subclass $C(n, \alpha, \beta)$ and δ is a real number. We obtain integral characterization for the subclass $C(n, \alpha, \beta)$ and also prove distortion, rotation and radii theorem for this class. Relevant connections of the results presented here with various known results are briefly indicated.

1. Introduction

Let A denote the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z: z \in C$ and $|z|<1\}$ and satisfy the normalization condition $f(0)=f^{\prime}(0)-1=0$. Let S be the subclass of A consisting of functions of the form (1) which are also univalent in U.

Entrato in redazione: 4 dicembre 2014

A function f of S is said to be starlike of order $\alpha(0 \leq \alpha<1)$, denoted by $f \in S^{*}(\alpha)$, if and only if

$$
\mathfrak{R}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, \quad z \in U
$$

and is said to be convex of order $\alpha(0 \leq \alpha<1)$, denoted by $f \in K(\alpha)$, if and only if

$$
\mathfrak{R}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha, \quad z \in U
$$

The classes S^{*} and K of starlike and convex functions, respectively, are identified by $S^{*}(0) \equiv S^{*}$ and $K(0) \equiv K$.

In 1983, Salagean [17], introduced a derivative operator known as Salagean operator which is defined as follows:

Let $f(z) \in A$ and be of the form (1). Then we define :

$$
\begin{aligned}
D^{0} f(z) & =f(z) \\
D^{1} f(z) & =z f^{\prime}(z) \\
\ldots & \cdots \\
D^{n} f(z) & =D\left(D^{n-1} f(z)\right), \quad n \in N
\end{aligned}
$$

Thus

$$
\begin{equation*}
D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k} \tag{2}
\end{equation*}
$$

A function f of A belongs to the class $S(n, \alpha)$ of functions of the form (1) satisfying the condition

$$
\begin{equation*}
\mathfrak{R}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}\right\}>\alpha, \quad z \in U \tag{3}
\end{equation*}
$$

where D^{n} stands for the Salagean operator.
The class $S(n, \alpha)$ was first introduced by Salagean [17] and further studied by Kadioğlu [2].

It should be worthy to note that $S(0, \alpha)=S^{*}(\alpha)$ and $S(1, \alpha)=K(\alpha)$.
A function f of A belongs to the class $C(n, \alpha, \beta)$ if there exists a function $F \in S^{*}(\alpha)$ such that

$$
\left|\arg \frac{D^{n} f(z)}{F(z)}\right|<\frac{\beta \pi}{2}, \quad z \in U
$$

where $n \in N_{0}, 0 \leq \alpha<1,0<\beta \leq 1$.
By specializing the parameters in $C(n, \alpha, \beta)$ we obtain the following known subclasses of A studied earlier by various researchers.
(1) $C(0, \alpha, \beta) \equiv C S^{*}(\alpha, \beta)$ studied by Mishra [7].
(2) $C(1, \alpha, \beta) \equiv C(\alpha, \beta)$ studied by Mishra [7].
(3) $C(0,0, \beta) \equiv C S^{*}(\beta)$ studied by Reade [14].
(4) $C(1,0, \beta) \equiv C(\beta)$ studied by Kaplan [3].
(5) $C(0,0,1) \equiv S^{*}$ studied by Roberston [15], (see also [1], [19]).
(6) $C(1,0,1) \equiv K$ studied by Roberston [15], (see also [1], [19]).

In the present paper, we study the integral operator

$$
\begin{equation*}
h(z)=\int_{0}^{z}\left\{\frac{D^{n} f(t)}{t}\right\}^{\delta} d t \tag{4}
\end{equation*}
$$

where $n \in N_{0}$ and δ is a real number. For $n=0$ and $n=1$ this integral operator was studied by Kim [4], Merkes and Wright [6], Mishra [7], Nunokawa ([8], [9]), Pfaltzgraff [11], Royster [16], Patil and Thakare [10] and Shukla and Kumar [18], (see also [13]).

To prove our main results, we shall require the following definition and lemmas.

Definition 1.1. Let $P(\alpha)$ denote the class of functions of the form $P(z)=1+$ $\sum_{k=1}^{\infty} p_{k} z^{k}$ which are regular in U and satisfy $\Re\{P(z)\}>\alpha, \quad z \in U$.

Lemma 1.2. Let $P(z)=1+\sum_{k=1}^{\infty} p_{k} z^{k}$ be analytic in U. If $\Re\{P(z)\}>\alpha$ in U, then

$$
\begin{equation*}
\alpha\left(\theta_{2}-\theta_{1}\right)<\int_{\theta_{1}}^{\theta_{2}} \Re\left\{P\left(r e^{i \theta}\right)\right\} d \theta<2 \pi(1-\alpha)+\alpha\left(\theta_{2}-\theta_{1}\right) \tag{5}
\end{equation*}
$$

where $0 \leq \theta_{1}<\theta_{2} \leq 2 \pi$, $z=r e^{i \theta}$ and $0 \leq r<1$.
Proof. Since

$$
\mathfrak{R}\{P(z)\}>\alpha
$$

it is easy to see that

$$
\left.(\Re\{P(z)\}-\alpha)\right|_{z=0}=1-\alpha
$$

Then by mean value theorem, we have

$$
0 \leq \int_{\theta_{1}}^{\theta_{2}}\left(\Re\left\{P\left(r e^{i \theta}\right)\right\}-\alpha\right) d \theta \leq \int_{0}^{2 \pi}\left(\Re\left\{P\left(r e^{i \theta}\right)\right\}-\alpha\right) d \theta=2 \pi(1-\alpha)
$$

or, equivalently

$$
0 \leq \int_{\theta_{1}}^{\theta_{2}}\left(\Re\left\{P\left(r e^{i \theta}\right)\right\}\right) d \theta-\alpha\left(\theta_{2}-\theta_{1}\right) \leq 2 \pi(1-\alpha)
$$

or

$$
\alpha\left(\theta_{2}-\theta_{1}\right)<\int_{\theta_{1}}^{\theta_{2}} \Re\left\{P\left(r e^{i \theta}\right)\right\} d \theta<2 \pi(1-\alpha)+\alpha\left(\theta_{2}-\theta_{1}\right)
$$

The following lemma is a direct consequence of Lemma 1.2, and improves a result of Patil and Thakare ([10, Lemma 2.2]).

Lemma 1.3. If $f \in S^{*}(\alpha)$, then

$$
\begin{equation*}
\alpha\left(\theta_{2}-\theta_{1}\right)<\int_{\theta_{1}}^{\theta_{2}} \Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} d \theta<2 \pi(1-\alpha)+\alpha\left(\theta_{2}-\theta_{1}\right) \tag{6}
\end{equation*}
$$

where $0 \leq \theta_{1}<\theta_{2} \leq 2 \pi$, $z=r e^{i \theta}$ and $0 \leq r<1$.
In the following lemma, we obtain integral characterization for the class $C(n, \alpha, \beta)$.

Lemma 1.4. If $f \in C(n, \alpha, \beta)$, then

$$
\begin{equation*}
-\beta \pi+\alpha\left(\theta_{2}-\theta_{1}\right)<\int_{\theta_{1}}^{\theta_{2}} \Re\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}\right\} d \theta<\beta \pi+2 \pi(1-\alpha)+\alpha\left(\theta_{2}-\theta_{1}\right) \tag{7}
\end{equation*}
$$

where $0 \leq \theta_{1}<\theta_{2} \leq 2 \pi, z=r e^{i \theta}$ and $0 \leq r<1$. Conversely, let f be analytic and satisfying $D^{n} f(z) \neq 0$ in U, if

$$
\int_{\theta_{1}}^{\theta_{2}} \Re\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}\right\} d \theta>-\beta \pi+\alpha\left(\theta_{2}-\theta_{1}\right)
$$

then $f \in C(n, \alpha, \beta)$.
Proof. $f \in C(n, \alpha, \beta)$ implies that there exists a function $F \in S^{*}(\alpha)$ such that

$$
\left|\arg \frac{D^{n} f(z)}{F(z)}\right|<\frac{\beta \pi}{2}, \quad z \in U
$$

Therefore

$$
-\frac{1}{2} \beta \pi<\arg D^{n} f(z)-\arg F(z)<\frac{1}{2} \beta \pi
$$

Let $0 \leq \theta_{1}<\theta_{2} \leq 2 \pi$. Then with $z=r e^{i \theta_{2}}$, we have

$$
\begin{equation*}
-\frac{1}{2} \beta \pi<\arg D^{n} f\left(r e^{i \theta_{2}}\right)-\arg F\left(r e^{i \theta_{2}}\right)<\frac{1}{2} \beta \pi \tag{8}
\end{equation*}
$$

and with $z=r e^{i \theta_{1}}$, we have

$$
\begin{equation*}
-\frac{1}{2} \beta \pi<-\arg D^{n} f\left(r e^{i \theta_{1}}\right)+\arg F\left(r e^{i \theta_{1}}\right)<\frac{1}{2} \beta \pi \tag{9}
\end{equation*}
$$

Combining (8) and (9), we obtain

$$
\begin{aligned}
-\beta \pi+\arg F\left(r e^{i \theta_{2}}\right)-\arg F\left(r e^{i \theta_{1}}\right) & \\
<\arg D^{n} f\left(r e^{i \theta_{2}}\right)- & \arg D^{n} f\left(r e^{i \theta_{1}}\right) \\
& <\beta \pi+\arg F\left(r e^{i \theta_{2}}\right)-\arg F\left(r e^{i \theta_{1}}\right)
\end{aligned}
$$

or

$$
-\beta \pi+\int_{\theta_{1}}^{\theta_{2}} d \arg F\left(r e^{i \theta}\right)<\int_{\theta_{1}}^{\theta_{2}} d \arg D^{n} f\left(r e^{i \theta}\right)<\beta \pi+\int_{\theta_{1}}^{\theta_{2}} d \arg F\left(r e^{i \theta}\right)
$$

or

$$
\begin{align*}
&-\beta \pi+\int_{\theta_{1}}^{\theta_{2}} \Re\left\{\frac{z F^{\prime}(z)}{F(z)}\right\} d \theta \\
&<\int_{\theta_{1}}^{\theta_{2}} \Re\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}\right\} d \theta \\
&<\beta \pi+\int_{\theta_{1}}^{\theta_{2}} \Re\left\{\frac{z F^{\prime}(z)}{F(z)}\right\} d \theta \tag{10}
\end{align*}
$$

But $F \in S^{*}(\alpha)$, then using Lemma 1.3 in (10), we have

$$
-\beta \pi+\alpha\left(\theta_{2}-\theta_{1}\right)<\int_{\theta_{1}}^{\theta_{2}} \Re\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}\right\} d \theta<\beta \pi+2 \pi(1-\alpha)+\alpha\left(\theta_{2}-\theta_{1}\right)
$$

and this completes the proof of direct part of the lemma.
To prove the converse part, we follow the techniques of Kaplan [3] and Patil and Thakare [10] and can obtain the desired result.

Remark 1.5. If we put $n=1$ in Lemma 1.4, we obtain the following result
If $f \in C(\alpha, \beta)$, then
$-\beta \pi+\alpha\left(\theta_{2}-\theta_{1}\right)<\int_{\theta_{1}}^{\theta_{2}} \Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} d \theta<\beta \pi+2 \pi(1-\alpha)+\alpha\left(\theta_{2}-\theta_{1}\right)$,
where $0 \leq \theta_{1}<\theta_{2} \leq 2 \pi, z=r e^{i \theta}$ and $0 \leq r<1$. Conversely, let f be analytic and satisfying $f^{\prime}(z) \neq 0$ in U, if

$$
\begin{equation*}
\int_{\theta_{1}}^{\theta_{2}} \Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} d \theta>-\beta \pi+\alpha\left(\theta_{2}-\theta_{1}\right) \tag{12}
\end{equation*}
$$

then $f \in C(\alpha, \beta)$.

2. Main Results

Theorem 2.1. If $f \in C(n, \alpha, \beta)$, then $h \in C(\eta, \gamma)$, provided

$$
\begin{equation*}
\frac{-\gamma}{\beta+2(1-\alpha)} \leq \delta \leq \frac{\gamma+2(1-\eta)}{\beta+2(1-\alpha)} \tag{13}
\end{equation*}
$$

The result is sharp when (i) $\gamma=0$ (ii) $\eta=0, \gamma=1$.
Proof. From relation (3) we have

$$
h^{\prime}(z)=\left\{\frac{D^{n} f(z)}{z}\right\}^{\delta}
$$

Applying logarithmic differentiation and then taking real parts of both sides, we obtain

$$
\mathfrak{R}\left\{1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right\}=\delta \mathfrak{R}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}\right\}+(1-\delta)
$$

For $\delta>0$, using Lemma 1.4, we get

$$
\begin{array}{r}
\int_{\theta_{1}}^{\theta_{2}} \Re\left\{1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right\} d \theta=\delta \int_{\theta_{1}}^{\theta_{2}} \Re\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}\right\} d \theta+(1-\delta)\left(\theta_{2}-\theta_{1}\right) \\
>\delta\left[-\beta \pi+\alpha\left(\theta_{2}-\theta_{1}\right)\right]+(1-\delta)\left(\theta_{2}-\theta_{1}\right) \\
=-\beta \delta \pi+[1-(1-\alpha) \delta]\left(\theta_{2}-\theta_{1}\right)
\end{array}
$$

To prove that $h \in C(\eta, \gamma)$, we have to show that the right hand side of the above inequality is not less than $-\gamma \pi+\eta\left(\theta_{2}-\theta_{1}\right)$, provided

$$
\begin{equation*}
0 \leq \delta \leq \frac{\gamma+2(1-\eta)}{\beta+2(1-\alpha)} \tag{14}
\end{equation*}
$$

Similarly, for $\delta<0$, using Lemma 1.4, we get
$\int_{\theta_{1}}^{\theta_{2}} \Re\left\{1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right\} d \theta>\delta\left[\beta \pi+2(1-\alpha)+\alpha\left(\theta_{2}-\theta_{1}\right)\right]+(1-\delta)\left(\theta_{2}-\theta_{1}\right)$.
To show that $h \in C(\eta, \gamma)$, we have to prove that the right-hand side of the above inequality is not less than $-\gamma \pi+\eta\left(\theta_{2}-\theta_{1}\right)$, provided

$$
\begin{equation*}
\frac{-\gamma}{\beta+2(1-\alpha)} \leq \delta \leq 0 \tag{15}
\end{equation*}
$$

Combining (14) and (15), we obtain (13).
Thus the proof of Theorem 2.1 is established.

To show the sharpness, let us take the function $f(z)$ defined by the relation

$$
\begin{equation*}
D^{n} f(z)=\frac{z}{(1-z)^{2(1-\alpha)+\beta}} \tag{16}
\end{equation*}
$$

then it is easy to see that this function belongs to $C(n, \alpha, \beta)$ with respect to the function $\frac{z}{(1-z)^{2(1-\alpha)}}$ belonging to $S^{*}(\alpha)$. Then

$$
\begin{equation*}
h(z)=\int_{0}^{z} \frac{d t}{(1-t)^{[2(1-\alpha)+\beta] \delta}} \tag{17}
\end{equation*}
$$

and from condition (12) this functions belongs to $C(0,1)$ if and only if

$$
\frac{-1}{2(1-\alpha)+\beta} \leq \delta \leq \frac{3}{2(1-\alpha)+\beta}
$$

Again for $\gamma=0$, from (17) we have

$$
1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}=\frac{1+\left[1-2\left(1-\frac{\{2(1-\alpha)+\beta\} \delta}{2}\right)\right] z}{1-z}
$$

and $\mathfrak{R}\left\{1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right\}>\eta$ if and only if

$$
1-\frac{\{2(1-\alpha)+\beta\} \delta}{2} \geq \eta \Rightarrow 0 \leq \delta \leq \frac{2(1-\eta)}{\beta+2(1-\alpha)}
$$

Remark 2.2. The undermentioned results are particular cases of Theorem 2.1.
(i) If we put $n=0$ and $n=1$ in Theorem 2.1 we obtain the corresponding results of Mishra [7].
(ii) If we put $n=1, \beta=0, \gamma=0$ we obtain a result of Patil and Thakare [10].
(iii) If we put $n=1, \beta=0, \eta=0$ we obtain a result of Patil and Thakare [10].
(iv) If we put $n=1, \alpha=0, \eta=0$ we obtain a result of Patil and Thakare [10].
(v) If we put $n=0, \beta=0, \eta=0$ we obtain a result of Patil and Thakare [10].
(vi) If we put $n=1, \alpha=0, \beta=0, \eta=0$ and $\gamma=1$ we obtain a result of Nunokawa [9] as well as that of Merkes and Wright [6].
(vii) If we put $n=0, \alpha=0, \beta=0, \eta=0$ and $\gamma=1$ we obtain a result of Nunokawa [9] as well as that of Merkes and Wright [6].
(viii) If we put $n=1, \alpha=0, \beta=1, \eta=0$ and $\gamma=1$ we obtain a result of Nunokawa [9] as well as that of Merkes and Wright [6].
(ix) If we put $n=0, \alpha=0, \eta=0$ we obtain a result of Shukla and Kumar [18].
(x) If we put $n=0, \alpha=0, \beta=1, \eta=0$ and $\gamma=1$ we obtain a result of Kim [4].
(xi) If we put $n=0, \alpha=1 / 2, \beta=0, \eta=0$ and $\gamma=1$ we obtain a result of Nunokawa [9] as well as that of Merkes and Wright [6].

Theorem 2.3. Let $f \in C(n, \alpha, \beta)$. Then for $|z|=r$

$$
\frac{r(1-r)^{\beta}}{(1+r)^{\beta+2(1-\alpha)}} \leq\left|D^{n} f(z)\right| \leq \frac{r(1+r)^{\beta}}{(1-r)^{\beta+2(1-\alpha)}}
$$

The result is sharp.
Proof. By definition $f \in C(n, \alpha, \beta)$ if and only if there exists a function $P \in$ $P(0)$ and $F(z) \in S^{*}(\alpha)$ such that

$$
\frac{D^{n} f(z)}{F(z)}=[P(z)]^{\beta}
$$

Therefore

$$
\left|D^{n} f(z)\right|=|P(z)|^{\beta}|F(z)|
$$

Now using the well-known inequalities (see [1])

$$
\frac{1-r}{1+r} \leq|P(z)| \leq \frac{1+r}{1-r}
$$

and

$$
\frac{r}{(1+r)^{2(1-\alpha)}} \leq|F(z)| \leq \frac{r}{(1-r)^{2(1-\alpha)}}
$$

we obtain the required inequalities.
Sharpness follows if we take $f(z)$ connected by the relation

$$
D^{n} f(z)=\frac{z(1+z)^{\beta}}{(1-z)^{\beta+2(1-\alpha)}}
$$

and

$$
F(z)=\frac{z}{(1-z)^{2(1-\alpha)}}
$$

Theorem 2.4. If $f \in C(n, \alpha, \beta)$, then

$$
\left|\arg \frac{D^{n} f(z)}{z}\right| \leq \beta \sin ^{-1} \frac{2 r}{1+r^{2}}+2(1-\alpha) \sin ^{-1} r
$$

The result is sharp.
Proof. If $f \in C(n, \alpha, \beta)$, then

$$
\frac{D^{n} f(z)}{F(z)}=[P(z)]^{\beta}
$$

for some $P(z) \in P(0)$ and $F(z) \in S^{*}(\alpha)$.
Thus

$$
\begin{equation*}
\left|\arg \frac{D^{n} f(z)}{z}\right| \leq \beta|\arg P(z)|+\left|\arg \frac{F(z)}{z}\right| \tag{18}
\end{equation*}
$$

Now using the well-known results

$$
\begin{equation*}
|\arg P(z)| \leq \sin ^{-1} \frac{2 r}{1+r^{2}} \tag{19}
\end{equation*}
$$

and a result of Pinchuk [12]

$$
\begin{equation*}
\left|\arg \frac{F(z)}{z}\right| \leq 2(1-\alpha) \sin ^{-1} r \tag{20}
\end{equation*}
$$

using (19) and (20) in (18) we get the required result.
Sharpness follows if we take $f(z)$ to be the same as in Theorem 2.3.
Theorem 2.5. If $f \in C(n, \alpha, \beta)$, then $f \in S(n, 0)$ for $|z|<r_{0}$, where

$$
r_{0}=\frac{(1+\beta-\alpha)-\sqrt{\alpha^{2}-2 \beta \alpha+\beta(2+\beta)}}{1-2 \alpha}, \text { when } \alpha \neq \frac{1}{2}
$$

and

$$
r_{0}=\frac{1}{1+2 \beta}, \text { when } \alpha=\frac{1}{2}
$$

The result is sharp.
Proof. $f \in C(n, \alpha, \beta)$ if and only if there there exists a function $P \in P(0)$ and $F(z) \in S^{*}(\alpha)$ such that

$$
\begin{gather*}
\frac{D^{n} f(z)}{F(z)}=[P(z)]^{\beta} \\
D^{n} f(z)=[P(z)]^{\beta} F(z) . \tag{21}
\end{gather*}
$$

Logarithmic differentation of (21) yields

$$
\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}=\beta \frac{z P^{\prime}(z)}{P(z)}+\frac{z F^{\prime}(z)}{F(z)}
$$

Now by a result of MacGregor [5], we know that

$$
\left|\frac{z P^{\prime}(z)}{P(z)}\right| \leq \frac{2 r}{1-r^{2}}
$$

Therefore

$$
\begin{aligned}
& \mathfrak{R}\left\{\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}\right\} \geq \mathfrak{R}\left\{\frac{z F^{\prime}(z)}{F(z)}\right\}-\beta\left|\frac{z P^{\prime}(z)}{P(z)}\right| \\
& \geq \frac{1-(1-2 \alpha) r}{1+r}-\beta\left(\frac{2 r}{1-r^{2}}\right) \\
&=\frac{(1-2 \alpha) r^{2}-2(1+\beta-\alpha) r+1}{1-r^{2}}
\end{aligned}
$$

The right hand side of the above inequality is not less than or equal to zero provided $|z|=r<r_{0}$, where r_{0} is as given in the statement of theorem. Sharpness follows if we take $f(z)$ to be the same as in Theorem 2.3.

Acknowledgement

The author is thankful to the referee for his/her valuable comments and suggestions.

REFERENCES

[1] A. W. Goodman, Univalent Functions, Vol. I and II, Mariner Publishing Company, Florida, 1983.
[2] E. Kadioğlu, On subclass of univalent functions with negative coefficients, Appl. Math. Comput. 146 (2003), 351-358.
[3] W. Kaplan, Close-to-Convex Schlicht functions, Mich. Math. J. 1 (1952), 169-185.
[4] Y. J. Kim, Univalence of certain integrals, Ph.D. Thesis, University of Cincinnati, (1972).
[5] T.H. MacGregor, Univalent power series whose coefficients have monotonic properties, Math. Z. 112 (1969), 222-228.
[6] E. P. Merkes - D. J. Wright, On the univalence of certain integrals, Proc. Amer. Math. Soc. 27 (1971), 97-100.
[7] R. S. Mishra, Geometrical and analytical properties of certain classes related to univalent functions, Ph.D. Thesis, C.S.J.M. University, Kanpur, India, (2007).
[8] M. Nunokawa, On the univalence of certain integral, Proc. Japan Acad. 45 (1969), 841-845.
[9] M. Nunokawa, On the univalence of certain integral, Trans. Amer. Math. Soc. 146 (1969), 439-440.
[10] D. A. Patil - N. K. Thakare, On univalence of certain integral, Indian J. Pure Appl. Math. 11 (1980), 1626-1642.
[11] J. A. Pfaltzgraff, Univalence of the integral of $f^{\prime}(z)^{\lambda}$, Bull. Lon. Math. Soc. 7 (1975), 254-256.
[12] B. Pinchuk, On starlike and convex functions of order α, Duke Math. J. 35 (1968), 721-734.
[13] S. Porwal, Mapping properties of an integral operator, Acta Univ. Apul. 27 (2011), 151-155.
[14] M. O. Reade, On close-to-convex univalent functions, Mich. Math. J. 3 (1955-56), 59-62.
[15] M. S. Robertson, On the theory of univalent functions, Ann. Math. 37 (1936), 374-408.
[16] W. C. Royster, On the univalence of certain integral, Mich. Math. J. 12 (1965), 385-387.
[17] G. S. Salagean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest, 1 (1983), 362-372.
[18] S. L. Shukla - V. Kumar, Remarks on a paper of Patil and Thakare, Indian J. Pure Appl. Math. 13 (1982), 1513-1525.
[19] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.

SAURABH PORWAL
Department of Mathematics
U.I.E.T., C.S.J.M. University, Kanpur-208024, (U.P.), India
e-mail: saurabhjcb@rediffmail.com

