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EXISTENCE AND MULTIPLICITY SOLUTIONS
FOR (p(x),q(x))-KIRCHHOFF TYPE SYSTEMS

EL MILOUD HSSINI - NAJIB TSOULI - MUSTAPHA HADDAOUI

This paper is concerned with the existence and multiplicity solutions
for a class of (p(x),q(x))-Kirchhoff type systems with Neumann bound-
ary condition. Our technical approach is based on variational methods.

1. Introduction

In this work, we study the existence and multiplicity solutions for the nonlocal
elliptic problem under Neumann boundary condition:
−M1

(∫
Ω

|∇u|p(x)+|u|p(x)
p(x) dx

)
(∆p(x)u−|u|p(x)−2u) = λFu(x,u,v) in Ω

−M2

(∫
Ω

|∇v|q(x)+|v|q(x)
q(x) dx

)
(∆q(x)v−|v|q(x)−2v) = λFv(x,u,v) in Ω

∂u
∂ν

= ∂v
∂ν

= 0 on ∂Ω,
(1)

where Ω is an open bounded subset of RN(N ≥ 1), with smooth boundary, ∂u
∂ν

is
the outer unit normal derivative, λ > 0 and p(x), q(x) ∈C(Ω) with N < p− :=
inf

Ω
p(x) ≤ p+ := sup

Ω
p(x) < +∞, N < q− := inf

Ω
q(x) ≤ q+ := sup

Ω
q(x) <

+∞, F(x,s, t) : Ω×R2→R is assumed to be continuous in x∈Ω and of class C1

in s, t ∈R, Fu, Fv denote the partial derivatives of F and Mi : R+→R, (i = 1,2)
are continuous functions.
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The p(x)-Laplacian operator possesses more complicated nonlinearities than
the p-Laplacian operator, mainly due to the fact that it is not homogeneous. The
study of various mathematical problems with variable exponent growth condi-
tion has been received considerable attention in recent years, we can for example
refer to [1, 4, 23, 26, 31]. This great interest may be justified by their various
physical applications. In fact, there are applications concerning elastic mechan-
ics [37], electrorheological fluids [34, 35], image restoration [14], dielectric
breakdown, electrical resistivity and polycrystal plasticity [7, 8] and continuum
mechanics [5].

As it is well known, problem (1) is related to the stationary problem of a
model introduced by Kirchhoff [29]. More precisely, Kirchhoff introduced a
model given by the following equation

ρ
∂ 2u
∂ t2 −

(
ρ0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣2 dx

)
∂ 2u
∂x2 = 0, (2)

which extends the classical D’Alembert’s wave equation by considering the ef-
fects of the changes in the length of the strings during the vibrations. Later (2)
was developed to form

utt −M
(∫

Ω

|∇u|2dx
)

∆u = f (x,u) inΩ. (3)

After that, many authors studied the following nonlocal elliptic boundary value
problem

−M
(∫

Ω

|∇u|2dx
)

∆u = f (x,u) inΩ, u = 0 on∂Ω. (4)

Problems like (4) can be used for modeling several physical and biological sys-
tems where u describes a process which depends on the average of it self, such
as the population density, see [3]. The study of Kirchhoff type equations has
already been extended to the case involving the p-Laplacian

−M
(∫

Ω

|∇u|pdx
)

∆pu = f (x,u) in Ω,

see [13, 16, 20, 28]. However, to our knowledge, there is not a great number of
papers which have dealt with nonlocal p(x)-Laplacian equations. We refer the
reader to [15, 18, 27, 30, 32] and the references therein for an overview on this
subject.

Hereafter, we state some natural growth hypotheses on f (x, t) and the Kirch-
hoff function Mi(t), (i = 1,2).

(F0) F(x,0,0) = 0 for all x ∈Ω.
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(F1) For all (x,s, t) ∈Ω×R2, one has

|F(x,s, t)| ≤ a
(

1+ |s|α(x)+ |t|β (x)
)
,

where a is a positive constant and α(x), β (x) ∈ C(Ω) such that α+ =
sup

Ω
α(x)< p−; β+ = sup

Ω
β (x)< q− for all x ∈Ω.

(F2) there exist two constants µ1 >
p+

1−θ1
, µ2 >

q+
1−θ2

and R > 0 such that for all
x ∈Ω and all (s, t) ∈ R2 with |s|µ1 + |t|µ2 ≥ 2R, one has

0 < F(x,s, t)≤ s
µ1

Fs(x,s, t)+
t

µ2
Ft(x,s, t)

where θi, (i = 1,2) comes from (M1) below.

(M0) Mi(t) :R+→ [m0,+∞), (i= 1,2) are continuous and increasing functions
such that m0 > 0.

(M1) there exists θi ∈ (0,1), (i = 1,2) such that

M̂i(t)≥ (1−θi)Mi(t)t for all t ≥ 0,

where M̂i(t) =
∫ t

0 Mi(ξ )dξ .

A typical example of the functions satisfying the conditions (M1) and (M2) is
given by Mi(t) = m0 + bit, (i = 1,2) : R+ → R with b1, b2 are two positive
constants.

In the present work, by using variational method based on two consequences
of a local minimum theorem [10, 12], the existence of at least two, or three
solutions for the nonlocal problem (1) is established. .

2. Preliminaries and basic notations

In this section, we state some basic properties of variable exponent Sobolev
space, and we recall definitions and theorems to be used in this article. Let
Φ and Ψ be two continuously Gâteaux differentiable functionals defined on a
real Banach space X and fix r ∈ R. The functional I = Φ−Ψ is said to verify
the Palais-Smale condition cut off upper at r (in short (P.S.)[r]) if any sequence
{un} in X such that {I(un)} is bounded, limn→+∞ ‖I′(un)‖X∗ = 0 and Φ(un) <
r ∀n ∈ N, has a convergent subsequence.

If r =+∞ it coincides with the classical (PS)-condition.
Now we recall a result of local minimum obtained in [10], which is based

on [9, Theorem 5.1].
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Theorem 2.1 ([10, Theorem 2.2]). Let X be a real Banach space, and let Φ,
Ψ : X → R be two continuously Gâteaux differentiable functionals such that
infX Φ = Φ(0) = Ψ(0) = 0. Assume that there exist r ∈ R and ū ∈ X, with
0 < Φ(ū)< r, such that

supu∈Φ−1(]−∞,r[) Ψ(u)

r
<

Ψ(ū)
Φ(ū)

(5)

and, for each λ ∈ Λ :=
]

Φ(ū)
Ψ(ū) ,

r
supu∈Φ−1(]−∞,r[) Ψ(u)

[
the functional Iλ = Φ− λΨ

satisfies the (PS)[r]-condition. Then, for each λ ∈Λ :=
]

Φ(ū)
Ψ(ū) ,

r
supu∈Φ−1(]−∞,r[) Ψ(u)

[
,

there is uλ ∈ Φ−1(]0,r[) such that Iλ (uλ ) ≤ Iλ (u) for all u ∈ Φ−1(]0,r[) and
I′
λ
(uλ ) = 0.

We also point out an other result, which insures the existence of at least three
critical points, that has been obtained in [12] and it is a more precise version of
[11, Theorem 3.2].

Theorem 2.2 ([12, Theorem 3.6]). Let X be a reflexive real Banach space,
Φ : X → R be a continuously Gâteaux differentiable, coercive and sequen-
tially weakly lower semicontinuous functional whose Gâteaux derivative admits
a continuous inverse on X∗, Ψ : X→R be a continuously Gâteaux differentiable
functional whose Gâteaux derivative is compact, moreover

Φ(0) = Ψ(0) = 0.

Assume that there exist r ∈ R and ū ∈ X, with 0 < r < Φ(ū), such that

(i)
supu∈Φ−1(]−∞,r]) Ψ(u)

r < Ψ(ū)
Φ(ū)

(ii) for each λ ∈ Λ :=
]

Φ(ū)
Ψ(ū) ,

r
supu∈Φ−1(]−∞,r]) Ψ(u)

[
the functional Φ−λΨ is co-

ercive.

Then, for each λ ∈ Λ, the functional Iλ = Φ− λΨ has at least three distinct
critical points in X.

Remark 2.3. [9, Proposition 2.1] guarantees that if Φ is a sequentially weakly
lower semicontinuous, coercive, continuously Gâteaux differentiable function
whose Gâteaux derivative admits a continuous inverse and Ψ is a Gâteaux dif-
ferentiable function whose Gâteaux derivative is compact then the functional
Φ−Ψ satisfies the (P.S.)[r] condition for each r ∈ R.
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Here, p(x) ∈ C(Ω) such that 1 < p− := min
Ω

p(x) ≤ p+ := max
Ω

p(x) <
+∞. Define the variable exponent Lebesgue space by

Lp(x)(Ω) = {u : Ω→ R measurable and
∫

Ω

|u(x)|p(x) dx <+∞}

furnished with the Luxemburg norm

|u|Lp(x)(Ω) = |u|p(x) = inf{σ > 0 :
∫

Ω

|u(x)
σ
|p(x) dx≤ 1},

and the variable exponent Sobolev space is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}

equipped with the norm

‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω)+ |∇u|Lp(x)(Ω).

Proposition 2.4 ([24, 25]). The spaces Lp(x)(Ω) and W 1,p(x)(Ω) are separable,
uniformly convex, reflexive Banach spaces. The conjugate space of Lp(x)(Ω) is
Lq(x)(Ω), where q(x) is the conjugate function of p(x); i.e.,

1
p(x)

+
1

q(x)
= 1,

for all x ∈Ω. For u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) we have∣∣∣∫
Ω

u(x)v(x)dx
∣∣∣≤ ( 1

p−
+

1
q−

)
|u|p(x)|v|q(x).

Proposition 2.5 ([24, 25]). For p,r ∈ C+(Ω) such that r(x) ≤ p∗(x) (r(x) <
p∗(x)) for all x ∈Ω, there is a continuous (compact) embedding

W 1,p(x)(Ω) ↪→ Lr(x)(Ω),

where

p∗(x) =

{
N p(x)

N−p(x) if p(x)< N
+∞ if p(x)≥ N.

Now, we introduce in Xp :=W 1,p(x)(Ω) the norm

‖u‖p := inf
{

σ > 0 :
∫

Ω

(
|∇u(x)

σ
|p(x)+ |u(x)

σ
|p(x)

)
dx≤ 1

}
,

which is equivalent to ‖.‖W 1,p(x)(Ω). Set ρ1,p(x) : X → R defined by

ρ1,p(x)(u) =
∫

Ω

(|∇u|p(x)+ |u|p(x))dx.



80 EL MILOUD HSSINI - NAJIB TSOULI - MUSTAPHA HADDAOUI

Proposition 2.6 ([24]). For u ∈ Xp we have

(i) ‖u‖p < 1(= 1;> 1)⇔ ρ1,p(x)(u)< 1(= 1;> 1);

(ii) If ‖u‖p < 1⇒‖u‖p+
p ≤ ρ1,p(x)(u)≤ ‖u‖

p−
p ;

(iii) If ‖u‖p > 1⇒‖u‖p−
p ≤ ρ1,p(x)(u)≤ ‖u‖

p+
p .

From now on, we write X := Xp×Xq which is a reflexive Banach space
endowed with the norm

||(u,v)||= ||u||p + ||v||q.

Let

k := max

 sup
u∈Xp\{0}

max
x∈Ω

|u(x)|

||u||p
; sup

v∈Xq\{0}

max
x∈Ω

|v(x)|

||v||q

 . (6)

Since p−, q− > N, the spaces Xp and Xq are compactly embedded in C(Ω) and
hence k < ∞.

Definition 2.7. We say that (u,v) ∈ X is a weak solution of problem (1) if

M1

(∫
Ω

|∇u|p(x)+ |u|p(x)

p(x)
dx

)∫
Ω

(
|∇u|p(x)−2

∇u∇ϕ + |u|p(x)−2uϕ

)
dx

+M2

(∫
Ω

|∇v|q(x)+ |v|q(x)

q(x)
dx

)∫
Ω

(
|∇v|q(x)−2

∇v∇ψ + |v|q(x)−2vψ

)
dx

−λ

∫
Ω

Fu(x,u,v)ϕdx−λ

∫
Ω

Fv(x,u,v)ψdx = 0,

for all (ϕ,ψ) ∈ X .

We denote by Iλ the energy functional associated with problem (1)

Iλ (·) := Φ(·)−λΨ(·),

where Φ,Ψ : X → R are defined as follows

Φ(u,v) = M̂1

(∫
Ω

|∇u|p(x)+ |u|p(x)

p(x)
dx

)
+ M̂2

(∫
Ω

|∇v|q(x)+ |v|q(x)

q(x)
dx

)
,

Ψ(u,v) =
∫

Ω

F(x,u,v)dx (7)

for all (u,v) ∈ X . It is well known that Iλ ∈C1(X ,R) and a critical point of Iλ

corresponds to a weak solutions of problem (1).
We need the following proposition in the proofs of our main results.
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Proposition 2.8 ([30], Proposition 4.2). If (M0) holds, then

(i) Φ is sequentially weakly lower semicontinuous and bounded on each
bounded subset;

(ii) Φ′ is a continuous and strictly monotone operator;

(iii) Φ′ is a homeomorphism.

3. Main result

In order to introduce our result, given two positive constants γ and δ , put

Mk(γ) := M̂1

( 1
p+

(
γ

k

)p−)
+ M̂2

( 1
q+

(
γ

k

)q−)
,

M(δ ) := M̂1

(
δ p+

p−
|Ω|
)
+ M̂2

(
δ q+

q−
|Ω|
)
, and

σ(γ) = k
( p+

m0
Mk(γ)

) 1
p−

+ k
(q+

m0
Mk(γ)

) 1
q−

where k is given in (6) and |Ω| denotes the measure of Ω.

Theorem 3.1. Assume that (M0), (M1), (F0), (F1) and (F2) hold, and there exist
two constants γ ≥ k and δ ≥ 1 with

δ p+

p−
|Ω|< 1

p+

(
γ

k

)p−

and
δ q+

q−
|Ω|< 1

q+

(
γ

k

)q−

(8)

such that

(A1) ∫
Ω

max|s|+|t|≤σ(γ) F(x,s, t)dx
Mk(γ)

<

∫
Ω

F(x,δ ,δ )dx
M(δ )

;

(A2) F(x,δ ,δ )≥ 0 for each x ∈Ω.

Then, for each λ ∈ Λ :=
]

M(δ )∫
Ω

F(x,δ ,δ )dx ,
Mk(γ)∫

Ω
max|s|+|t|≤σ(γ) F(x,s,t)dx

[
, problem (1) ad-

mits at least two nontrivial weak solutions w̃1 := (uλ ,vλ ) and w̃2 such that
|uλ |+ |vλ |< σ(γ).

Proof. Let Φ, Ψ be the functionals defined in (7). One has infX Φ = Φ(0) =
Ψ(0) = 0 and since p−, q− > 1, for each (u,v) ∈ X such that ‖u‖p, ‖v‖q ≥ 1 we
have

Φ(u,v)≥ m0

p+
ρ1,p(x)(u)+

m0

q+
ρ1,q(x)(v)≥

m0

p+
‖u‖p−

p +
m0

q+
‖v‖q−

q → ∞ as ‖(u,v)‖→ ∞.
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So, Φ is a coercive. From proposition 2.8, of course, Φ′ admits a continuous
inverse on X∗, moreover, Ψ has a compact derivative, it results sequentially
weakly continuous. Our aim is to start verify condition (5) of Theorem 2.1. To
this end, let ū(x) = δ for all x ∈Ω, and put r = Mk(γ). Clearly ū ∈ X , and

Ψ(ū, ū) =
∫

Ω

F(x, ū, ū)dx =
∫

Ω

F(x,δ ,δ )dx, (9)

Φ(ū, ū) = M̂1

(∫
Ω

|ū|p(x)

p(x)
dx

)
+ M̂2

(∫
Ω

|ū|q(x)

q(x)
dx

)
.

Then, in virtue of δ ≥ 1 and the strict monotonicity of M̂i, (i = 1,2), we get

M̂1

(
δ p−

p+
|Ω|

)
+ M̂2

(
δ q−

q+
|Ω|

)
≤Φ(ū, ū)

≤ M̂1

(
δ p+

p−
|Ω|

)
+ M̂2

(
δ q+

q−
|Ω|

)
= M(δ ). (10)

Hence, it follows from (8) that

0 < Φ(ū, ū)< r.

Now, let (u,v) ∈ X such that (u,v) ∈Φ−1]−∞,r[. By (M0) and Proposition 2.6,
we obtain

min
{
‖u‖p+

p ,‖u‖p−
p

}
<

rp+

m0
.

Then

‖u‖p < max

{(
rp+

m0

) 1
p+

,
(rp+

m0

) 1
p−

}
,

the fact that γ ≥ k, we get

‖u‖p <
(rp+

m0

) 1
p−
.

This together with (6), yields

|u(x)| ≤ k||u||p < k
(rp+

m0

) 1
p− for all x ∈Ω. (11)

Hence, by same argument, we obtain

|u(x)|+ |v(x)|< k
[(rp+

m0

) 1
p−

+
(rq+

m0

) 1
q−
]
= σ(γ) for all x ∈Ω.
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So

Ψ(u,v) =
∫

Ω

F(x,u,v)dx≤
∫

Ω

max
{(u,v)∈X ;|u|+|v|≤σ(γ)}

F(x,u,v)dx,

for all (u,v) ∈ X such that (u,v) ∈Φ−1(]−∞,r[). Thus

sup(u,v)∈Φ−1(]−∞,r[) Ψ(u,v)

r
≤
∫

Ω
max|s|+|t|≤σ(γ) F(x,s, t)dx

r
. (12)

In view of (9), (10), (12) and taking into account (A1) and (A2), we obtain

supΦ(u,v)≤r Ψ(u,v)

r
≤
∫

Ω
max|s|+|t|≤σ(γ) F(x,s, t)dx

Mk(γ)

<

∫
Ω

F(x,δ ,δ )dx
M(δ )

≤ Ψ(ū, ū)
Φ(ū, ū)

. (13)

Therefore, condition (5) of Theorem 2.1 is verified. Now, fixed λ > 0, remark
(2.3) and proposition (2.8) assured that Iλ satisfies the (P.S.)[r] condition for all
r > 0. So, for each λ ∈ Λ⊂

]
Φ(ū,ū)
Ψ(ū,ū) ,

1
supΦ(u,v)≤r Ψ(u,v)

[
, the functional Iλ admits at

least one critical point w̃1 = (uλ ,vλ ) such that 0<Φ(uλ ,vλ )< r, and so (uλ ,vλ )
is a nontrivial weak solution of problem (1) such that |uλ |+ |vλ |< σ(γ).

Now we prove the existence of a second local minimum distinct from the
first one. To this purpose, we verify the hypotheses of the mountain pass the-
orem for the functional Iλ . Clearly Iλ is of class C1 and Iλ (0) = 0. The first
part of proof guarantees that w̃1 ∈ X is a nontrivial local minimum for Iλ in X .
Therefore there is ρ > 0 such that

inf
‖u−w̃1‖=ρ

Iλ (u)≥ Iλ (w̃1),

so condition [33, (I1), Theorem 2.2] is verified. Now, from condition (F2), by
standard computations (see [22]), there is a positive constant c1 such that

F(x,s, t)≥ c1 (|s|µ1 + |t|µ2−1) . (14)

By integrating (M1), we get

M̂i(t)≤
M̂i(t0)

t
1

1−θi
0

t
1

1−θi = ci
2t

1
1−θi (i = 1,2) for all t ≥ t0 > 0. (15)
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Hence, from (14) and (15), for (u,v) ∈ X\{(0,0)} and t > 1, we obtain

Iλ (tu, tv)≤ M̂1

(∫
Ω

|t∇u|p(x)+ |tu|p(x)

p(x)
dx

)
+ M̂2

(∫
Ω

|t∇v|q(x)+ |tv|q(x)

q(x)
dx

)
−λ

∫
Ω

F(x, tu, tv)dx

≤ c3

(
ρ1,p(x)(tu)

) 1
1−θ1 + c4

(
ρ1,q(x)(tv)

) 1
1−θ2

− c1λ tµ1

∫
Ω

|u(x)|µ1dx− c1λ tµ2

∫
Ω

|v(x)|µ2dx− c5

≤ c3t
p+

1−θ1

(
ρ1,p(x)(u)

) 1
1−θ1 + c4t

q+
1−θ2

(
ρ1,q(x)(v)

) 1
1−θ2

− c1λ tµ1

∫
Ω

|u(x)|µ1dx− c1λ tµ2

∫
Ω

|v(x)|µ2dx− c5→−∞

as t → ∞, since µ1 >
p+

1−θ1
and µ2 >

q+
1−θ2

. So the condition [33, (I2), Theorem
2.2] is verified. Finally, we verify the (PS)-condition, it is sufficient to prove
that any Palais-Smale sequence is bounded. To this end, let (un,vn) be a Palais-
Smale sequence for the functional Iλ , this means that Iλ (un,vn) is bounded and
‖I′

λ
(un,vn)‖X∗→ 0 as n→+∞. Using hypotheses (M0), (M1) and (F2), we have

C0 ≥ Iλ (un,vn)

≥ (1−θ1)M1

(∫
Ω

|∇un|p(x)+ |un|p(x)

p(x)
dx
)∫

Ω

|∇un|p(x)+ |un|p(x)

p(x)
dx

+(1−θ2)M2

(∫
Ω

|∇vn|q(x)+ |vn|q(x)

q(x)
dx
)∫

Ω

|∇vn|q(x)+ |vn|q(x)

q(x)
dx

− λ

µ1

∫
Ω

Fu(x,un,vn)un dx− λ

µ2

∫
Ω

Fv(x,un,vn)vn dx− c6

≥ m0
(1−θ1

p+
− 1

µ1

)
ρ1,p(x)(un)+

1
µ1

Ip(un,vn)(un)

+m0
(1−θ2

q+
− 1

µ2

)
ρ1,q(x)(vn)+

1
µ2

Iq(un,vn)(vn)− c6, where

Ip(u,v)ϕ := M1

(∫
Ω

|∇u|p(x)+ |u|p(x)

p(x)
dx

)∫
Ω

(
|∇u|p(x)−2

∇u∇ϕ + |u|p(x)−2uϕ

)
dx

−λ

∫
Ω

Fu(x,u,v)ϕdx

Iq(u,v)ψ := M2

(∫
Ω

|∇v|q(x)+ |v|q(x)

q(x)
dx

)∫
Ω

(
|∇v|q(x)−2

∇v∇ψ + |v|q(x)−2vψ

)
dx

−λ

∫
Ω

Fv(x,u,v)ψdx.
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Now, suppose that the sequence (un,vn) is not bounded. Without loss of gen-
erality, we may assume ‖un‖p ≥ ‖vn‖q, with ‖.‖∗,p (respectively ‖.‖∗,q) is the
norm of the dual X∗p (respectively X∗q ), we have

C′0 ≥m0
(1−θ1

p+
− 1

µ1

)
‖un‖p−

p −
( 1

µ1
‖Ip(un,vn)‖∗,p+

1
µ2
‖Iq(un,vn)‖∗,q

)
‖un‖p,

But, this cannot hold true since p− > 1 and µ1 > p+
1−θ1

. Hence, {‖(un,vn)‖}
is bounded. consequently, the classical theorem of Ambrosetti and Rabinowitz
ensures a critical point w̃2 such that Iλ (w̃2)> Iλ (w̃1). So w̃1 and w̃2 are distinct
weak solutions of the problem, and the proof of Theorem 3.1 is achieved.

Finally, we give an application of Theorem 2.2.

Theorem 3.2. Assume that (M0), (F0) and (F1) hold, and there exist two con-
stants γ ≥ k and δ ≥ 1 with

δ p−

p+
|Ω|> 1

p+

(
γ

k

)p−

and
δ q−

q+
|Ω|> 1

q+

(
γ

k

)q−

(16)

such that the assumptions (A1) and (A2) in Theorem 3.1 hold. Then, for each
λ ∈ Λ, problem (1) admits at least three weak solutions.

Proof. Let Φ, Ψ be the functionals defined in (7) satisfy all regularity assump-
tions requested in Theorem 2.2. So, our aim is to verify (i) and (ii). Arguing as
in the proof of Theorem 3.1, put ū(x) = δ and r = Mk(γ), bearing in mind (16)
we obtain

Φ(ū, ū)> r > 0.

Therefore, (13) holds and the assumption (i) of Theorem 2.2 is satisfied. Now,
we prove that the functional Iλ is coercive. For (u,v) ∈ X such that ||(u,v)|| →
+∞, in fact by using condition (F1) we have

Iλ (u,v)≥ M̂1

(∫
Ω

|∇u|p(x)+ |u|p(x)

p(x)
dx

)
+ M̂2

(∫
Ω

|∇v|q(x)+ |v|q(x)

q(x)
dx

)
−λ

∫
Ω

F(x,u,v)dx

≥ m0

p+
ρ1,p(x)(u)+

m0

q+
ρ1,q(x)(v)−λa

(
|Ω|+

∫
Ω

|u|α(x)+
∫

Ω

|v|β (x)
)
,

On the other hand, there are a constants C1 and C2 such that∫
Ω

|u|α(x) ≤max
{
|u|α−p(x), |u|

α+

p(x)

}
≤C1||u||α

+

p∫
Ω

|v|β (x) ≤max
{
|v|β

−

q(x), |v|
β+

q(x)

}
≤C2||v||β

+

q .
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Thus, for every λ ∈ Λ we get

Iλ (u,v)≥
m0

p+
||u||p−p +

m0

q+
||v||q−q −C1||u||α

+

p −C2||v||β
+

q .

Since p− > α+ and q− > β+, the functional Iλ is coercive, also condition (ii)
holds. So, for each λ ∈ Λ, the functional Iλ has at least three distinct critical
points that are weak solutions of system (1).
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