COEFFICIENT BOUNDS FOR A GENERAL SUBCLASS OF BI-UNIVALENT FUNCTIONS

ŞAHSENE ALTINKAYA - SIBEL YALÇIN

In the present investigation, we introduce and investigate a new subclass of the function class Σ of bi-univalent functions defined in the open unit disc. We find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the function class $S_{\Sigma}(n, h, \lambda)$. The results presented in this paper improve or generalize the recent works of Jothibasu [13] and other authors.

1. Introduction and Definitions

Let A denote the class of analytic functions in the unit disk

$$
U=\{z \in \mathbb{C}:|z|<1\}
$$

that have the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

and let S be the class of all functions from A which are univalent in U.
The Koebe one-quarter theorem [8] states that the image of U under every function f from S contains a disk of radius $\frac{1}{4}$. Thus every such univalent function has an inverse f^{-1} which satisfies

$$
f^{-1}(f(z))=z,(z \in U)
$$

and

$$
f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots
$$

A function $f(z) \in A$ is said to be bi-univalent in U if both $f(z)$ and $f^{-1}(z)$ are univalent in U.

Let Σ denote the class of bi-univalent functions defined in the unit disk U. For a brief history and interesting examples of functions in the class Σ; see [3].

The research into Σ was started by Lewin ([15]). It focused on problems connected with coefficients and obtained the bound for the second coefficient. Several authors have subsequently studied similar problems in this direction (see [4], [19]). Thus, following Brannan and Taha [3], a function $f(z) \in A$ is said to be in the class $S_{\Sigma}^{\star}(\alpha)$ of strongly bi-starlike functions of order $\alpha(0<\alpha \leq 1)$ if each of the following conditions is satisfied:

$$
f \in \Sigma, \quad\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, z \in U)
$$

and

$$
\left|\arg \left(\frac{w g^{\prime}(w)}{g(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, w \in U)
$$

and is said to be in the class $K_{\Sigma}(\alpha)$ of strongly bi-convex functions of order α $(0<\alpha \leq 1)$ if each of the following conditions is satisfied:

$$
f \in \Sigma,\left|\arg \left(1+\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, z \in U)
$$

and

$$
\left|\arg \left(1+\frac{w g^{\prime}(w)}{g(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, w \in U)
$$

where g is the extension of f^{-1} to U. The classes $S_{\Sigma}^{\star}(\alpha)$ and $K_{\Sigma}(\alpha)$ of bistarlike functions of order α and bi-convex functions of order α, corresponding to the function classes $S^{\star}(\alpha)$ and $K(\alpha)$, were also introduced analogously. For each of the function classes $S_{\Sigma}^{\star}(\alpha)$ and $K_{\Sigma}(\alpha)$, they found non-sharp estimates on the initial coefficients. Recently, Srivastava et al. [22] introduced and investigated subclasses of the bi-univalent functions and obtained bounds for the
initial coefficients; it was followed by such works as those by Murugunsundaramoorthy et al. [18], Frasin and Aouf [9], Çağlar et al. [6] and others (see, for example, [1], [7], [14], [16], [17], [20], [24]).

Not much is known about the bounds on the general coefficient $\left|a_{n}\right|$ for $n \geq 4$. In the literature, the only a few works determining the general coefficient bounds $\left|a_{n}\right|$ for the analytic bi-univalent functions ([2], [5], [10], [11], [12]). The coefficient estimate problem for each of $\left|a_{n}\right|(n \in \mathbb{N} \backslash\{1,2\} ; \mathbb{N}=\{1,2,3, \ldots\})$ is still an open problem.

Let $f \in A$. We define the differential operator $D^{n}, n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ by (see [21])

$$
\begin{aligned}
D^{0} f(z) & =f(z) \\
D^{1} f(z) & =D f(z)=z f^{\prime}(z) \\
& \vdots \\
D^{n} f(z) & =D^{1}\left(D^{n-1} f(z)\right)
\end{aligned}
$$

In this paper, by using the method [23] different from that used by other authors, we obtain bounds for the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the subclasses of bi-univalent functions considered Jothibasu and get more accurate estimates than that given in [13].

Definition 1.1. Let the functions $h, p: U \rightarrow \mathbb{C}$ be so constrained that

$$
\min \{\operatorname{Re}(h(z)), \operatorname{Re}(p(z))\}>0
$$

and

$$
h(0)=p(0)=1
$$

Definition 1.2. A function $f \in \Sigma$ is said to be $S_{\Sigma}(n, h, \lambda), n \in \mathbb{N}_{0}$ and $0 \leq \lambda<1$, if the following conditions are satisfied:

$$
\begin{equation*}
\frac{D^{n+1} f(z)}{(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)} \in h(U) \quad(z \in U) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{D^{n+1} g(w)}{(1-\lambda) D^{n} g(w)+\lambda D^{n+1} g(w)} \in p(U) \quad(w \in U) \tag{3}
\end{equation*}
$$

where $g(w)=f^{-1}(w)$.

2. Coefficient Estimates

Theorem 2.1. Let f given by (1) be in the class $S_{\Sigma}(n, h, \lambda), n \in \mathbb{N}_{0}$ and $0 \leq$ $\lambda<1$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(1-\lambda)^{2} 4^{n}}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4\left|\left(\lambda^{2}-1\right) 4^{n}+2(1-\lambda) 3^{n}\right|}}\right\} \tag{4}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\begin{array}{l}
\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(1-\lambda)^{2} 4^{n}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8(1-\lambda) 3^{n}} \tag{5}\\
\frac{\left[4(1-\lambda) 3^{n}+\left(\lambda^{2}-1\right) 4^{n}\right]\left|h^{\prime \prime}(0)\right|+\left(1-\lambda^{2}\right) 4^{n}\left|p^{\prime \prime}(0)\right|}{8\left|\left(\lambda^{2}-1\right) 4^{n}+2(1-\lambda) 3^{n}\right|(1-\lambda) 3^{n}}
\end{array}\right\}
$$

Proof. Let $f \in S_{\Sigma}(n, h, \lambda)$ and $0 \leq \lambda<1$. It follows from (2) and (3) that

$$
\begin{equation*}
\frac{D^{n+1} f(z)}{(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)}=h(z) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{D^{n+1} g(w)}{(1-\lambda) D^{n} g(w)+\lambda D^{n+1} g(w)}=p(w) \tag{7}
\end{equation*}
$$

where $h(z)$ and $p(w)$ satisfy the conditions of Definiton 1. Furthermore, the functions $h(z)$ and $p(w)$ have the following Taylor-Maclaurin series expansions:

$$
h(z)=1+h_{1} z+h_{2} z^{2}+\cdots
$$

and

$$
p(w)=1+p_{1} w+p_{2} w^{2}+\cdots
$$

respectively. It follows from (6) and (7) that

$$
\begin{gather*}
(1-\lambda) 2^{n} a_{2}=h_{1} \tag{8}\\
\left(\lambda^{2}-1\right) 4^{n} a_{2}^{2}+2(1-\lambda) 3^{n} a_{3}=h_{2} \tag{9}
\end{gather*}
$$

and

$$
\begin{gather*}
-(1-\lambda) 2^{n} a_{2}=p_{1} \tag{10}\\
2(1-\lambda) 3^{n}\left(2 a_{2}^{2}-a_{3}\right)+\left(\lambda^{2}-1\right) 4^{n} a_{2}^{2}=p_{2} \tag{11}
\end{gather*}
$$

From (8) and (10) we obtain

$$
\begin{equation*}
h_{1}=-p_{1} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
2(1-\lambda)^{2} 4^{n} a_{2}^{2}=h_{1}^{2}+p_{1}^{2} \tag{13}
\end{equation*}
$$

By adding (9) to (11), we find that

$$
\begin{equation*}
\left[2\left(\lambda^{2}-1\right) 4^{n}+4(1-\lambda) 3^{n}\right] a_{2}^{2}=h_{2}+p_{2} \tag{14}
\end{equation*}
$$

which gives us the desired estimate on $\left|a_{2}\right|$ as asserted in (4).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (11) from (9), we obtain

$$
\begin{equation*}
4(1-\lambda) 3^{n} a_{3}-4(1-\lambda) 3^{n} a_{2}^{2}=h_{2}-p_{2} . \tag{15}
\end{equation*}
$$

Then, in view of (13), (14) and (15), it follows that

$$
a_{3}=\frac{h_{1}^{2}+p_{1}^{2}}{2(1-\lambda)^{2} 4^{n}}+\frac{h_{2}-p_{2}}{4(1-\lambda) 3^{n}}
$$

and

$$
a_{3}=\frac{h_{2}+p_{2}}{2\left(\lambda^{2}-1\right) 4^{n}+4(1-\lambda) 3^{n}}+\frac{h_{2}-p_{2}}{4(1-\lambda) 3^{n}} .
$$

as claimed. This completes the proof of Theorem 2.1.

3. Corollaries and Consequences

By setting $n=0$ and $\lambda=0$ in Theorem 2.1, we get Corollary 3.1 below.
Corollary 3.1. Let the function $f(z)$ given by (1) be in the class $S_{\Sigma}(h)$ $(0 \leq \lambda<1)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8}, \frac{3\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8}\right\}
$$

By setting $n=1$ and $\lambda=0$ in Theorem 2.1, we get Corollary 3.2 below.
Corollary 3.2. Let the function $f(z)$ given by (1) be in the class $K_{\Sigma}(h)$ $(0 \leq \lambda<1)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{8}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{8}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{24}, \frac{2\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{12}\right\}
$$

Corollary 3.3. If

$$
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z^{2}+\ldots \quad(0<\alpha \leq 1)
$$

then inequalities (4) and (5) become

$$
\left|a_{2}\right| \leq \min \left\{\frac{2 \alpha}{(1-\lambda) 2^{n}}, \sqrt{\frac{2}{\left|\left(\lambda^{2}-1\right) 4^{n}+2(1-\lambda) 3^{n}\right|}} \alpha\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{4 \alpha^{2}}{(1-\lambda)^{2} 4^{n}}+\frac{\alpha^{2}}{(1-\lambda) 3^{n}}, \frac{2 \alpha^{2}}{\left|\left(\lambda^{2}-1\right) 4^{n}+2(1-\lambda) 3^{n}\right|}\right\}
$$

Remark 3.4. Putting $n=0$ and $\lambda=0$ in Corollary 3.3, we obtain the following corollary.

Corollary 3.5 (See also [23]). Let the function $f(z)$ given by (1) be in the class $S_{\Sigma}^{*}(\alpha)$. Then

$$
\left|a_{2}\right| \leq \sqrt{2} \alpha
$$

and

$$
\left|a_{3}\right| \leq 2 \alpha^{2}
$$

The estimates on the coefficient $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of Corollary 3.5 are improvement of the estimates obtained in [13] and [18].

Remark 3.6. Putting $n=1$ and $\lambda=0$ in Corollary 3.3, we obtain the following corollary.

Corollary 3.7. Let the function $f(z)$ given by (1) be in the class $K_{\Sigma}(\alpha)$. Then

$$
\left|a_{2}\right| \leq \alpha
$$

and

$$
\left|a_{3}\right| \leq \alpha^{2}
$$

The estimate on the coefficient $\left|a_{3}\right|$ of Corollary 3.7 is improvement of the estimates obtained in [13].

Corollary 3.8. If
$h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z}=1+2(1-\beta) z+2(1-\beta) z^{2}+\cdots(0 \leq \beta<1)$, then inequalities (4) and (5) become

$$
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\beta)}{(1-\lambda) 2^{n}}, \sqrt{\frac{2(1-\beta)}{\left|\left(\lambda^{2}-1\right) 4^{n}+2(1-\lambda) 3^{n}\right|}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{4(1-\beta)^{2}}{(1-\lambda)^{2} 4^{n}}+\frac{1-\beta}{(1-\lambda) 3^{n}}, \frac{2(1-\beta)}{\left|\left(\lambda^{2}-1\right) 4^{n}+2(1-\lambda) 3^{n}\right|}\right\}
$$

Remark 3.9. Putting $n=0$ and $\lambda=0$ in Corollary 3.8, we obtain the following corollary.

Corollary 3.10. Let the function $f(z)$ given by (1) be in the class $K_{\Sigma}(\beta)$. Then

$$
\left|a_{2}\right| \leq \sqrt{2(1-\beta)}
$$

and

$$
\left|a_{3}\right| \leq 2(1-\beta)
$$

The estimate on the coefficient $\left|a_{3}\right|$ of Corollary 3.10 is improvement of the estimates obtained in [13] and [18].

Remark 3.11. Further, taking $n=1$ and $\lambda=0$ in Corollary 3.8, we obtain the following corollary.

Corollary 3.12. Let the function $f(z)$ given by (1) be in the class $K_{\Sigma}(\beta)$. Then

$$
\left|a_{2}\right| \leq \sqrt{1-\beta}
$$

and

$$
\left|a_{3}\right| \leq(1-\beta)
$$

The estimate on the coefficient $\left|a_{3}\right|$ of Corollary 3.12 is improvement of the estimates obtained in [3] and [13].

REFERENCES

[1] Ş. Altınkaya - S. Yalçın, Initial coefficient bounds for a general class of biunivalent functions, International Journal of Analysis, Article ID 867871, (2014), 4 pp .
[2] Ş. Altınkaya - S. Yalçın, Coefficient bounds for a subclass of bi-univalent functions, TWMS Journal of Pure and Applied Mathematics, in press.
[3] D. A. Brannan - T. S. Taha, On some classes of bi-univalent functions, Studia Universitatis Babeş-Bolyai. Mathematica, 31 (2) (1986), 70-77.
[4] D. A. Brannan - J. G. Clunie, Aspects of comtemporary complex analysis, Proceedings of the NATO Advanced Study Institute held at University of Durham: July 1-20, 1979. Academic Press, New York 1980.
[5] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, in press.
[6] M. Caglar - H. Orhan - N. Yagmur, Coefficient bounds for new subclasses of biunivalent functions, Filomat 27 (2013), 1165-1171.
[7] O. Crişan, Coefficient estimates certain subclasses of bi-univalent functions, Gen. Math. Notes 16 (2) (2013), 93-102.
[8] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer, New York, USA, 1983.
[9] B. A. Frasin - M. K. Aouf, New subclasses of bi-univalent functions, Applied Mathematics Letters 24 (2011), 1569-1573.
[10] S. G. Hamidi - J. M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris Ser.I 352 (1) (2014), 17-20.
[11] J. M. Jahangiri - S. G. Hamidi, Coefficient estimates for certain classes of biunivalent functions, Int. J. Math. Math. Sci., ArticleID 190560, (2013), 4 pp.
[12] J. M. Jahangiri - S. G. Hamidi - S. A. Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Soc., in press, http://math.usm.my/bulletin/pdf/acceptedpapers/2013-04-050-R1.pdf.
[13] J. Jothibasu, Certain subclasses of bi-univalent functions defined by Salagean Operatör, Electron. J. Math. Anal. Appl. 3 (1) (2015), 150-157.
[14] B. Srutha Keerthi - B. Raja, Coefficient inequality for certain new subclasses of analytic bi-univalent functions, Theoretical Mathematics and Applications 3 (1) (2013), 1-10.
[15] M. Lewin, On a coefficient problem for bi-univalent functions, Proceeding of the American Mathematical Society 18 (1967), 63-68.
[16] X.F.Li-A.P. Wang, Two new subclasses of bi-univalent functions, Internat. Math. Forum 7 (2012), 1495-1504.
[17] N. Magesh - J. Yamini, Coefficient bounds for a certain subclass of bi-univalent functions, International Mathematical Forum 8 (27) (2013), 1337-1344.
[18] G. Murugunsundaramoorthy - N. Magesh - V. Prameela, Coefficient bounds for certain subclasses of bi-univalent functions, Abstr. Appl. Anal., Article ID

573017, (2013), 1-3.
[19] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Archive for Rational Mechanics and Analysis 32 (1969), 100-112.
[20] S. Porwal - M. Darus, On a new subclass of bi-univalent functions, J. Egypt. Math. Soc. 21 (3) (2013), 190-193.
[21] G. S. Salagean, Subclasses of univalent functions, in: Complex Analysis, Fifth Romanian Finish Seminar, Bucharest, 1 (1983), 362-372.
[22] H. M. Srivastava - A. K. Mishra - P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters 23 (10) (2010), 1188-1192.
[23] H. M. Srivastava - S. Bulut - M. Çağlar - N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (5) (2013), 831-842.
[24] Q. H. Xu - Y. C. Gui - H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Applied Mathematics Letters 25 (2012), 990-994.

ŞAHSENE ALTINKAYA
Department of Mathematics Faculty of Arts and Science

Uludag University
e-mail: sahsene@uludag.edu.tr
SIBEL YALÇIN
Department of Mathematics
Faculty of Arts and Science
Uludag University
e-mail: syalcin@uludag.edu.tr

