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CONNECTIONS BETWEEN VARIOUS SUBCLASSES OF
PLANAR HARMONIC MAPPINGS INVOLVING

GENERALIZED BESSEL FUNCTIONS

S. PORWAL - K. VIJAYA - M. KASTHURI

The purpose of the present paper is to establish connections between
various subclasses of harmonic univalent functions by applying certain
convolution operator involving generalized Bessel functions of first kind.
Precisely, we investigate such connections with Goodman-Rønning-type
harmonic univalent functions in the open unit disc U .

1. Introduction

Let A denote the class of functions f of the form

f (z) = z+
∞

∑
n=2

anzn, (1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1} and satisfy
the normalization condition f (0) = f ′(0)−1 = 0. Now, we recall that the gen-
eralized Bessel function of the first kind w = wp,b,c is defined as the particular
solution of the second-order linear homogenous differential equation

z2
ω
′′(z)+bzω

′(z)+
[
cz2− p2 +(1−b)p

]
ω(z) = 0, (2)
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where b, p,c ∈ C, which is a natural generalization of Bessel’s equation. This
function has the familiar representation

ω(z) = ωp,b,c(z) =
∞

∑
n=0

(−1)ncn

n!Γ(p+n+ b+1
2 )

( z
2

)2n+p
, (z ∈ C). (3)

The differential equation (2) permits the study of Bessel, modified Bessel,
spherical Bessel function and modified spherical Bessel functions all together.
Solutions of (2) are referred to as the generalized Bessel function of order p.
The particular solution given by (3) is called the generalized Bessel function of
the first kind of order p. Although the series defined above is convergent every-
where, the function ωp,b,c is generally not univalent in U . It is worth mentioning
that, in particular, when b = c = 1, we reobtain the Bessel function ωp,1,1 = Jp,
and for c=−1,b= 1 the function ωp,1,−1 becomes the modified Bessel function
Ip. Now, consider the function up,b,c defined by the transformation

up,b,c(z) = 2p
Γ

(
p+

b+1
2

)
z−p/2

ωp,b,c(z1/2).

By using the well-known Pochhammer (or Appell) symbol, defined in terms of
the Euler Gamma function for a 6= 0,−1,−2, . . . by

(a)n =
Γ(a+n)

Γ(a)
=

{
1, if n = 0

a(a+1) . . .(a+n−1), if n = 1,2,3, . . . ,

we obtain for the function up,b,c the following representation

up,b,c(z) =
∞

∑
n=0

(−c/4)n(
p+ (b+1)

2

)
n

zn

n!
, (4)

where p+(b+1)/2 6= 0,−1,−2, . . .. This function is analytic on C and satisfies
the second-order linear differential equation

4z2u′′(z)+2(2p+b+1)zu′(z)+ czu(z) = 0.

For convenience throughout in the sequel, we use the following notations:

up,b,c = up, k = p+
b+1

2
.

LetH be the family of all harmonic functions of the form f = h+g, where

h(z) = z+
∞

∑
n=2

anzn, g(z) =
∞

∑
n=1

bnzn, |b1|< 1, (z ∈ U), (5)
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are in the class A and then f (z) is given by,

f (z) = z+
∞

∑
n=2
|an|zn +

∞

∑
n=1
|bn|zn, (0≤ |b1|< 1). (6)

For complex parameters c1,k1,c2,k2 (k1,k2 6= 0,−1,−2, . . .), we define the
functions φ1(z) = zup1(z) and φ2(z) = zup2(z) .

Corresponding to these functions, we introduce the following convolution
operator

Ω≡Ω

(
k1, c1
k2, c2

)
:H→H

defined by

Ω

(
k1, c1
k2, c2

)
f = f ∗ (φ1 +φ2) = h(z)∗φ1(z)+g(z)∗φ2(z)

for any function f = h+g inH.
Letting

Ω

(
k1, c1
k2, c2

)
f (z) = H(z)+G(z),

where

H(z) = z+
∞

∑
n=2

(−c1/4)n−1

(k1)n−1(n−1)!
Anzn, G(z) =

∞

∑
n=1

(−c2/4)n−1

(k2)n−1(n−1)!
Bnzn. (7)

Denote by SH the subclass of H that are univalent and sense-preserving
in U . Note that f−B1 f

1−|B1|2
∈ SH whenever f ∈ SH. We also let the subclass S0

H
of SH, S0

H = { f = h+g ∈ SH : g′ (0) = B1 = 0} . The classes S0
H and SH were

first studied in [10]. Also, we let K0
H, S∗,0H and C0

H denote the subclasses of
S0
H of harmonic functions which are, respectively, convex, starlike and close-

to-convex in U . Also, let T 0
H be the class of sense-preserving, typically real

harmonic functions f = h + g in H. For definitions and properties of these
classes, one may refer to ([1], [10] or [11]).

Motivated by the earlier works on the subject of harmonic functions, in this
paper a new subclass of harmonic univalent functions we obtain a sufficient
coefficient condition for functions f ∈ H given by (6) and also shown that this
coefficient condition is necessary for functions f ∈ TH. Further, an attempt has
been made to study inclusion relations making use of Bessels functions.
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2. The class GH(λ ,α,γ)

For 0≤ λ ≤ 1,0 < γ ≤ 1 we let, GH(λ ,α,γ) a new subclass ofH, consist of all
functions of the form (6) satisfying the condition

ℜ

(
(1+ eiα)

z f ′(z)
(1−λ )z+λ f (z)

− eiα
)
> γ (8)

where

z′ =
∂

∂θ

(
z = reiθ

)
, f ′ (z) =

∂

∂θ
f
(

reiθ
)
.

Equivalently, we have,

ℜ

(
(1+ eiα)

z(h(z))′− z(g(z))′

(1−λ )z+λ [h(z)+g(z)]
− eiα

)
> γ,(z ∈ U). (9)

Further, for λ = 0, we define a new class GH(0,α,γ)≡NH(α,γ) satisfying the
analytic criteria

ℜ

(
(1+ eiα)

z f ′(z)
z′
− eiα

)
> γ, 0 < γ ≤ 1. (10)

Equivalently,

ℜ

(
(1+ eiα)

z(h(z))′− z(g(z))′

z
− eiα

)
> γ, (z ∈ U). (11)

Also let, GVH(λ ,α,γ) = GH(λ ,α,γ)∩TH and NVH(α,γ) = NH(α,γ)∩
TH where TH the subfamily ofH consisting of harmonic functions f = h+g of
the form

f (z) = z+
∞

∑
n=2
|an|zn−

∞

∑
n=1
|bn|zn, (0≤ b1 < 1). (12)

In our first theorem, we obtain a sufficient coefficient condition for harmonic
functions in GH(λ ,α,γ).

Theorem 2.1. Let f = h+g be given by (6). If

∞

∑
n=2

2n−λ (1+ γ)

1− γ
|an|+

∞

∑
n=1

2n+λ (1+ γ)

1− γ
|bn| ≤ 1, (13)

where a1 = 1 and 0 < γ ≤ 1, then f ∈ GH(λ ,α,γ).
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Proof. We first show that if the inequality (13) holds for the coefficients of
f = h+g, then the required condition (8) is satisfied. Now, we can write

ℜ

(
(1+ eiα)

z f ′(z)
(1−λ )z+λ f (z)

− eiα
)
= ℜ

(
A(z)
B(z)

)
,

where

A(z) = (1+ eiα)z f ′(z)− eiα [(1−λ )z+λ f (z)]

= z+
∞

∑
n=2

[
n+(n−λ )eiα]anzn−

∞

∑
n=1

[
n+(n+λ )eiα]bnzn

and

B(z) = (1−λ )z+λ f (z) = z+λ

∞

∑
n=2

anzn−λ

∞

∑
n=1

bnzn.

In view of the simple assertion that ℜ (w) ≥ γ if and only if |1− γ + w| ≥
|1+ γ−w|, it is sufficient to show that

|A(z)+(1− γ)B(z)|− |A(z)− (1+ γ)B(z)| ≥ 0. (14)

Substituting for A(z) and B(z) the appropriate expressions in (14), we get

|A(z)+(1− γ)B(z)|− |A(z)− (1+ γ)B(z)|

≥ (2− γ)|z|−
∞

∑
n=2

(2n−λγ)|an| |z|n−
∞

∑
n=1

(2n+λγ)|bn| |z|n

− γ|z|−
∞

∑
n=2

(2n−2λ −λγ)|an| |z|n−
∞

∑
n=1

(2n+2λ +λγ)|bn| |z|n.

≥ 2(1− γ)|z|

(
1−

(
∞

∑
n=2

[
2n−λ (1+ γ)

1− γ
|an|+

2n+λ (1+ γ)

1− γ
|bn|
]))

≥ 0

by virtue of the inequality (14). This implies that f ∈ GH(λ ,α,γ).

Theorem 2.2. For a1 = 1 and 0≤ γ < 1, f = h+g ∈ GVH(λ ,α,γ) if and only
if

∞

∑
n=2

2n−λ (1+ γ)

1− γ
|an|+

∞

∑
n=1

2n+λ (1+ γ)

1− γ
|bn| ≤ 1. (15)

Proof. Since GVH(λ ,α,γ) ⊂ GH(λ ,α,γ), we only need to prove the “only if”
part of the theorem. To this end, for functions f of the form (12), we notice that
the condition

ℜ

(
(1+ eiα)

z(h(z))′− z(g(z))′

(1−λ )z+λ [h(z)+g(z)]
− eiα

)
> γ,(z ∈ U). (16)
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Equivalently,

ℜ

(1− γ)z−
∞

∑
n=2

[2n−λ (1+ γ)]|an|zn−
∞

∑
n=1

[2n+λ (1+ γ)]bnzn

z+λ
∞

∑
n=2
|an|zn−λ

∞

∑
n=1

bnzn

≥ 0.

The above required condition must hold for all values of z in U . Upon choosing
the values of z on the positive real axis where 0≤ z = r < 1, we must have

(1− γ)−
∞

∑
n=2

[2n−λ (1+ γ)]|an|rn−1−
∞

∑
n=1

[2n+λ (1+ γ)]|bn|rn−1

1+λ
∞

∑
n=2
|an|rn−1−λ

∞

∑
n=1
|bn|rn−1

≥ 0. (17)

If the condition (15) does not hold, then the numerator in (17) is negative for r
sufficiently close to 1. Hence, there exist z0 = r0 in (0,1) for which the quotient
of (17) is negative. This contradicts the required condition for f ∈GVH(λ ,α,γ).
This completes the proof of the theorem.

Proceeding as in Theorem 2.1 and Theorem 2.2 we state the following nec-
essary and sufficient conditions for functions f ∈NVH(α,γ) without proof.

Theorem 2.3. Let f = h+g be given by (6). If

∞

∑
n=2

2n
1− γ

|an|+
∞

∑
n=1

2n
1− γ

|bn| ≤ 1, (18)

where a1 = 1 and 0 < γ ≤ 1, then f ∈NVH(α,γ).

Further we state the following Remarks:

Remark 2.4. In [24], it is also shown that f = h + g given by (6) is in the
family GVH(λ ,α,γ), if and only if the coefficient condition given in Theorem
2.2 holds. Moreover, if f ∈ GVH(λ ,α,γ), then

|An| ≤
1− γ

2n−λ (1+ γ)
, n≥ 2,

|Bn| ≤
1− γ

2n+λ (1+ γ)
, n≥ 1.

Remark 2.5. If f ∈NVH(γ), then |An| ≤ 1−γ

2n and |Bn| ≤ 1−γ

2n , n≥ 2.
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3. Applications to Bessel function

The generalized Bessel function is a recent topic of study in Geometric Function
Theory (e.g. see the work of [5]- [8] and [13]). Motivated by results on con-
nections between various subclasses of analytic and harmonic univalent func-
tions by using hypergeometric functions (see [2], [3], [9], [12], [14]-[23] and
[25]-[26] and by work of Baricz [5]-[8]), we establish a number of connections
between the classes GH(λ ,α,γ), K0

H, S∗,0H , C0
H andNH(λ ,α,γ) by applying the

convolution operator Ω.
Throughout this paper, we will frequently use the notation

Ω( f ) = Ω

(
k1, c1
k2, c2

)
f .

Let

φ(z) = zup(z) = z+
∞

∑
n=2

(−c/4)n−1

(k)n−1 (n−1)!
zn

φ(1) = up(1) = 1+
∞

∑
n=2

(−c/4)n−1

(k)n−1 (n−1)!
(19)

and

φ
′(z) = zu′p(z)+up(z) = 1+

∞

∑
n=2

n
(−c/4)n−1

(k)n−1 (n−1)!
zn−1

φ
′(1) = u′p(1)+up(1)−1 =

∞

∑
n=2

n
(−c/4)n−1

(k)n−1 (n−1)!
(20)

φ
′′(z) = zu′′p(z)+2u′p(z) =

∞

∑
n=2

n(n−1)
(−c/4)n−1

(k)n−1 (n−1)!
zn−2

φ
′′(1) = u′′p(1)+2u′p(1) =

∞

∑
n=2

n(n−1)
(−c/4)n−1

(k)n−1 (n−1)!
(21)

φ
′′′(z) = zu′′′p (z)+3u′′p(z) =

∞

∑
n=2

n(n−1)(n−2)
(−c/4)n−1

(k)n−1 (n−1)!
zn−3

φ
′′′(1) = u′′′p (1)+3u′′p(1) =

∞

∑
n=2

n(n−1)(n−2)
(−c/4)n−1

(k)n−1 (n−1)!
(22)

In order to establish connections between harmonic convex functions and
Goodman-Rønning-type harmonic univalent functions, we need the following
results :

Lemma 3.1 ([10], [11]). If f = h+g ∈ K0
H where h and g are given by (5) with

B1 = 0, then

|An| ≤
n+1

2
, |Bn| ≤

n−1
2

.
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Lemma 3.2 ([8]). If b, p,c ∈ C and k 6= 0,−1,−2, . . . then the function up sat-
isfies the recursive relation 4ku′p(z) =−cup+1(z) for all z ∈ C.

Theorem 3.3. Let c1,c2 < 0, k1,k2 > 0, (k1,k2 6= 0,−1,−2, . . .). If for some
γ (0≤ γ < 1) the inequality

2u′′p1
(1)+ [8−λ (1+ γ)]u′p1

(1)+ [4−2λ (1+ γ)]up1(1)+2u′′p2
(1)

+ [4+λ (1+ γ)]u′p2
(1)≤ 2[3− (λ + γ +λγ)]

is satisfied then Ω
(
K0
H
)
⊂ GH(λ ,α,γ).

Proof. Let f = h+g ∈ K0
H where h and g are of the form (5) with B1 = 0. We

need to show that Ω( f ) = H +G ∈ GH(λ ,α,γ), where H and G defined by (7)
with B1 = 0 are analytic functions in U .

In view of Theorem 2.1, we need to prove that P1 ≤ 1− γ, where

P1 =
∞

∑
n=2

[2n−λ (1+ γ)]

∣∣∣∣ (−c1/4)n−1

(k1)n−1(n−1)!
An

∣∣∣∣
+

∞

∑
n=2

[2n+λ (1+ γ)]

∣∣∣∣ (−c2/4)n−1

(k2)n−1(n−1)!
Bn

∣∣∣∣ .
In view of Lemma 3.1, we have

P1 ≤
1
2

[
∞

∑
n=2

[(n+1)(2n−λ (1+ γ))]
(−c1/4)n−1

(k1)n−1(n−1)!

+
∞

∑
n=2

[(n−1)(2n+λ (1+ γ))]
(−c2/4)n−1

(k2)n−1(n−1)!

]

=
1
2

[
∞

∑
n=2
{2n2−n[λ (1+ γ)−2]−λ (1+ γ)} (−c1/4)n−1

(k1)n−1(n−1)!

+
∞

∑
n=2

{
2n2 +n[λ (1+ γ)−2]−λ (1+ γ)} (−c2/4)n−1

(k2)n−1(n−1)!

]
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Writing n2 = n(n−1)+n, we get

=
1
2

[
∞

∑
n=2
{2n(n−1)+n[4−λ (1+ γ)]−λ (1+ γ)} (−c1/4)n−1

(k1)n−1(n−1)!

+
∞

∑
n=2
{2n(n−1)+n[λ (1+ γ)]−λ (1+ γ)} (−c2/4)n−1

(k2)n−1(n−2)!

]

=
1
2

[
2

∞

∑
n=2

n(n−1)(−c1/4)n−1

(k1)n−1(n−1)!
+[4−λ (1+ γ)]

∞

∑
n=2

n(−c1/4)n−1

(k1)n−1(n−1)!

− λ (1+ γ)
∞

∑
n=2

(−c1/4)n−1

(k1)n−1(n−1)!
+2

∞

∑
n=2

n(n−1)(−c2/4)n−1

(k2)n−1(n−1)!

+ λ (1+ γ)
∞

∑
n=2

n(−c2/4)n−1

(k2)n−1(n−1)!
−λ (1+ γ)

∞

∑
n=2

(−c2/4)n−1

(k2)n−1(n−1)!

]

=
1
2
[
2φ
′′
1 (1)+ [4−λ (1+ γ)]φ ′1(1)− [λ (1+ γ)]φ1(1)+2φ

′′
2 (1)

+ [λ (1+ γ)]φ ′2(1)− [λ (1+ γ)]φ2(1)
]

=
1
2
[
2(u′′p1

(1)+2u′p1
(1))+ [4−λ (1+ γ)](u′p1

+up1(1)−1)

−[λ (1+ γ)](up1(1)−1)+2(u′′p2
(1)+2u′p2

(1))

+ [λ (1+ γ)](u′p2
+up2(1)−1)− [λ (1+ γ)](up2(1)−1)

]
=

1
2
[
2u′′p1

(1)+ [8−λ (1+ γ)]u′p1
(1)+ [4−2λ (1+ γ)]up1(1)

+ 2u′′p2
(1)+ [4+λ (1+ γ)]u′p2

− [4−2λ (1+ γ)]
]
.

Now P1 ≤ 1− γ follows from the given condition, which completes the proof.

Analogous to Theorem 3.3, we next find conditions of the classes S∗,0H , C0
H

with GH(λ ,α,γ). However we first need the following result which may be
found in [10], [11].

Lemma 3.4. If f = h+ g ∈ S∗,0H or C0
H where h and g are given by (5) with

B1 = 0, then

|An| ≤
(2n+1)(n+1)

6
, |Bn| ≤

(2n−1)(n−1)
6

.
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Theorem 3.5. Let c1,c2 < 0, k1,k2 > 0, (k1,k2 6= 0,−1,−2, . . .). If for some
γ (0≤ γ < 1) the inequality

4u′′′p1
(1)+2[15−λ (1+ γ)]u′′p1

(1)+ [48−9λ (1+ γ)]u′p1
(1)

+6[2−λ (1+ γ)]up1(1)+4u′′′p2
(1)+2[9+λ (1+ γ)]u′′p2

(1)

+3[4+λ (1+ γ)]u′p2
(1)≤ 6[3− (λ + γ +λγ)] (23)

is satisfied, then

Ω(S∗,0H )⊂ GH(λ ,α,γ) and Ω(C0
H)⊂ GH(λ ,α,γ).

Proof. Let f = h+ g ∈ S∗,0H (C0
H) where h and g are given by (5) with B1 = 0.

We need to show that Ω( f ) = H +G ∈ GH(λ ,α,γ), where H and G defined by
(7) with B1 = 0 are analytic functions in U . In view of Theorem 2.1, it is enough
to show that P1 ≤ 1− γ , where

P1 =
∞

∑
n=2

[2n−λ (1+ γ)]
(−c1/4)n−1

(k1)n−1(n−1)!
|An|

+
∞

∑
n=2

[2n+λ (1+ γ)]
(−c2/4)n−1

(k2)n−1(n−1)!
|Bn| .

In view of Lemma 3.4, we have

P1 ≤
1
6

[
∞

∑
n=2

(2n+1)(n+1)(2n−λ (1+ γ))
(−c1/4)n−1

(k1)n−1(n−1)!

+
∞

∑
n=2

(2n−1)(n−1)(2n+λ (1+ γ))
(−c2/4)n−1

(k2)n−1(n−1)!

]

=
1
6

∞

∑
n=2

[
4n3 +2[3−λ (1+ γ)]n2

+ [2−3λ (1+ γ)]n−λ (1+ γ)]
(−c1/4)n−1

(k1)n−1(n−1)!

+
1
6

∞

∑
n=2

[
4n3−2[3−λ (1+ γ)]n2

+ [2−3λ (1+ γ)]n+λ (1+ γ)]
(−c2/4)n−1

(k2)n−1(n−2)!
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Writing n3 = n(n−1)(n−2)+3n(n−1)+n and n2 = n(n−1)+n, we have

P1 =
1
6

∞

∑
n=2

4n(n−1)(n−2)+2[9−λ (1+ γ)]n(n−1)
(−c1/4)n−1

(k1)n−1(n−1)!

+
1
6

∞

∑
n=2

[12−5λ (1+ γ)]n−λ (1+ γ)
(−c1/4)n−1

(k1)n−1(n−1)!

+
1
6

∞

∑
n=2

4n(n−1)(n−2)+2n(n−1)[3+λ (1+ γ)]
(−c2/4)n−1

(k2)n−1(n−2)!

− 1
6

∞

∑
n=2

[λ (1+ γ)]n+λ (1+ γ)
(−c2/4)n−1

(k2)n−1(n−2)!
=

1
6

[
4

∞

∑
n=0

n(n−1)(n−2)(−c1/4)n−1

(k1)n−1(n−1)!
+ 2[9−λ (1+ γ)]

∞

∑
n=0

n(n−1)(−c1/4)n−1

(k1)n−1(n−1)!

+ [12−5λ (1+ γ)]
∞

∑
n=0

n(−c1/4)n−1

(k1)n−1(n−1)!
−λ (1+ γ)

∞

∑
n=0

n(−c1/4)n−1

(k1)n−1(n−1)!

+ 4
∞

∑
n=0

n(n−1)(n−2)(−c2/4)n−1

(k2)n−1(n−1)!
+2[3+λ (1+ γ)]

∞

∑
n=0

n(n−1)(−c2/4)n−1

(k2)n−1(n−1)!

− λ (1+ γ)
∞

∑
n=0

n(−c2/4)n−1

(k2)n−1(n−1)!
+λ (1+ γ)

∞

∑
n=0

(−c2/4)n−1

(k2)n−1(n−1)!

]

=
1
6
[
4φ
′′′
1 (1)+2[9−λ (1+ γ)]φ ′′1 (1)+ [12−5λ (1+ γ)]φ ′1(1)

−[λ (1+ γ)]φ1(1)+4φ
′′′
2 (1)+2[3+λ (1+ γ)]φ ′′2 (1)

− [λ (1+ γ)]φ ′2(1)+ [λ (1+ γ)]φ2(1)
]
.

=
1
6
[
4u′′′p1

(1)+2[15−λ (1+ γ)]u′′p1
(1)+ [48−9λ (1+ γ)]u′p1

(1)

+ 6[2−λ (1+ γ)]up1(1)+4u′′′p2
(1)+2[9+λ (1+ γ)]u′′p2

(1)

+ 3[4+λ (1+ γ)]u′p2
(1)−6[2−λ (1+ γ)]

]
.

Now P1 ≤ 1− γ follows from the given condition.

In order to determine connection between NVH(γ) and GH(λ ,α,γ), we
need the following result:

Lemma 3.6. If c < 0 and k > 1, then

∞

∑
n=0

(−c/4)n

(k)n(n+1)!
=
−4(k−1)

c
[up−1(1)−1] .
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Proof. We can write

∞

∑
n=0

(−c/4)n

(k)n(n+1)!
=

(k−1)
(−c/4)

∞

∑
n=0

(−c/4)n+1

(k−1)n+1(n+1)!

=
−4(k−1)

c
[up−1(1)−1] .

Theorem 3.7. If c1,c2 < 0, k1,k2 > 1. If for some β (0 ≤ β < 1) and γ (0 ≤
γ < 1) the inequality

(1−β )

[
{up1(1)−1}+λ (1+ γ)

2(k1−1)
c1

[
up1−1(1)−1− (−c1/4)

k1−1

]
+ up2(1)−λ (1+ γ)

2(k2−1)
c2

[up2−1(1)−1]
]
≤ 1− γ

is satisfied then

Ω(NVH(β ))⊂ GH(λ ,α,γ).

Proof. Let f = h+ g ∈ NVH(β ) where h and g are given by (5). In view of
Theorem 2.1, it is enough to show that P2 ≤ 1− γ , where

P2 =
∞

∑
n=2

[2n−λ (1+ γ)]
(−c1/4)n−1

(k1)n−1(n−1)!
|An|

+
∞

∑
n=1

[2n+λ (1+ γ)]
(−c2/4)n−1

(k2)n−1(n−1)!
|Bn| .

Using Remark 2.5, we have

P2 ≤ (1−β )

[
∞

∑
n=2

(
1− λ (1+ γ)

2n

)
(−c1/4)n−1

(k1)n−1(n−1)!

+
∞

∑
n=1

(
1+

λ (1+ γ)

2n

)
(−c2/4)n−1

(k2)n−1(n−1)!

]

= (1−β )

[
∞

∑
n=0

(−c1/4)n+1

(k1)n+1(n+1)!
− λ (1+ γ)

2

∞

∑
n=0

(−c1/4)n+1

(k1)n+1(n+2)!

+
∞

∑
n=0

(−c2/4)n

(k2)nn!
+

(1+ γ)

2

∞

∑
n=0

(−c2/4)n

(k2)n(n+1)!

]
=
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= (1−β )

[
{up1(1)−1}− (1+ γ)

2
(k1−1)
(−c1/4)

∞

∑
n=0

(−c1/4)n+2

(k1−1)n+2(n+2)!

+ up2(1)+
(1+ γ)

2
(k2−1)
(−c2/4)

∞

∑
n=0

(−c2/4)n+1

(k2−1)n+1(n+1)!

]

= (1−β )

[
{up1(1)−1}+ (1+ γ)

2
2(k1−1)

c1

[
up1−1(1)−1− (−c1/4)

k1−1

]
+ up2(1)−

(1+ γ)

2
2(k2−1)

c2
[up2−1(1)−1]

]
≤ 1− γ,

by the given hypothesis.

In the next theorem, we establish connections between GVH(λ ,α,γ) and
GH(λ ,α,γ).

Theorem 3.8. Let c1,c2 < 0, k1,k2 > 0. If for some γ (0≤ γ < 1) the inequality

up1 +up2 ≤ 2 (24)

is satisfied, then Ω(GVH(λ ,α,γ))⊂ GH(λ ,α,γ).

Proof. Making use of Theorem 2.1, we only need to prove that P2 ≤ 1− γ .
Using Remark 2.4, it follows that

P2 =
∞

∑
n=2

[2n−λ (1+ γ)]
(−c1/4)n−1

(k1)n−1(n−1)!
|An|

+
∞

∑
n=1

[2n+λ (1+ γ)]
(−c2/4)n−1

(k2)n−1(n−1)!
|Bn|

≤ (1− γ)

[
∞

∑
n=2

(−c1/4)n−1

(k1)n−1(n−1)!
+

∞

∑
n=1

(−c2/4)n−1

(k2)n−1(n−1)!

]

= (1− γ)

[
∞

∑
n=0

(−c1/4)n+1

(k1)n+1(n+1)!
+

∞

∑
n=0

(−c2/4)n

(k2)nn!

]
= (1− γ) [up1(1)−1+up2(1)]

by using the given condition (24), we have P2 ≤ 1− γ, which completes the
proof.

In next theorem, we present conditions on the parameters k1,k2,c1,c2 and
obtain a characterization for operator Ω which maps GVH(λ ,α,γ) on to itself.
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Theorem 3.9. Let c1,c2 < 0, k1,k2 > 0 (k1,k2 6= 0,−1,−2, . . .) and γ (0≤ γ <
1). Then

Ω(GVH(λ ,α,γ))⊂ GVH(λ ,α,γ),

if and only if,
up1(1)+up2(1)≤ 2

Proof. The proof of the above theorem is similar to that of Theorem 3.8. There-
fore we omit the details involved.
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