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SECOND HANKEL DETERMINANT FOR BI-STARLIKE
FUNCTIONS OF ORDER β

ŞAHSENE ALTINKAYA - SIBEL YALÇIN

Making use of the Hankel determinant, in this work, we consider a
general subclass of bi-univalent functions. Moreover, we investigate the
bounds of initial coefficients of this class.

1. Introduction

Let A denote the class of functions f which are analytic in the open unit disk
U = {z : |z|< 1} with the form

f (z) = z+
∞

∑
n=2

anzn. (1)

Let S be the subclass of A consisting of the form (1) which are also univa-
lent in U. The Koebe one-quarter theorem [9] states that the image of U under
every function f from S contains a disk of radius 1

4 . Thus every such univalent
function has an inverse f−1 which satisfies

f−1 ( f (z)) = z (z ∈U)

and

f
(

f−1 (w)
)
= w

(
|w|< r0 ( f ) , r0 ( f )≥ 1

4

)
,
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where

f−1 (w) = w −a2w2 +
(
2a2

2−a3
)

w3−
(
5a3

2−5a2a3 +a4
)

w4 + · · · .

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univa-
lent in U.

For a brief history and interesting examples in the class Σ, see [24]. Exam-
ples of functions in the class Σ are

z
1− z

, − log(1− z),
1
2

log
(

1+ z
1− z

)
and so on. However, the familiar Koebe function is not a member of Σ. Other
common examples of functions in S such as

z− z2

2
and

z
1− z2

are also not members of Σ (see [24]).
Lewin [15] studied the class of bi-univalent functions, obtaining the bound

1.51 for modulus of the second coefficient |a2| . Netanyahu [18] showed that
max |a2| = 4

3 if f (z) ∈ Σ. Subsequently, Brannan and Clunie [5] conjectured
that |a2| ≤

√
2 for f ∈ Σ. Brannan and Taha [6] introduced certain subclasses of

the bi-univalent function class Σ similar to the familiar subclasses. S? (β ) and
K (β ) of starlike and convex function of order β (0≤ β < 1) respectively (see
[18]). By definition, we have

S? (β ) =

{
f ∈ S : ℜ

(
z f
′
(z)

f (z)

)
> β ; 0≤ β < 1, z ∈U

}
and

K (β ) =

{
f ∈ S : ℜ

(
1+

z f
′′
(z)

f ′ (z)

)
> β ; 0≤ β < 1, z ∈U

}
.

It readily follows from the definitions

f ∈ K (β )⇔ z f ′ ∈ S? (β ) .

The classes S?
Σ
(β ) and KΣ (β ) of bi-starlike functions of order α and bi-convex

functions of order β , corresponding to the function classes S? (β ) and K (β ) ,
were also introduced analogously. For each of the function classes S?

Σ
(β ) and

KΣ (β ) , they found non-sharp estimates on the initial coefficients. Recently,
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many authors investigated bounds for various subclasses of bi-univalent func-
tions ([1], [4], [11], [16], [24], [25], [26]). Not much is known about the bounds
on the general coefficient |an| for n ≥ 4. In the literature, the only a few works
determining the general coefficient bounds |an| for the analytic bi-univalent
functions ([2], [7], [13], [14]). The coefficient estimate problem for each of
|an| ( n ∈ N\{1,2} ; N= {1,2,3, . . .}) is still an open problem.

The Fekete-Szegö functional
∣∣a3−µa2

2

∣∣ for normalized univalent functions

f (z) = z+a2z2 + · · ·

is well known for its rich history in the theory of geometric functions. Its origin
was in the disproof by Fekete and Szegö of the 1933 conjecture of Littlewood
and Paley that the coefficients of odd univalent functions are bounded by unity
(see [10]). The functional has since received great attention, particularly in
many subclasses of the family of univalent functions. Nowadays, it seems that
this topic had become an interest among the researchers ( see, for example, [3],
[21], [27]).

The qth Hankel determinant for n ≥ 0 and q ≥ 1 is stated by Noonan and
Thomas ([19]) as

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1
an+1 an+2 · · · an+q
...

...
...

...
an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣ (a1 = 1).

This determinant has also been considered by several authors. For example,
Noor ([20]) determined the rate of growth of Hq(n) as n → ∞ for functions
f given by (1) with bounded boundary. In particular, sharp upper bounds on
H2(2) were obtained by the authors of articles ([22], [20]) for different classes
of functions.

Note that

H2(1) =
∣∣∣∣ a1 a2

a2 a3

∣∣∣∣= a3−a2
2

and

H2(2) =
∣∣∣∣ a2 a3

a3 a4

∣∣∣∣= a2a4−a2
3.

The Hankel determinant H2(1) = a3−a2
2 is well-known as Fekete-Szegö func-

tional. Very recently, the upper bounds of H2(2) for some classes were discussed
by Deniz et al. [8].
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Definition 1.1. A function f ∈ Σ is said to be in the class Sλ
Σ
(β ), if the following

conditions are satisfied:

ℜ

(
z1−λ f ′ (z)

[ f (z)]1−λ

)
> β , 0≤ β < 1, λ ≥ 0, z ∈U (2)

and

ℜ

(
w1−λ g′ (w)

[g(w)]1−λ

)
> β , 0≤ β < 1, λ ≥ 0, w ∈U. (3)

where g = f−1.

In this paper, we get upper bound for the functional H2(2) = a2a4− a2
3 for

functions f belongs to the class Sλ
Σ
(β ).

In order to derive our main results, we require the following lemma.

Lemma 1.2 ([23]). If p(z) = 1+ p1z+ p2z2+ p3z3+ · · · is an analytic function
in U with positive real part, then

|pn| ≤ 2 (n ∈ N= {1,2, . . .})

and ∣∣∣∣p2−
p2

1
2

∣∣∣∣≤ 2− |p1|2

2
.

Lemma 1.3 ([12]). If the function p ∈ P, then

2p2 = p2
1 + x(4− p2

1)

4p3 = p3
1 +2(4− p2

1)p1x− p1(4− p2
1)x

2 +2(4− p2
1)(1−|x|

2)z

for some x, z with |x| ≤ 1 and |z| ≤ 1.

2. Main results

Theorem 2.1. Let f given by (1) be in the class B(α,β ), 0 ≤ α < 1 and
0≤ β < 1. Then ∣∣a2a4−a2

3
∣∣≤
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8(1−β )2

1+λ

[
(λ+2)(1−β )2

3(1+λ )2 + 1
2(3+λ )

]
,

β ∈
[

0,1− 3(1+λ )(3+λ )+(1+λ )
√

9(3+λ )2+24(2+λ )(3+λ )(5+4λ+λ 2)

4(2+λ )2(3+λ )

]
(1−β )2

{
4

(2+λ )2

−
{

3[(λ 2+5λ+6)(1−β )+(λ 3+5λ 2+10λ+6)]
2

[2(2+λ )2(3+λ )(λ 2+3λ+2)(1−β )2−3(1+λ )2(2+λ )(3+λ )(1−β )−3(1+λ )3(λ 2+4λ+5)]

}
× 1

(2+λ )2(3+λ )

}
,

β ∈
[

1− 3(1+λ )(3+λ )+(1+λ )
√

9(3+λ )2+48(2+λ )3(3+λ )

8(2+λ )2(3+λ )
,1
)
.

Proof. Let f ∈ Sλ
Σ
(β ) . Then

z1−λ f ′ (z)

[ f (z)]1−λ
= β +(1−β )p(z) (4)

w1−λ g′ (w)

[g(w)]1−λ
= β +(1−β )q(w) (5)

where p,q ∈ P and g = f −1.
It follows from (4) and (5) that

(1+λ )a2 = (1−β ) p1, (6)

(2+λ )a3−
(1−λ )(2+λ )

2
a2

2 = (1−β ) p2, (7)

(3+λ )a4− (1−λ )(3+λ )a2a3−
(1−λ )(λ −2)(λ +3)

6
a3

2 = (1−β ) p3 (8)

−(1+λ )a2 = (1−β )q1, (9)

6+5λ +λ 2

2
a2

2− (2+λ )a3 = (1−β )q2 (10)

(12+7λ +λ
2)a2a3− (3+λ )a4 +

[
(1−λ )

6
(30+13λ +λ

2)−5(3+λ )

]
a3

2

= (1−β )q3. (11)

From (6) and (9) we obtain
p1 =−q1. (12)

and

a2 =
(1−β )

1+λ
p1. (13)
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Subtracting (7) from (10), we have

a3 =
(1−β )2

(1+λ )2 p2
1 +

(1−β )

2(2+λ )
(p2−q2) . (14)

Also, subtracting (8) from (11), we have

a4 =
(1−λ )(4+λ )(1−β )3

6(1+λ )3 p3
1 +

5(1−β )2

4(1+λ )(2+λ ) p1 (p2−q2)+
(1−β )
2(3+λ ) (p3−q3) . (15)

Then, we can establish that∣∣a2a4−a2
3

∣∣= ∣∣∣[ (1−λ )(4+λ )
6 −1

]
(1−β )4

(1+λ )4 p4
1 +

(1−β )3

4(1+λ )2(2+λ )
p2

1 (p2−q2)

+ (1−β )2

2(1+λ )(3+λ ) p1 (p3−q3)− (1−β )2

4(2+λ )2 (p2−q2)
2
∣∣∣ (16)

According to Lemma 1.1 and (12), we write

2p2 = p2
1 + x(4− p2

1)
2q2 = q2

1 + y(4−q2
1)

}
⇒ p2−q2 =

4− p2
1

2
(x− y) (17)

and

4p3 = p3
1 +2(4− p2

1)p1x− p1(4− p2
1)x

2 +2(4− p2
1)(1−|x|

2)z

4q3 = q3
1 +2(4−q2

1)q1y−q1(4−q2
1)y

2 +2(4−q2
1)(1−|y|

2)w

p3−q3 =
p3

1
2
+

p1(4− p2
1)

2
(x+ y)− p1(4− p2

1)

4
(x2 + y2)

+
4− p2

1
2

[
(1−|x|2)z− (1−|y|2)w

]
. (18)

Then, using (17) and (18), in (16),∣∣a2a4−a2
3
∣∣= (19)

∣∣∣−(2+3λ+λ 2)
6

(1−β )4

(1+λ )4 p4
1 +

(1−β )3

4(1+λ )2(2+λ )
p2

1
4−p2

1
2 (x− y)

+ (1−β )2

4(1+λ )(3+λ ) p4
1 +

(1−β )2

2(1+λ )(3+λ ) p2
1

4−p2
1

2 (x+ y)− (1−β )2

2(1+λ )(3+λ ) p2
1
(4−p2

1)
4 (x2 + y2)

+ (1−β )2

2(1+λ )(3+λ ) p1
(4−p2

1)
2

[(
1−|x|2

)
z−
(

1−|y|2
)

w
]
− (1−β )2

4(2+λ )2
(4−p2

1)
2

4 (x+ y)2
∣∣∣

≤ (2+3λ+λ 2)
6

(1−β )4

(1+λ )4 p4
1 +

(1−β )2

4(1+λ )(3+λ ) p4
1 +

(1−β )2

2(1+λ )(3+λ ) p1(4− p2
1)

+

[
(1−β )3

4(1+λ )2(2+λ )
p2

1
(4−p2

1)
2 + (1−β )2

2(1+λ )(3+λ ) p2
1
(4−p2

1)
2

]
(|x|+ |y|)

+
[

(1−β )2

2(1+λ )(3+λ ) p2
1
(4−p2

1)
4 − (1−β )2

2(1+λ )(3+λ ) p1
(4−p2

1)
2

]
(|x|2 + |y|2)

+ (1−β )2

4(2+λ )2
(4−p2

1)
2

4 (|x|+ |y|)2.
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Since p∈P, so |p1| ≤ 2. Letting |p1|= p, we may assume without restriction
that p ∈ [0,2] . For η = |x| ≤ 1 and µ = |y| ≤ 1, we get∣∣a2a4−a2

3

∣∣≤ T1 +(η +µ)T2 +
(
η2 +µ2

)
T3 +(η +µ)2 T4 = G(η ,µ)

where, setting Ti = Ti(p), i = 1,2,3,4

T1 =
(1−β )2

2(1+λ )

[(
(λ 2+3λ+2)(1−β )2

3(1+λ )3 +
1

2(3+λ )

)
p4− 1

3+λ
p3 +

4
3+λ

p
]
≥ 0

T2 =
(1−β )2

4(1+λ )
p2(4− p2)

[
(1−β )

2(1+λ )(2+λ ) +
1

3+λ

]
≥ 0

T3 =
(1−β )2

8(1+λ )(3+λ )
p(4− p2)(p−2)≤ 0

T4 =
(1−β )2

4(2+λ )2
(4− p2)2

4
≥ 0.

We now need to maximize the function G(η ,µ) on the closed square [0,1]×
[0,1]. We must investigate the maximum of G(η ,µ) according to p∈ (0,2), p=
0 and p = 2 taking into account the sign of Gηη .Gµµ −

(
Gηµ

)2
.

Firstly, let p ∈ (0,2). Since T3 < 0 and T3 +2T4 > 0 for p ∈ (0,2), we con-
clude that

Gηη .Gµµ −
(
Gηµ

)2
< 0.

Thus the function G cannot have a local maximum in the interior of the square.
Now, we investigate the maximum of G on the boundary of the square.

For η = 0 and 0≤ µ ≤ 1 (similarly µ = 0 and 0≤ η ≤ 1), we obtain

G(0,µ) = H(µ) = (T3 +T4)µ
2 +T2µ +T1.

i. The case T3 + T4 ≥ 0 : In this case for 0 < µ < 1 and any fixed p with
0 < p < 2, it is clear that H ′(µ) = 2(T3 + T4)µ + T2 > 0, that is, H(µ) is an
increasing function. Hence, for fixed p ∈ (0,2), the maximum of H(µ) occurs
at µ = 1, and

maxH(µ) = H(1) = T1 +T2 +T3 +T4.

ii. The case T3 +T4 < 0 : Since T2 +2(T3 +T4)≥ 0 for 0 < µ < 1 and any fixed
p with 0 < p < 2, it is clear that T2 +2(T3 +T4)< 2(T3 +T4)µ +T2 < T2 and so
H ′(µ)> 0. Hence for fixed p ∈ (0,2), the maximum of H(µ) occurs at µ = 1.

Also for p = 2 we obtain

G(η ,µ) =
8(1−β )2

1+λ

[
(λ +2)(1−β )2

3(1+λ )2 +
1

2(3+λ )

]
(20)
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Taking into account the value (20), and the cases i. and ii., for 0 ≤ µ ≤ 1 and
any fixed p with 0≤ p≤ 2,

maxH(µ) = H(1) = T1 +T2 +T3 +T4.

For η = 1 and 0≤ µ ≤ 1 (similarly µ = 1 and 0≤ η ≤ 1), we obtain

G(1,µ) = F(µ) = (T3 +T4)µ
2 +(T2 +2T4)µ +T1 +T2 +T3 +T4.

Similarly to the above cases of T3 +T4, we get that

maxF(µ) = F(1) = T1 +2T2 +2T3 +4T4.

Since H(1)≤ F(1) for p ∈ [0,2], maxG(η ,µ) = G(1,1) on the boundary of the
square. Thus the maximum of G occurs at η = 1 and µ = 1 in the closed square.

Let K : [0,2]→ R

K(p) = maxG(η ,µ) = G(1,1) = T1 +2T2 +2T3 +4T4. (21)

Substituting the values of T1,T2,T3 and T4 in the function K defined by (21),
yield

K(p) = (1−β )2
{(

(λ 2+3λ+2)(1−β )2

6(1+λ )4 − 1−β

4(1+λ )2(2+λ )
− 1

2(1+λ )(3+λ ) +
1

4(2+λ )2

)
p4

+
(

1−β

(1+λ )2(2+λ )
− 2

(2+λ )2 +
3

(1+λ )(3+λ )

)
p2 + 4

(2+λ )2

}
.

Assume that K(p) has a maximum value in an interior of p ∈ [0,2], by elemen-
tary calculation

K′(p) = (1−β )2
{(

2(λ 2+3λ+2)(1−β )2

3(1+λ )4 − 1−β

(1+λ )2(2+λ )
− 5+4λ+λ 2

(1+λ )(2+λ )2(3+λ )

)
p3

+
(

2(1−β )
(1+λ )2(2+λ )

+ 2(6+4λ+λ 2)
(1+λ )(2+λ )2(3+λ )

)
p
}
.

As a result of some calculations we can do the following examine:

Case 1. Let
(

2(λ 2+3λ+2)(1−β )2

3(1+λ )4 − 1−β

(1+λ )2(2+λ )
− 5+4λ+λ 2

(1+λ )(2+λ )2(3+λ )

)
≥ 0. There-

fore β ∈
[

0,1− 3(1+λ )(3+λ )+(1+λ )
√

9(3+λ )2+24(2+λ )(3+λ )(5+4λ+λ 2)

4(2+λ )2(3+λ )

]
and K′(p)>

0 for p ∈ (0,2). Since K is an increasing function in the interval (0,2), maxi-
mum point of K must be on the boundary of p ∈ [0,2], that is, p = 2. Thus, we
have

maxK(p) = K(2) =
8(1−β )2

1+λ

[
(λ +2)(1−β )2

3(1+λ )2 +
1

2(3+λ )

]
.
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Case 2. Let
(

2(λ 2+3λ+2)(1−β )2

3(1+λ )4 − 1−β

(1+λ )2(2+λ )
− 5+4λ+λ 2

(1+λ )(2+λ )2(3+λ )

)
< 0. that is,

α ∈
(

1− 3(1+λ )(3+λ )+(1+λ )
√

9(3+λ )2+24(2+λ )(3+λ )(5+4λ+λ 2)

4(2+λ )2(3+λ )
,1
)
. Then K′(p) =

0 implies the real critical points p01 = 0 or

p02 =

√
−6[(λ 2+5λ+6)(1−β )+(1+λ )(λ 2+4λ+6)](1+λ )2

2(2+λ )2(3+λ )(λ 2+3λ+2)(1−β )2−3(1+λ )2(2+λ )(3+λ )(1−β )−3(1+λ )3(λ 2+4λ+5) .

When

α ∈

(
1−

(1+λ )
[
3(3+λ )+

√
9(3+λ )2+24(2+λ )(3+λ )(5+4λ+λ 2)

]
4(2+λ )2(3+λ )

,

1−
(1+λ )

[
3(3+λ )+

√
9(3+λ )2+48(2+λ )3(3+λ )

]
8(2+λ )2(3+λ )

]
,

we observe that p02 ≥ 2, that is, p02 is out of the interval (0,2). Therefore
the maximum value of K(p) occurs at p01 = 0 or p = p02 which contradicts
our assumption of having the maximum value at the interior point of p ∈ [0,2].
Since K is an increasing function in the interval (0,2), maximum point of K
must be on the boundary of p ∈ [0,2], that is, p = 2. Thus, we have

maxK(p) = K(2) =
8(1−β )2

1+λ

[
(λ +2)(1−β )2

3(1+λ )2 +
1

2(3+λ )

]
.

When α ∈
(

1− 3(1+λ )(3+λ )+(1+λ )
√

9(3+λ )2+48(2+λ )3(3+λ )

8(2+λ )2(3+λ )
,1
)

we observe that

p02 < 2, that is, p02 is interior of the interval [0,2]. Since K′′(p02) < 0, the
maximum value of K(p) occurs at p = p02. Thus, we have

K(p02) = (1−β )2
{

4
(2+λ )2−

3[(λ 2+5λ+6)(1−β )+(1+λ )(λ 2+4λ+6)]
2

(1+λ )(2+λ )2(3+λ )[2(2+λ )3(3+λ )(1−β )2−3(1+λ )(2+λ )(3+λ )(1−β )−3(1+λ )2(λ 2+4λ+5)]

}
.

This completes the proof.

Remark 2.2. Putting λ = 0 in Theorem 2.1 we have the second Hankel deter-
minant for the well-known class S0

Σ
(β ) = S∗

Σ
(β ) as in [8].

Remark 2.3. Let f given by (1) be in the class S∗
Σ
(β ) and 0≤ β < 1. Then

∣∣a2a4−a2
3
∣∣≤


4(1−β )2

3

(
4β 2−8β +5

)
β ∈

[
0, 29−

√
137

32

)
(1−β )2

(
13β 2−14β−7
16β 2−26β+5

)
β ∈

(
29−
√

137
32 ,1

) .
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