COEFFICIENT ESTIMATES FOR SOME CERTAIN SUBCLASSES OF CLOSE-TO-CONVEX FUNCTIONS

TUGBA YAVUZ

In this paper, we determine coefficient bounds for functions in certain suclasses of close-to-convex functions, which are introduced here by means of the non-homogeneous Cauchy-Euler equation of order m. Also, we give some corollaries as special cases.

1. Introduction

Let \mathbb{D} be the unit disk $\{z:|z|<1\}, \mathcal{A}$ be the class of functions analytic in \mathbb{D}, satisfying the conditions

$$
\begin{equation*}
f(0)=0 \text { and } f^{\prime}(0)=1 \tag{1}
\end{equation*}
$$

Then each function f in \mathcal{A} has the Taylor expansion

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{2}
\end{equation*}
$$

because of the conditions (1). Let S denote class of analytic and univalent functions in \mathbb{D} with the normalization conditions (1). Also let $S^{*}(\gamma), C(\gamma), \mathcal{K}(\gamma)$ and $Q(\gamma)$ denote the subclasses of \mathcal{A} including of all functions which are starlike, convex, close-to-convex and quasi convex of complex order $\gamma(\gamma \neq 0)$ respectively [5], [6] and [8].

Definition 1.1. Let $f(z)$ and $g(z)$ are analytic functions in \mathbb{D}. We say that $f(z)$ is subordinate to $g(z)$ in \mathbb{D}, and we denote

$$
f(z) \prec g(z) \quad(z \in \mathbb{D}),
$$

if there exists a Schwarz function $w(z)$ analytic in \mathbb{D}, with

$$
w(0)=0 \text { and }|w(z)|<1(z \in \mathbb{D})
$$

such that

$$
f(z)=g(w(z)) \quad(z \in \mathbb{D}) .
$$

In particular, if the function g is univalent in \mathbb{D}, the above subordination is equivalent to

$$
f(0)=g(0) \text { and } f(\mathbb{D}) \subset g(\mathbb{D})
$$

Recently Atıntaş et al. [7] considered following class of functions denoted by $S C(\gamma, \lambda, A, B)$ and defined as:

$$
\begin{equation*}
f \in \mathcal{A} \text { and } 1+\frac{1}{\gamma}\left(\frac{z\left[(1-\lambda) f(z)+\lambda z f^{\prime}(z)\right]^{\prime}}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}-1\right) \prec \frac{1+A z}{1+B z} \tag{3}
\end{equation*}
$$

where $0 \leq \lambda \leq 1, \gamma \in \mathbb{C} \backslash\{0\}$ and $-1 \leq B<A \leq 1$. Note that

$$
S C(\gamma, \lambda, 1-2 \beta,-1)=S C(\gamma, \lambda, \beta)
$$

which is defined in the article [1]. We can find coefficient estimates for functions in the class $S C(\gamma, \lambda, \beta)$ in [2]. Also, $S C(\gamma, 0,1,-1)=S^{*}(\gamma)$ and $S C(\gamma, 1,1,-1)=C(\gamma)$.

In [7], the following coefficient estimates is obtained as :
Theorem 1.2. Let the function $f(z)$ is given by (2). If $f(z) \in S C(\gamma, \lambda, A, B)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{\prod_{j=0}^{n-2}\left[j+\frac{2|\gamma|(A-B)}{1-B}\right]}{(n-1)!(1+\lambda(n-1))}, n \in \mathbb{N} \backslash\{1\} \tag{4}
\end{equation*}
$$

This result is refined by H. M. Srivastava et al. [9]. He state the following theorem.

Theorem 1.3. Let the function $f(z)$ is given by (2). If $f(z) \in S C(\gamma, \lambda, A, B)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{\prod_{j=0}^{n-2}[j+|\gamma|(A-B)]}{(n-1)!(1+\lambda(n-1))}, n \in \mathbb{N} \backslash\{1\} \tag{5}
\end{equation*}
$$

Recently, Wasim et al. [10] have obtained upper bounds for Taylor coefficients of functions in the classes $\mathcal{K} Q(\gamma, \lambda, \beta)$ and $\mathcal{B} \mathcal{K}(\gamma, \lambda, \beta ; \mu)$ of close-toconvex functions of complex order. In fact, the class $\mathcal{K} Q(\gamma, \lambda, \beta)$ introduced first in [3] by the following definition.

Definition 1.4. Let γ be a non-zero complex number, $0 \leq \beta<1$ and let f be an univalent function of the form (2). We say that f belongs to $\mathcal{K} Q(\lambda, \gamma, \beta)$ if there exists a function $g(z) \in S C(1, \lambda, \beta)$ such that

$$
\begin{equation*}
\mathfrak{R}\left[1+\frac{1}{\gamma}\left(\frac{z\left[(1-\lambda) f(z)+\lambda z f^{\prime}(z)\right]^{\prime}}{(1-\lambda) g(z)+\lambda z g^{\prime}(z)}-1\right)\right]>\beta, z \in \mathbb{D} . \tag{6}
\end{equation*}
$$

Definition 1.5. Let γ be a non-zero complex number, $0 \leq \beta<1$ and let f be an univalent function of the form (2). We say that f beolngs to $\mathcal{B} \mathcal{K}(\gamma, \lambda, \beta ; \mu)$ if it satisfies the following Cauchy-Euler differential equation for $h \in \mathcal{K} Q(\lambda, \gamma, \beta)$

$$
z^{2} \frac{d^{2} w}{d z^{2}}+2(1+\mu) z \frac{d w}{d z}+\mu(1+\mu) w=(2+\mu)(1+\mu) h(z)
$$

where $w=f(z), \mu \in \mathbb{R} \backslash(-\infty,-1]$.
Using Definition 1.4 and Definition 1.5, Wasim et al. [10] obtained the following results.

Theorem 1.6. Let $f(z) \in \mathcal{K} Q(\lambda, \gamma, \beta)$ and be defined by (2). Then for $n \in \mathbb{N}^{*}=$ $\{2,3,4, \ldots\}$

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{\prod_{j=0}^{k-2}[j+2(1-\beta)]}{n![1+\lambda(n-1)]}+\frac{2|\gamma|(1-\beta)}{n[1+\lambda(n-1)]} \sum_{k=1}^{n-1} \frac{\prod_{j=0}^{n-k-2}[j+2(1-\beta)]}{(n-k-1)!} \tag{7}
\end{equation*}
$$

Theorem 1.7. Let $f(z) \in \mathcal{B} \mathcal{K}(\lambda, \gamma, \beta ; \mu)$ and be defined by (2). Then for $n \in$ $\mathbb{N}^{*}=\{2,3,4, \ldots\}$

$$
\left.\begin{array}{rl}
\left|a_{n}\right| \leq \frac{(1+\mu)(2+\mu)}{(n+1+\mu)(n+\mu)} & \left\{\frac{\prod_{j=0}^{k-2}[j+2(1-\beta)]}{n![1+\lambda(n-1)]}\right.
\end{array}\right\}
$$

Motivated from results in [10], we define some certain subclasses of close-to-convex functions which are given by the following definitions. In here, the class which is given by Definition 1.9 introduced first in [4]. Also, we get upper bounds for Taylor-Maclaurin coefficients of functions in these classes.

Definition 1.8. Let γ be a non-zero complex number, $-1 \leq B<A \leq 1$ and let f be an univalent function of the form (2). We say that f belongs to $\mathcal{K} Q(\gamma, \lambda, A, B)$ if there exists a function $g(z) \in S C(1, \lambda, A, B)$ such that

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z\left[(1-\lambda) f(z)+\lambda z f^{\prime}(z)\right]^{\prime}}{(1-\lambda) g(z)+\lambda z g^{\prime}(z)}-1\right) \prec \frac{1+A z}{1+B z}, z \in \mathbb{D} . \tag{9}
\end{equation*}
$$

Definition 1.9. Let γ be a non-zero complex number, $-1 \leq B<A \leq 1$ and let f be an univalent function of the form (2). We say that f beolngs to $\mathcal{B K}(\gamma, \lambda, A, B, m ; \mu)$ if it satisfies the following Cauchy-Euler differential equation for $h \in \mathcal{K} Q(\lambda, \gamma, A, B)$

$$
\begin{align*}
z^{m} \frac{d^{m} w}{d z^{m}}+\binom{m}{1}(\mu+m-1) z^{m-1} \frac{d^{m-1} w}{d z^{m-1}}+\cdots+ & \binom{m}{m} w \prod_{j=0}^{m-1}(\mu+j) \\
& =h(z) \prod_{j=0}^{m-1}(\mu+j+1) \tag{10}
\end{align*}
$$

where $w=f(z), \mu \in \mathbb{R} \backslash(-\infty,-1]$ and $m \in \mathbb{N} \backslash\{1\}$.
Note that

$$
\begin{aligned}
\mathcal{K} Q(\gamma, \lambda, 1-2 \beta,-1) & =\mathcal{K} Q(\gamma, \lambda, \beta) \\
\mathcal{B K}(\gamma, \lambda, 1-2 \beta,-1,2 ; \mu) & =\mathcal{B} \mathcal{K}(\lambda, \gamma, \beta ; \mu) \\
\mathcal{K} Q(\gamma, 0,1,-1) & =\mathcal{K}(\gamma)
\end{aligned}
$$

and

$$
\mathcal{K} Q(\gamma, 1,1,-1)=Q(\gamma)
$$

2. Coefficient estimates for functions in the classes $\mathcal{K} Q(\lambda, \gamma, A, B)$ and $\mathcal{B} \mathcal{K}(\gamma, \lambda, A, B, m ; \mu)$
We need the following lemma before getting our main results.
Lemma 2.1. Let the function g given by

$$
g(z)=\sum_{k=1}^{\infty} b_{k} z^{k}, z \in \mathbb{D}
$$

be convex in \mathbb{D}. Also, let the function f given by

$$
f(z)=\sum_{k=1}^{\infty} a_{k} z^{k}, z \in \mathbb{D}
$$

be holomorphic in \mathbb{D}. If

$$
f(z) \prec g(z), z \in \mathbb{D}
$$

then

$$
\left|a_{k}\right| \leq\left|b_{1}\right|, k \in \mathbb{N}
$$

Now, we prove our coefficient estimates for functions which belong to the classes $\mathcal{K} Q(\lambda, \gamma, A, B)$ and $\mathcal{B} \mathcal{K}(\gamma, \lambda, A, B, m ; \mu)$.

Theorem 2.2. Let $f(z) \in \mathcal{K} Q(\lambda, \gamma, A, B)$ and be defined by (2). Then for $n \in$ $\mathbb{N}^{*}=\{2,3,4, \ldots\}$

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{\prod_{j=0}^{k-2}[j+(A-B)]}{n![1+\lambda(n-1)]}+\frac{|\gamma|(A-B)}{n[1+\lambda(n-1)]} \sum_{k=1}^{n-1} \frac{\prod_{j=0}^{n-k-2}[j+(A-B)]}{(n-k-1)!} \tag{11}
\end{equation*}
$$

Proof. Since $f(z) \in \mathcal{K} Q(\lambda, \gamma, A, B), g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ which belongs to class $S C(1, \lambda, A, B)$ such that

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z F^{\prime}(z)}{G(z)}-1\right) \prec \frac{1+A z}{1+B z} \tag{12}
\end{equation*}
$$

for $z \in \mathbb{D}$, where $F(z)=z+\sum_{n=2}^{\infty} A_{n} z^{n}$ and $G(z)=z+\sum_{n=2}^{\infty} B_{n} z^{n}$, with

$$
\begin{equation*}
A_{n}=[1+\lambda(n-1)] a_{n} \text { and } B_{n}=[1+\lambda(n-1)] b_{n}, n \geq 2 . \tag{13}
\end{equation*}
$$

Let us $h(z)=\frac{1+A z}{1+B z}$ and define the function

$$
\begin{equation*}
p(z)=1+\frac{1}{\gamma}\left(\frac{z F^{\prime}(z)}{G(z)}-1\right)=1+\sum_{n=2}^{\infty} c_{n} z^{n}, z \in \mathbb{D} . \tag{14}
\end{equation*}
$$

Therefore we have $p(z) \prec h(z), z \in \mathbb{D}$. Hence, by the definition of the subordination, we deduce that

$$
p(z)=\frac{1+A w(z)}{1+B w(z)}
$$

Note that $p(0)=h(0)=1$ and $p(\mathbb{D}) \subset h(\mathbb{D}), z \in \mathbb{D}$. Also from (14), we get

$$
\begin{equation*}
\gamma G(z) p(z)=G(z)(\gamma-1)+z F^{\prime}(z) . \tag{15}
\end{equation*}
$$

Then, from (15), we obtain

$$
\begin{equation*}
n A_{n}=B_{n}+\gamma\left\{c_{n-1}+\sum_{k=1}^{n-2} c_{k} B_{n-k}\right\} \tag{16}
\end{equation*}
$$

On the other hand, according to Lemma 2.1, we get

$$
\begin{equation*}
\left|\frac{p^{(m)}(0)}{m!}\right| \leq A-B, m \in \mathbb{N} \tag{17}
\end{equation*}
$$

Using (17) in (16), we take the following inequality

$$
n\left|A_{n}\right| \leq\left|B_{n}\right|+\gamma(A-B)\left\{1+\sum_{k=1}^{n-2}\left|B_{n-k}\right|\right\}, n \geq 2
$$

Now using Theorem 1.3, we obtain

$$
\left|A_{n}\right| \leq \frac{\prod_{j=0}^{k-2}[j+(A-B)]}{n!}+\frac{|\gamma|(A-B)}{n} \sum_{k=1}^{n-1} \frac{\prod_{j=0}^{n-k-2}[j+(A-B)]}{(n-k-1)!}
$$

and hence from the relation between $F(z)$ and $f(z)$ as in (13), we obtain the desired result.

Theorem 2.3. Let $f(z) \in \mathcal{B K}(\lambda, \gamma, A, B, m ; \mu)$ and be defined by (2). Then for $n \in \mathbb{N}^{*}=\{2,3,4, \ldots\}$

$$
\begin{align*}
\left|a_{n}\right| \leq & \frac{\prod_{j=0}^{m-1}(u+j+1)}{\prod_{j=0}^{m-1}(u+j+n)}\left\{\begin{array}{l}
\frac{\prod_{j=0}^{k-2}[j+(A-B)]}{n![1+\lambda(n-1)]} \\
\\
\end{array} \begin{array}{l}
\left.\frac{|\gamma|(A-B)}{n[1+\lambda(n-1)]} \sum_{k=1}^{n-1} \frac{\prod_{j=0}^{n-k-2}[j+(A-B)]}{(n-k-1)!}\right\}
\end{array}\right\} .
\end{align*}
$$

Proof. Since $f(z) \in \mathcal{B K}(\lambda, \gamma, A, B, m ; \mu)$, then there exists $h(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in$ $\mathcal{K} Q(\lambda, \gamma, A, B)$, such that (10) holds true. Thus it follows that

$$
a_{n}=\frac{\prod_{j=0}^{m-1}(\mu+j+1)}{\prod_{j=0}^{m-1}(\mu+j+n)} b_{n}, n \in \mathbb{N}^{*}, \mu \in \mathbb{R} \backslash(-\infty,-1] .
$$

By using Theorem 2.2, we immediately obtain the desired inequality (18).

3. Corollaries and Consequences

By choosing suitable values of the admissible parameters m, λ, γ, A and B in Theorem 2.2 and Theorem 2.3 above, we deduce the following corollaries.

Corollary 3.1 ([10]). Let the function $f(z) \in \mathcal{A}$ be given by (2). If $f \in \mathcal{K} Q(\gamma, \lambda, 1-2 \beta,-1)=\mathcal{K} Q(\gamma, \lambda, \beta)$, then we get the same result in Theorem 1.6.

Corollary 3.2 ([10]). Let the function $f(z) \in \mathcal{A}$ be given by (2). If $f \in \mathcal{B K}(\lambda, \gamma, 1-2 \beta,-1,2 ; \mu)=\mathcal{B K}(\lambda, \gamma, \beta)$, then we have the result in Theorem 1.7.

Corollary 3.3 ([5]). Let the function $f(z) \in \mathcal{A}$ be given by (2). If $f \in \mathcal{K} Q(\gamma, 0,1,-1)=\mathcal{K}(\gamma)$, then

$$
\left|a_{n}\right| \leq \frac{1}{[1+\lambda(n-1)]}\{1+(n-1)|\gamma|\}, n \in \mathbb{N}^{*}
$$

Corollary 3.4 ([6]). Let the function $f(z) \in \mathcal{A}$ be given by (2). If $f \in \mathcal{K} Q(\gamma, 1,1,-1)=Q(\gamma)$, then

$$
\left|a_{n}\right| \leq \frac{1+(n-1)|\gamma|}{n}, n \in \mathbb{N}^{*}
$$

For $\gamma=1$ in Corollary 3.3 and Corollary 3.4, we obtain the well known coefficient estimates for close-to-convex and quasi convex functions.

REFERENCES

[1] O. Altıntaş - Ö. Özkan - H. M. Srivastava, Neigborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett. 13 (1995), 63-67.
[2] O. Altıntaş - H. Irmak - S. Owa - H. M. Srivastava, Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Lett. 20 (2007), 1218-1222.
[3] O. Altıntaş - Ö. Özkan - H. M. Srivastava, Neighbourhoods of certain family of multivalent functions with negative coefficients, Comput. Math. Appl. 47 (2004), 1667-1672.
[4] O. Altıntaş, An application on differential subordination, International Conference on Mathematical Science, Bolu, TURKEY. 23-27 November 2010. AIP Conference Proceedings (1309), 939-945.
[5] H. S. Amiri - T. S. Fernando, On close-to-convex functions of complex order, Int. J. Math. Math. Sci. 13 (1990), 321-330.
[6] O. S. Known - S. Owa, On quasi convex functions of complex order, Soochow J. Math. 20 (1994), 241-250.
[7] H. M. Srivastava - O. Altıntaş - S. K. Serenbay, Coefficient bounds for certain subclasses of starlike functions of complex order, Appl. Math. Lett. 24 (2011), 1359-1363.
[8] K. I. Noor, Quasi-convex functions of complex order, Panamer. Math. J. 3 (2) (1993), 81-90.
[9] Quing-Hua Xu - Ying-Chun Gui - H. M. Srivatava, Coefficient estimates for certain subclasses for analytic functions of complex order, Taiwanese J. Math. 15 (5) (2011), 2377-2386.
[10] W. Ul- Haq - A. Nazneen - N. Rehman, Coefficient estimates for certain subfamilies of close-to-convex functions of complex order, Filomat 28 (6) (2014), 1139-1142.

