ON THE BOUNDARY BEHAVIOR OF THE HOLOMORPHIC, ... 301

LE MATEMATICHE
Vol. LXI (2006) - Fasc. II, pp. 301-316

ON THE BOUNDARY BEHAVIOR OF THE HOLOMORPHIC
SECTIONAL CURVATURE OF THE BERGMAN METRIC

ELISABETTA BARLETTA

We obtain a conceptually new differential geometric proof of P. F
Klembeck’s result (cf. [9]) that the holomorphic sectional curvature k g(z)
of the Bergman metric of a strictly pseudoconvex domain 2 C C” approaches
—4/(n + 1) (the constant sectional curvature of the Bergman metric of the
unit ball) as z — 0.

1. Introduction.

Given a smoothly bounded strictly pseudoconvex domain 2 C C”"
C. R. Graham & J. M. Lee studied (cf. [7]) the C* regularity up to
the boundary for the solution to the Dirichlet problem A u = 0 in
© and u = f on 92, where A, is the Laplace-Beltrami operator of
the Bergman metric g of Q. If ¢ € C*®(U) is a defining function
(2 ={z €U : ¢(z) < 0}) their approach is to consider the foliation
F of a one-sided neighborhood V of the boundary 9<2 by level sets
M. ={z€V :9p(z) =—¢€} (¢ > 0). Then F is a tangential CR foliation
(cf. S. Dragomir & S. Nishikawa, [4]) each of whose leaves is strictly
pseudoconvex and one may express A,u = 0 in terms of pseudohermitian
invariants of the leaves and the transverse curvature r = 2 39¢(£, £) and
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its derivatives (the meaning of £ is explained in the next section). The
main technical ingredient is an ambient linear connection V on V whose
pointwise restriction to each leaf of ¥ is the Tanaka-Webster connection
(cf. S. Webster, [14], and N. Tanaka, [13]) of the leaf. An axiomatic
description (and index free proof) of the existence and uniqueness of V
(referred to as the Graham-Lee connection of (V,¢)) was provided in
[1]. As a natural continuation of the ideas in [7] one may relate the Levi-
Civita connection V¢ of (V, g) to the Graham-Lee connection V and
compute the curvature RS of V¢ in terms of the curvature of V. Together
with an elementary asymptotic analysis (as € — 0) this leads to a purely
differential geometric proof of the result of P. F. Klembeck, [9], that the
sectional curvature of (€2, g) tends to —4/(n+ 1) near the boundary 0€2.
The Author believes that one cannot overestimate the importance of the
Graham-Lee connection (and that the identities (27) and (36) in Section
3 admit other applications as well, e.g. in the study of the geometry of
the second fundamental form of a submanifold in (€2, g)).

2. The Levi-Civita versus the Graham-Lee connection.

Let 2 be a smoothly bounded strictly pseudoconvex domain in C”
and K (z,¢) its Bergman kernel (cf. e.g. [8], p. 364-371). As a simple
application of C. Fefferman’s asymptotic development (cf. [6]) of the
Bergman kernel ¢(z) = —K(z,z)~/®*D is a defining function for Q
(and 2 = {p < 0}). Cf. A. Kordnyi & H. M. Reimann, [11], for a

proof. Let us set 6 = %(5 —3)p. Then df =i 3d¢. Let us differentiate

log|p| = —(1/(n + 1))log K (where K is short for K(z,z)) so that to
obtain

1 - | R
— dp = ——— dlogKk.
@ ¢ n+1 &
Applying the operator i d leads to
(1) lde ia/\ﬁ : 99 log K
— - — =—— ogK.
) @? $Roe n+1 ¢

We shall need the Bergman metric g;z = 8”log K /9z/ 9z, This is well
known to be a Kihler metric on Q.

Proposition 1. For any smoothly bounded strictly pseudoconvex domain
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Q2 C C" the Bergman metric g is given by
n—+1 ( i
2

(2) g(X,Y) = (B A Ip) (X, JY) —dO(X, JY)},

for any X,Y € X(2).

Proof. Let (X, Y) = g(X, JY) be the Kéhler 2-form of (_Q, J, g), where
J is the underlying complex structure. Then w = —i ddlog K and (1)
may be written in the form (2). Q.e.d.

We denote by M, = {z € Q2 : ¢(z) = —e} the level sets of ¢. For
€ > 0 sufficiently small M. is a strictly pseudoconvex CR manifold (of CR
dimension n — 1). Therefore, there is a one-sided neighborhood V of 9€2
which is foliated by the level sets of ¢. Let F be the relevant foliation and
let us denote by H(¥) — V (respectively by T o(¥) — V) the bundle
whose portion over M. is the Levi distribution H (M) (respectively the
CR structure T 0(M.)) of M.. Note that

Ti,0(F) NTo1(F) = (0),

[T(T1.0(F)), T=(T1,0(F))] S T=(T1 0(F)).
Here Ty 1(F) = T, o(¥). For a review of the basic notions of CR and
pseudohermitian geometry needed through this paper one may see S.
Dragomir & G. Tomassini, [5]. Cf. also S. Dragomir, [3]. By a result
of J. M. Lee & R. Melrose, [12], there is a unique complex vector field
& on V, of type (1,0), such that d¢(§) = 1 and & is orthogonal to
Ty.o(F) with respect to dd¢ ie. ddp(&,Z) = 0 for any Z € Ty o(F).
Let r = 2 3d¢(£,€) be the transverse curvature of ¢. Moreover let
&= %(N —iT) be the real and imaginary parts of &. Then

(dp)(N) =2, (do)(T) =0,
O(N)=0, 6(T)=1,
dp(N)=1, 0¢(T)=1.
In particular 7 is tangent to (the leaves of) . Let gy be the tensor field
given by
3)  g(X,Y)=d6O)(X,JY), g(X,T)=0, g(T.T)=1,

for any X,Y € H(¥). Then gy is a tangential Riemannian metric for ¥
i.e. a Riemannian metric in 7 (¥) — V. Note that the pullback of g4 to
each leaf M, of ¥ is the Webster metric of M. (associated to the contact
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form j*0, where j. : M. C V). As a consequence of (2), JT = —N and
iy df =r 6 (see also (8) below)

Corollary 1. The Bergman metric g of Q C C" is given by

4) g(X,Y):—n(’%1 g (X,Y), X,Y e H¥).

5) gX, T)=0, g(X,N)=0, XeH(¥F),

+1/1
6  g(T,N)=0, g(T,T):g(N,N):”w (;_r)_

In particular 1 — ro > 0 everywhere in Q.

Using (4)-(6) we may relate the Levi-Civita connection V§ of (V, g)
to another canonical linear connection on V, namely the Graham-Lee
connection of €2. The latter has the advantage of staying finite at the
boundary (it gives the Tanaka-Webster connection of €2 as 7 — 9€2). We
proceed to recalling the Graham-Lee connection. Let {W, : | <a <n—1}
be a local frame of T} o(F), so that {W,, &} is a local frame of T!0(V).
We consider as well

Ly(Z, W) =—i(dO)(Z, W), Z,WeToF).

Note that Ly and (the C-linear extension of) gy coincide on 7} 0(F) ®
To.1(F). We set 8.5 = 8o (W, WF)' Let {6 : 1 <o <n—1} be the
(locally defined) complex 1-forms on V determined by

0% (Wp) =65 , 0“(WE) =0, 0°(T)=0, 6%“%(N)=0.

Then {6%, 0%, 0, de} is a local frame of T(V) ® C and one may easily
show that

(7) d6 =2ig,z 6° N6P +rdy A6
As an immediate consequence

(8) irdo = —%d(p, iy dO =r 6.

As an application of (7) we decompose [T, N] (according to T(V)QC =
T o(F) @ T (¥) & CT & CN) and obtain

C)) [T,N1=i We(r)W, —i WE(r)Wgz+2rT,
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where W4(r) = g W5(r) and W¥(r) = W(r).
Let V be a linear connection on V. Let us consider the 7 (V)-valued
1-form 7 on V defined by

(X)) =1Tv(T,X), X eT(V),

where Ty is the torsion tensor field of V. We say Ty is pure if

(10) Tw(Z,W) =0, Ty(Z,W)=2iL¢(Z, W)T,
(11) Ty(N,W)=r W+i t(W),

for any Z, W € T} o(¥), and

(12) (T ,0(F)) € To1(F),

(13) t(N)=—J Vir—2r T.

Here Vr is defined by V#r =y Vr and g (Vr, X) = X (r), X € T(F).
Also gy : T(F) — H(F) is the projection associated to the direct sum
decomposition T(F) = H(F) & RT. We recall the following

Theorem 1. There is a unique linear connection V on V such that 1)
T\ 0(F) is parallel with respect to V,ii)) VLy =0, VI =0, VN =0,
and iii) Ty is pure.

V given by Theorem 1 is the Graham-Lee connection. Theorem 1 is
essentially Proposition 1.1 in [7], pp. 701-702. The axiomatic description
in Theorem 1 is due to [4] (cf. Theorem 2 there). An index-free proof
of Theorem 1 was given in [1] relying on the following

Lemma 1. Let ¢ : T(F) — T(F) be the bundle morphism given by
¢ (X)=JX, forany X € H(F), and ¢(T) = 0. Then

=-I4+6QT,
g (X, T) =0(X),
809X, YY) = go(X,Y) — 0(X)O(Y),

for any X,Y € T(F). Moreover, if V is a linear connection on V
satisfying the axioms (i)-(iii) in Theorem 1 then

(14) pot+T109p=0

along T (F). Consequently T may be computed as
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1
(15) T(X) = _§¢(£T¢)X,
for any X € H(¥).

A rather lengthy but straightforward calculation (based on Corollary
1) leads to

Theorem 2. Let Q@ C C" be a smoothly bounded strictly pseudoconvex
domain, K (z,¢) its Bergman kernel, and ¢(z) = —K (z,2) "/ "+, Then
the Levi-Civita connection V& of the Bergman metric and the Graham-Lee
connection of (2, ¢) are related by

(16) V&Y = VXY+{1 ¢

_(pr

20 (tX, ¥) + ge(X,¢Y)}T—

—{ge(X,Y)Jr N go(X, 9 1 Y)}N,
— Qr
8 1 ('0_
(7)) ViT =1X — ((p r)d)X 2 r(p){X(i’)T—i-(d)X)(r)N},

(18) VEN = —(é—r)X—i—f ¢ X—I-L{((f)X)(r)T—X(r) N},

2(1 —ro)
(19) VX = V7 X — (l _ r)d)X — % X(HT + X)()N),
%] 2(1 —ro)
Sy _ I » _
(20) VAX = VX — X S ((@X)(T = XN,
2) VET — _Lg vH —L{ N+ T\ i TN
QD) VAT =59 V'r =50 ( "+ w) +T(INY.

(22) VEN = ~¢vH, L4 {(N(r)+i—6—r+4r2> T+T ()N
2 ) P* @

2(1—rg

1
(23) VT = —EVHr—

L{T(r)r—<zv(r)+i—6—r+4r2>zv
2(1 — rg) P* 9
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(24) VEN = Ly ¥ T(r)T — N()+i—2—r)N
VET T T g Y Py )

for any X,Y € H(F).

3. Klembeck’s theorem.

The original proof of the result by P. F. Klembeck (cf. Theorem 1
in [9], p. 276) employs a formula of S. Kobayashi, [10], expressing the
components RJ.M of the Riemann-Christoffel 4-tensor of (€2, g) as

1
(K Kg.— K K; J+

1
5 Riks = 8785 + 8558 — 17K Kigs

1 _
e
+3 Y ¢"{K K7 — Kj-KHK Kf 5, — Kz sKn)
l,m

where K = K(z,z) and its indices denote derivatives. However the
calculation of the inverse matrix [g/*] = [gj;]*1 turns out to be a difficult
problem and [9] only provides an asymptotic formula as z — 9€2. Our
approach is to compute the holomorphic sectional curvature of (€2, g) by
deriving an explicit relation among the curvature tensor fields Ré and R
of the Levi-Civita and Graham-Lee connections respectively. We start by
recalling a pseudohermitian analog to holomorphic curvature (built by S.
M. Webster, [14]).

Let M be a nondegenerate CR manifold of type (n — 1,1) and 0 a
contact form on M. Let G(H (M)), consist of all 2-planes o C T,(M)
such thati) 0 C H(M), and ii) J,(0) = o. Then G|(H (M)) (the disjoint
union of all G{(H(M)),) is a fibre bundle over M with standard fibre
CP"2. Let RY be the curvature of the Tanaka-Webster connection V of
(M, 6). We define a function ky : G| (H(M)) — R by setting

1
ko(o) = —ZRX(X, LX, X, J.X)

for any 0 € G{(H(M)) and any linear basis {X, J,X} in o satisfying
Gy(X, X) = 1. It is a simple matter that the definition of ky(c) does not
depend upon the choice of orthonormal basis {X, J, X}, as a consequence
of the following properties

RY(Z,W,X,Y)+RY(Z,W,Y,X) =0,
RV(Z,W,X,Y)+RV(W,Z,X,Y)=0.
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ky is referred to as the (pseudohermitian) sectional curvature of (M, 0).

As mentioned above the notion is due to S. M. Webster, [14], who
also gave examples of pseudohermitian space forms (pseudohermitian
manifolds (M, 0) with ks constant). Cf. also [2] for a further study
of contact forms of constant pseudohermitian sectional curvature. With
respect to an arbitrary (not necessarily orthonormal) basis {X, J, X} of
the 2-plane o the sectional curvature ky(o) is also expressed by

1RY(X, J: X, X, J,X)

k(@) = = T G, X)

To prove this statement one merely applies the definition of kg (o)
for the orthonormal basis {U, J,U}, with U = Gg(X, X)"'/2X. As
X e HM), there is Z € T, o(M), such that X = Z 4 Z. Thus

\R(Z,Z,Z,7)

Y = T ez 27

The coefficient 1/4 is chosen such that the sphere S*'~! C C" has
constant curvature +1. Cf. [5], Chapter 1. With the notations in Section
2 let us set f = ¢/(1 — ¢r). Then

X(f)=f*X@r), XeT(F).

Let R® and R be respectively the curvature tensor fields of the
linear connections V& and V (the Graham-Lee connection). For any
X,Y,Z € H(¥F) (by (16))

VAVSZ = V5(VyZ +{f 80t (Y), Z) + go(Y, $Z)} T —
—{20(Y, Z) + f g0 (Y, 9T (Z)}N) =
by VyZ € H(¥) together with (16)
= VxVyZ +{f go(t1(X), VyZ) + go(X,pVyZ)} T —
—{86(X, VyZ) + f go(X, ¢T(VyZ))}N+

+{f go(x(Y), Z) + go(Y, $2)} VS T+

+HX(go(t(V), Z) + f X(go(x(Y), Z)) + X (go(Y, pZ))} T —
—{20(Y, Z) + f g0 (Y, ¢T(2))}VEN+

—{X(26(Y, 2)) + X (f)go (Y, $T(2)) + [ X (o (Y, pT(Z2))}N =
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by (17), (18)
= VxVWZ + {X(Q(Y. 2)) + QX., VyZ)+
+X (A, Z) + f[X(A(Y. 2)) + A(X VWZ)|}T—
+X (Y, 1(2) + f[X(QY,1(Z)) + QX, T(VyZ) |}N+
+{f A, 2) +Q(, Z)}{‘E(X) — % $X — g
—{8 (Y, 2) + f QY, 1(2))}x

(X(NT + (¢X)(r>N)}—

1 f
X{ T X +1(opX) + 5((¢X)(F)T - X(F)N)}

where we have set as usual A(X,Y) = go(r(X),Y) and Q(X,Y) =
go(X, ¢Y). We may conclude that

(25) VYVyZ =VxVyZ+[f A(Y,2) +Q(Y, Z)](T(X) - % ¢X)+

1
+lgo (Y, Z) + f Q(Y, r(Z))](? X — r(¢X)>+
HX(QY, 2) + QX, VyZ) + f[X(AY, 2)) + AX, Vy 2) |+
+§[X(r)(f AY,Z) - QY, Z2))-

~@X)()(8o(Y, Z) + [ Y. 1 (Z)]}T~
—{X(go(Y. 2)) + 80(X. V¥ Z) + F[X QY. 7(2)) + (X, T(V¥Z))]~

—g[X(r)(ge(Y, 2)—f QU 1 (Z2)))—=@X)(r)(f AY, 2)+Q(, Z)]}N

for any X,Y,Z € H(¥). Next we use the decomposition [X,Y] =
mulX, Y]+ 0(X,Y]DT and (16), (19) to calculate

ViknZ = Ve, xnZ +0(X, YDViZ =

= Vaux.1Z +{f 8ot (@ulX. Y1), Z) + go(wulX. Y1, ¢ 2)} T -
—{8o(rulX, Y1, Z) + f go(wulX, Y1, oT(2)) N+

1
+O([X, Y]){VTZ ~ 7 ¢Z — g(Z(F)T + (¢Z)(F)N)}
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so that (by ©(T) =0)

1
(26) Vi nZ = VixnZ — I O(X,YDPZ+
+{f A(X, Y], Z2)+ Q(X,Y], Z) — 59([)(, Y])Z(V)}T—

—{ge([X, Y,Z)+ f QUX, Y], 7(2)) + gé’([X, Y])(¢Z)(r)}N

for any X,Y,Z € H(¥). Consequently by (25)-(26) (and by Vgy = 0,
VQ =0) we may compute

R8(X,Y)Z =V5V3Z — VNS Z — fo,Y]Z
so that to obtain

27) R$(X,Y)Z = R(X,Y)Z + % (X, YDPZ+

+(f A, Z) + Q(Y, Z))(‘L’(X) — % ¢X)_
—(f AX, 2) + Q(X, Z))(‘L'(Y) - %¢y)+
1
+(go (Y, Z2)+ f Q(Y, t(Z))(7 X — f(¢X))>_

1
—(8o (X, Z)+fQ(X,f(Z)))(7 Y—T(¢>Y))+

H F[(VxA)Y, Z) — (VyA)(X, )|+

+§[X(r)(f AY,Z) - Q¥,2)) -Y((f AKX, Z) - Q(X,Z))—

—(@X)(r)(go(Y, Z2) + f Q(Y,7(Z))) + (¢Y)(r)(go(X, Z2)+
HfQX, T(D)HZO (X, YDITHfIQT, (Vx1)Z2)—Q(X, (VyT)Z) -
—g[X(r)(ge(Y, 2)—f QY,t1(2)-Y(r)(g(X,2) - f QX,1(2))—

—(@X)((f AY,Z2)+QY, 2)) + (pY)(r)(f AX, Z) +Q(X, 2))+
+(PZ)(MO(X, YDI}N
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for any X,Y,Z € H(F). Let us take the inner product of (27) with
W € H(F) and use (4)-(5). We obtain

n—+1

1
S(RE(X,Y)Z, W) — {g80(R(X,Y)Z, W) — 7 (X, YDQ(Z, W)+

+f AY, Z) + QX, 2)I[AX, W) +% QX, W)]—

1
—If AKX, Z2) + QX, D)][AXY, W) + 7 Q, W)+

1
+go (Y, Z) + f Q(Y, T(Z))][? go(X, W) + Q(X, t(W))]-

1
—[go(X, Z) + f Q(X, T(Z))][7 go(Y, W)+ Q(Y, t(W)1}.

In particular for Z =Y and W = X (as Q2 = —d0)
n+1

g(R¥(X, V)Y, X) = — {g6(R(X, V)Y, X)+

+% QX,Y)> + f AX,X)A(Y,Y) —%[f2 AX, V) —Q(X, )"+

1
+?[89(X, X)+ f QX t(X)][ge (Y, Y) + f QY. t(Y))]-

—%[ge(X, Y)+ f QX t(Y)]).
Note that
A(PX,pX) = go(1(¢X), pX) = —go(pTX, $X) = —A(X, X),
QX T(@X)) = go(9X, pT($X)) = go(X, T($X)) =
= —go(X, pT(X)) = —Q(X, 1(X)),
QX 1(¢X)) = go(X, pT($X)) = —go(X, T($*X)) =
= go(X, (X)) = A(X, X).

Hence

28)  g(RE(X,$X)pX, X) = 11

{go(R(X, ¢ X)p X, X)+

—i—% go(X, X)? = 2 f[A(X, X)* + A(X, $X)*]}.



312 ELISABETTA BARLETTA

Let 0 C T(¥), be the 2-plane spanned by {X, ¢ X} for X € H(¥F).,
X #0.By 4)if Y = ¢, X then

2. (X, X)g.(Y,Y) — g.(X,Y)* =

1\2 1\2
- (’” ) (0.2 (X. X)goo(V. Y) — go.(X, )} = <”+ ) g0..(X, X)?

¢(2) ¢(2)
so that (by (28)) the sectional curvature k, (o) of the 2-plane o is expressed
by (for Y = ¢, X)

() = X e (VD) — g (X TP
_ @ 4 A(X,X)*+ A(X, 9. X)?
= Tap W@t e go.-(X, X)?

where ky restricted to a leaf of F is the pseudohermitian sectional
curvature of the leaf. Note that ky and A stay finite at the boundary
(and give respectively the pseudohermitian sectional curvature and the
pseudohermitian torsion of (€2, 0), in the limit as z — 9€2). On the other
hand f(z) — 0 and ¢(2)/f(z) = 1 as z - 2. We may conclude that
ke(0) — —4/(n+1) as z — 9. To complete the proof of Klembeck’s
result we must compute the sectional curvature of the 2-plane oy C T,(£2)
spanned by {N,, T,} (remember that JN = T). Note first that

2
N(f) = f2<—2 + N(r)).
Z
Let us set for simplicity
4 2r 4 6r 2
§=Nr+—=—-——, h=Nrn)+—=5—-——+4".
2 2 ¥ ¥

We these notations let us recall that (by (23))

1
(29) VET = ) X, — g{T(r)T —hN}
where X, = V#r. Using also (20) for X = X, we obtain
g vt 1 f
=2V VT = VX, — ; X, + 5{(¢>X,)(r)T — X,(r)N}+

+NNUT ()T = hN} + fANT ()T + T (r)V{T — N(h)N — hV§N}.
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Let us recall that (by (21) and (24))

(30) VT = —% o X, — g{gT +T(r)N},
. 1 f
(31) VNNZ—E Xr—i—E{T(r)T—gN}.

Using these identities and the expression of N(f) gives (after some
simplifications)

h 1
(G2 S2VEVIT = VX + (% - —)X, ~L10) px
4

+§{zf(§ + N<r>)T<r> LIN(T() — flg+ h)T(r)}T—

—g{ga(Xr, X)) +2fh (% + N(r)> +2N(h) + fIT(r)* — gh]}N
because of
(¢Xr)(r) = ge(vr, d’Xr) = g@(Xra ¢Xr) = 09
X, (r) = go(V7r, X;) = go(X,, X,).
Similarly
(33) —2ViVET = VrdX, + (% — %)X, + % T(r) ¢X,+
+§{2T(g) + f(e—=mT()|T+

+§{g9(xr, X,) 4+ 2T%(r) + fIT(r)* + ghl}N.

Here T?(r) = T(T(r)). Let us set ©(W,) = AEWE- To compute the last
term in the right hand member of

(34) RE(N,T)T = V{ViT = ViVIT = Vi T

note first that T(f) = f? T(r). On the other hand we may use the
decomposition (9) so that

V[gN,T]T =rX,+ frT(rT — g{gg(Xr, X))+ 2rh}N+
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_ 1 — 1 =
+<ir“A§ - 7#“) Wg — <ir“A§ + 7#) Wy

(where Ag = A} ) and by taking into account that

(lﬁAg _ %ﬂ) W — (nmé i %F> W = —% X, - 1(9X,)

we may conclude that

1
(35) VivnT = (” - 7>X, —T(@X,)+

+frT(r)T — g{gg(X,, X,)+2rh}N.
Finally (by plugging into (34) from (32)-(33) and (35))
(36) —2R¥(N,T)T = VyX, — VroX, — fT(r)¢X, —2t(¢X,)+

—|—<2r+£( +h) — l - i)X +
5 8 o r
2
+flf($ - N(r))T(r) +NT ) = T() + 2r - fg)T(r)}T—

—f{znxrn2 + fh(% + N(r)) + N+ fT@r)? +T*r) + 2rh}N.

Here || X,||> = go(X,, X,). Let us take the inner product of (36) with N
and use (4)-(6). We obtain
2¢(R8(N,T)T,N) =

_n+l

2
{ZIIXrII2 + fh(? + N(r)) + N+ fT(r)? +T*(r) + 2rh}

and dividing by

1 (n+1)\°
g(N,N)g(T,T)— g(N, T)2=—2( )
f @
leads to
g(R¢(N,T)T, N) B
g(N,N)g(T,T) —g(N,T)>
e

{2||X,||2 +T*(r)+ fT(r)*> +2hr + N(h) + fhN(r) + 2fh }

n—+1 ?
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It remains that we perform an elementary asymptotic analysis of the right
hand member of the previous identity when z — 92 (equivalently when
@ — 0). As r € C®(Q) (cf. [12]) the terms ||X,||?, T>(r), T(r)* and
N (r) stay finite at the boundary. Also (by recalling the expression of /)
f?ph — 0 as ¢ — 0. Moreover

2 h 2 4 61> 8
2f¢f—=—£f2N(r)—|- —fr+4f2r2—>—,
n+1¢?2 n+le (1 —re)? %) n+1

5 5 16 12r 6
N(h) =N(r)+4N(@r") — =5+ — —— N(r),
7 Z 7
2 16
I p——
n+1 n—+1
as ¢ — 0 hence
kg (00) — — 1 7 — 02
Klembeck’s theorem is proved.
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