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THE p-HARMONIC MEASURE
OF A SMALL SPHERICAL CAP

DANTE DEBLASSIE - ROBERT G. SMITS

We estimate the p-harmonic measure of a small spherical cap.

1. Introduction

One of the questions studied in the article of Peres et al. (2009) concerned
the ∞-harmonic measure of a spherical cap in dimension d ≥ 2. If Aδ is a
spherical cap of radius δ on the unit ball, denote its ∞-harmonic measure (with
respect to the point x in the unit ball) by ωx

∞(Aδ ). Those authors proved that for
some positive constants C1 and C2, independent of the dimension d,

C1δ
1/3 ≤ ω

0
∞(Aδ )≤C2δ

1/3.

Using the fact that ωx
∞(Aδ ) is ∞-harmonic in x on the open unit ball, they used

a clever comparison argument with a function of Aronsson (1986) that can be
regarded as the Martin kernel for the ∞-Laplacian on the half plane with pole at
the origin: it is ∞-harmonic on the open half plane, it vanishes continuously on
the boundary with the origin deleted, and it has a pole at the origin. The order
of the pole determines the rate of decay of ωx

∞(Aδ ) as δ → 0. As pointed out by
the authors, Aronsson has analogous functions for the p-Laplacian (p > 2) that
might be used in a similar way for p-harmonic measure.
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In fact, Lundström and Vasilis (2013) used this idea to study the problem
in two dimensions. They considered p-harmonic measure of small subsets of
the boundary of more general domains D than just the disk. Their main theorem
gives upper and lower bounds on ωx

p(∂D∩Bδ (y)) for y∈ ∂D and small δ , where
Bδ (y) is the open disk with radius δ and center y. The conditions on ∂D for the
upper bound are very simple, while those for the lower bound are lengthy (their
own words). As a special case, if D is convex, satisfying a uniform interior ball
condition, then for p≥ 2,

C δ
α ≤ ω

x
p(∂D∩Bδ (y))≤C−1

δ
α

for y ∈ ∂D and small δ , where α is given explicitly in terms of p. Please note
their results do not address the higher dimensional cases with 1 < p < ∞. The
two-dimensional analysis is highly nontrivial and very little is known in higher
dimensions.

That is the motivation for our article. Our main result is an upper bound
on the p-harmonic measure of a small spherical cap. Observe that the higher
dimensional problem for the infinity Laplacian considered by Peres et al. (2009)
reduces to the two-dimensional case. Indeed, it is no loss to assume the center of
Aδ is the north pole. Clearly by symmetry, ωx

∞(Aδ ) depends only on the radial
and azimuthal variables r and θ , respectively. The key observation is that the
equation ∆∞ ωx

∞(Aδ ) = 0 reduces to a partial differential equation in r and θ that
is independent of the dimension. This is not the case with p-harmonic measure,
as we will see below.

Before precisely stating our results, we establish the terminology and no-
tation that we will use. Our primary references for the p-Laplacian and p-
harmonic functions will be the notes of Lindqvist (2006) listed in the refer-
ences, the paper of Granlund et al. (1982) and the monograph of Heinonen et
al. (2006). More general degenerate operators are considered in the latter.

For reasonable functions u, the p-Laplacian of u is given by

∆pu = div
(
|∇u|p−2

∇u
)
.

This reduces to the usual Laplacian when p = 2. A function u on a domain
Ω ⊆ Rd (d ≥ 2) is p-harmonic on Ω iff it satisfies the equation ∆pu = 0 in the
weak sense: u ∈W 1,p

loc (Ω) and for each ϕ ∈C∞
0 (Ω),∫

Ω

〈|∇u|p−2
∇u,∇ϕ〉dx = 0,

where 〈·, ·〉 is the usual Euclidean inner product. It is known (see DiBenedetto
(1983), Lewis (1983), and Ural’tseva (1968)) that p-harmonic functions are
C1,α

loc (Ω), where α depends only on p and the dimension d.
A function v : Ω→ (−∞,∞] is p-superharmonic in Ω if
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• v is lower semicontinuous in Ω;

• v 6≡ ∞ in Ω;

• for each domain D ⊂⊂ Ω, if h ∈C(D) is p-harmonic in D and h ≤ v on
∂D, then h≤ v in D.

It is known that v ∈C(Ω)∩W 1,p
loc (Ω) is p-superharmonic in Ω iff for each non-

negative ϕ ∈C∞
0 (Ω) ∫

Ω

〈|∇v|p−2
∇v,∇ϕ〉dx≥ 0

(see Lindqvist (2006), Section 5.1). Moreover, if v is sufficiently smooth in Ω,
then v is p-superharmonic there if −∆p v≥ 0.

Given A ⊆ ∂Ω, let C(A,Ω) be the set of all nonnegative p-superharmonic
functions v on Ω such that for each ξ ∈ ∂Ω,

liminf
x→ξ

x∈Ω

v(x)≥ IA(ξ ),

where IA is the indicator function of A: 1 on A and 0 otherwise. The p-harmonic
measure of A (relative to Ω) is the function whose value at x is given by

ωp(x;A,Ω) = inf{v(x) : v ∈ C(A,Ω)}.

For notational simplicity, we will often write this function as

ω
x
p(A).

It is known that ωx
p(A) is p-harmonic in Ω and

0≤ ω
x
p(A)≤ 1 x ∈Ω.

Moreover, ωx
p(A) has boundary value 1 at each regular point x interior to A and

boundary value 0 at each regular point x interior to ∂Ω\A. Note that when p= 2,
this definition is equivalent to the usual notion of harmonic measure.

The lack of linearity in the p-Laplacian precludes p-harmonic measure from
being a true measure. For example, it is not subadditive and it is not even ad-
ditive on null sets (Llorente et al. (2005)). Even so, it is a useful tool for
p-potential theory: it can be still be used to estimate p-harmonic functions and
it is a substitute for classical harmonic measure in the theory of quasiregular
mappings. Several classical results on harmonic measure, such as Carleman’s
principle and the Phragmén-Lindelöf principle have analogues for p-harmonic
measure (see Heinonen et al. (2006) and Granlund et al. (1982)).
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Bennewitz and Lewis (2005) have another definition of p-harmonic measure
that truly is a measure. In their article, they explored the Hausdorff dimension
of their version of p-harmonic measure. Lewis (2006) improved on these results
and Lewis et al. (2011) studied the measure in simply connected domains.

For x ∈ Rd and r > 0, we will denote the ball with radius r and center x by

Br(x) = {y ∈ Rd : |x− y|< r}.

A δ -spherical cap on the unit sphere is any set of the form

Bδ (y)∩∂B1(0),

where y ∈ ∂B1(0) and δ > 0. When d = 2 we will use the terminology δ -arc.
Our main result is the following theorem. Note our approach can be used

in two dimensions, but the results of Lundström and Vasilis (2013) are stronger
than those we can obtain.

Theorem 1.1. Let d > 2 and p ∈ (1,∞). For p≤ d +2
2

with p 6= d +4
3

, set

α =
−(p−2)(2d− p)+(d− p)2

2(p−1)(4+d−3p)

+

√
[(p−2)(2d− p)− (d− p)2]2 +4(p−1)2(d− p)(4+d−3p)

2(p−1)(4+d−3p)
;

for p =
d +4

3
, set

α = 2
d +1
d +4

;

and for p >
d +2

2
, set

α =
−(p−2)(2d− p)+(d− p)2

2(p−1)(4+d−3p)

−

√
[(p−2)(2d− p)− (d− p)2]2 +4(p−1)2(d− p)(4+d−3p)

2(p−1)(4+d−3p)
.

Then α > 0 and for some positive constant C(d), if δ > 0 is sufficiently small,
then the p-harmonic measure of a δ -spherical cap Aδ satisfies

ω
0
p(Aδ )≤C(d)δ

α .
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Remark 1.2. (a) By the Harnack inequality for the p-Laplacian, if 0< r < 1 and
x ∈ Br(0), our bounds hold for ωx

p(Aδ ), where now the number C(d) depends
on r.

(b) Our proof is valid for the case d = 2 and recovers the result of Lundström
and Vasilis (2013) in the disc.

(c) Specialized to the case p = 2, our result yields the power

α =
d−2+(d−2)2 +4

4
,

which is worse (when d > 2) than the correct power of α = d−1.

(d) Note that Hirata (2008) has derived estimates for p-harmonic measure in
bounded C1,1 domains in Rd when p = d. Specialized to our context, his Corol-
lary 2.8 states that ω0

p(Aδ ) is comparable to δ , when δ is small. Contrast this
with the power d

2(d−1) of δ we obtain in our upper bound. Admittedly our upper
bound is crude, but very little seems to be known for p 6= d, d > 2.

(e) In section two, we explain why there are three cases to distinguish in the
main result.

As pointed out above, Aronsson (1986) found a function that can be re-
garded as the Martin kernel for the ∞-Laplacian on the half plane with pole at
the origin: it is ∞-harmonic on the open half plane, it vanishes continuously
on the boundary with the origin deleted, and it has a pole at the origin. It is
not at all clear how to modify Aronsson’s approach to yield the Martin kernel
for the p-Laplacian on the half-space with pole at the origin in higher dimen-
sions. See section 2 for more details about this difficulty. Instead, we find a
p-superharmonic function on the open half space with the following properties:
it is positive on the open half space, continuous on the closed half space with the
origin removed, has a pole at the origin and vanishes continuously on the bound-
ary, away from the origin. This allows us to use the comparison method of Peres
et al. (2009) to derive our upper bound. The novel feature of our work is the
approach we take to find this particular p-superharmonic function. The method
could also be used to recover Aronsson’s function for p > 2 in dimension 2, as
well as for those p between 1 and 2.

The article is organized as follows. In Section 2 we find the particular p-
superharmonic function we need and give its relevant properties. In Section 3
we prove Theorem 1.1. In section 4 we prove a couple of technical results we
use in section 2.



154 DANTE DEBLASSIE - ROBERT G. SMITS

2. A p-Superharmonic Function for the Half-Space

From now on, we will assume the dimension d satisfies d > 2. Given a point
x ∈ Rd , we will use r = r(x) to denote its distance to the origin and if x 6= 0
we use θ = θ(x) to denote the azimuthal angle (i.e., the angle between x and
the ray from the origin through the north pole on the unit sphere). Thus we can
represent the open upper half space H as

H = {x = (x1, . . . ,xd) ∈ Rd : xd > 0}= {x ∈ Rd : r > 0, θ < π/2}.

We need an expression for ∆pu when u(x) is sufficiently well-behaved and de-
pends only on r = r(x) and θ = θ(x). It is known that ∆pu can be written in the
form

∆pu = |∇u|p−4 (|∇u|2∆u+(p−2)∆∞u
)
, (1)

where ∆ is the usual Laplacian and the infinity Laplacian ∆∞u is given by

∆∞ u =
1
2
(∇u) ·∇

(
|∇u|2

)
= ∑

i, j

(
∂u
∂xi

) (
∂u
∂x j

)
∂ 2u

∂xi∂x j
.

Since u depends only on r(x) and θ(x), this becomes

∆∞ u =

(
∂u
∂ r

)2
∂ 2u
∂ r2 +

2
r2

(
∂u
∂ r

)(
∂u
∂θ

)
∂ 2u

∂ r∂θ

+
1
r4

(
∂u
∂θ

)2
∂ 2u
∂θ 2 −

1
r3

(
∂u
∂θ

)2
∂u
∂ r

. (2)

Notice this is independent of the dimension d.
We now provide a brief derivation of this formula modeled on the d = 2 case

handled in Aronsson (1984). If we denote by ϕ = (ϕ1, . . .ϕd−2) the remaining
spherical coordinates, then we have the following identities, where we write
subscripts to denote differentiation. First,

|∇u|2 = u2
r +

1
r2 u2

θ ,

and using operator notation,


∂x1

·
·
·

∂xd

= Q



∂r
1
r ∂θ

1
r f1 ∂ϕ1

·
·
·

1
r fd−2 ∂ϕd−2


,
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where Q = Q(r,θ ,ϕ) is an orthogonal matrix and the functions f1, . . . , fd−2 de-
pend only on θ and ϕ . Thus expressing the infinity Laplacian in matrix form
and writing γ = |∇u|2,

2∆∞u = (∇u)T
∇

(
|∇u|2

)

=


Q



∂ru
1
r ∂θ u

1
r f1 ∂ϕ1u
·
·
·

1
r fd−2 ∂ϕd−2u





T

Q



∂rγ
1
r ∂θ γ

1
r f1 ∂ϕ1γ

·
·
·

1
r fd−2 ∂ϕd−2γ.


Since Q is orthogonal and u depends only on r and θ , this reduces to

2∆∞u =



∂ru
1
r ∂θ u

0
·
·
·
0



T 

∂rγ
1
r ∂θ γ

1
r f1 ∂ϕ1γ

·
·
·

1
r fd−2 ∂ϕd−2γ.



= ur γr +
1
r2 uθ γθ .

Upon using the definition of γ and simplifying, we get the desired expression
(2) for ∆∞.

Using the well-known form of the usual Laplacian ∆ in spherical coordi-
nates, we have

∆u =
∂ 2u
∂ r2 +

d−1
r

∂u
∂ r

+
1
r2

[
∂ 2u
∂θ 2 +(d−2)(cotθ)

∂u
∂θ

]
.

Assuming f is sufficiently smooth, for u(x) = rk f (θ) = r(x)k f (θ(x)) and
x ∈ Rd\{x = c(0, . . .0,1) : c≥ 0}, one can use (1)–(2) to show that

∆p u(x) = g(r(x),θ(x))
[[

(p−1)
(

f ′
)2

+ k2 f 2
]

f ′′

+[(2p−3)k+d− p]k f
(

f ′
)2

+ k3 [k(p−1)+d− p] f 3

+(d−2)
[(

f ′
)2

+ k2 f 2
]

f ′ cotθ(x)
]

(3)
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where we suppress the θ(x) in f and its derivatives and

g(r,θ) = rk(p−1)−p
[(

f ′(θ)
)2

+ k2 f 2(θ)
](p−4)/2

.

Remark 2.1. When d = 2 the p-harmonic equation ∆p u = 0 reduces to[
(p−1)

(
f ′
)2

+ k2 f 2] f ′′

+[(2p−3)k+2− p]k f
(

f ′
)2

+ k3 [k(p−1)+2− p] f 3 = 0

(cf. equation (5) in Aronsson (1986)). This equation is autonomous and Aron-
sson’s trick was to make a functional transformation H( f ) = f ′, converting it
into a first order ordinary differential equation in H that he was able to solve.
But for d > 2, the presence of cotθ keeps the equation from being autonomous
and using a functional transformation will no longer work.

The main result of this section is the following lemma giving the special
p-superharmonic function described in the introduction.

Lemma 2.2. Let d > 2 and p ∈ (1,∞). For p≤ d +2
2

with p 6= d +4
3

, set

k =
(p−2)(2d− p)− (d− p)2

2(p−1)(4+d−3p)

−

√
[(p−2)(2d− p)− (d− p)2]2 +4(p−1)2(d− p)(4+d−3p)

2(p−1)(4+d−3p)
;

for p =
d +4

3
, set

k =−2
d +1
d +4

;

and for p >
d +2

2
, set

k =
(p−2)(2d− p)− (d− p)2

2(p−1)(4+d−3p)

+

√
[(p−2)(2d− p)− (d− p)2]2 +4(p−1)2(d− p)(4+d−3p)

2(p−1)(4+d−3p)
.

Then k < 0 and there is a function f ∈C[0,π/2]∩C∞([0,π/2)) such that:

• f is positive on [0,π/2);
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• f is decreasing on [0,π/2);

• for some positive constant C,

f (θ)≤C (π/2−θ) , θ ∈ [0,π/2];

• the function
G(x) = r(x)k f (θ(x)), x ∈ H\{0}

is in C
(
H\{0}

)
∩C∞ (H) and

−∆p G≥ 0 on H.

Before giving the proof, we explain our reasoning.
Now if f (θ) is a function on [0,π/2] satisfying the equation[

(p−1)
(

f ′
)2

+ k2 f 2] f ′′

+[(2p−3)k+d− p]k f
(

f ′
)2

+ k3 [k(p−1)+d− p] f 3 = 0 (4)

on [0,π/2) (notice the left hand side is the expression in the outer square brack-
ets in (3), less the cotangent term), along with the properties described in the
Lemma 2.2 (smoothness, positivity on [0,π/2) and vanishing at the endpoint
π/2), then by the positivity and smoothness, it must be true that

f ′(θ)cotθ ≤ 0,θ ∈ (0,π/2).

Consequently by (3), for x ∈ H\{x = c(0, . . .0,1) : c≥ 0},

∆p

(
r(x)k f (θ(x))

)
≤ 0.

But by the smoothness of f and that f (0) = 0, f ′(θ) cotθ is smooth in a neigh-
borhood of θ = 0 and so this inequality holds on all of H. The bottom line is
that in order to prove Lemma 2.2, we need to find a function f on [0,π/2] satis-
fying the stated properties in the Lemma and the equation (4) for the value of k
as specified in the Lemma.

Our new idea is to write the desired function f in the form

f (θ) = exp
(∫

θ

0
a(z)dz

)
and find the function a. Substituting this into (4), we get

a′+
k3[k(p−1)− (p−d)]+ k[2k(p−1)− (p−d)]a2 +(p−1)a4

k2 +(p−1)a2 = 0. (5)



158 DANTE DEBLASSIE - ROBERT G. SMITS

By separating variables and using a partial fraction decomposition, this equation
can be solved in a useful implicit form.

Now let us explain why three cases are needed in the statements of Theorem
1.1 and Lemma 2.2. Indeed, for our idea to work, it is necessary for the implicit
solution a(θ) to be defined for θ ∈ [−ε,π/2], where ε > 0 is small ( the exten-
sion to the left of θ = 0 is needed to ensure f (θ) is smooth at θ = 0). For the
case p = d, this requires

k =− d
2(d−1)

(see the proof of part (b) in Lemma 2.5 below).
When p 6= d, we will see below (cf. Lemma 2.4 and the proof of part (b)

in Lemma 2.5) that this will happen if there is a negative root of the following
equation in k:

k(p−2)− (p−d)+ [(p−2)+(p−d)]

√
k2− k

p−d
p−1

= 0 (6)

Aside from trivial cases, this forces

k(p−2)− (p−d)
(p−2)+(p−d)

< 0. (7)

Upon eliminating the radical, we see k is a negative root of the quadratic equa-
tion

(p−1)(4+d−3p)k2−
[
(p−2)(2d− p)− (d− p)2] k− (d− p)(p−1) = 0

(it is interesting to note that when p = d, this quadratic reduces to

−2(d−1)k2−dk = 0

and we see the proper value for k in the p = d case described above is exactly
the negative root of this quadratic—this is why we do not need to separate out
the case p = d in the statement of Lemma 2.2).

When p = (d + 4)/3, the coefficient of k2 in the quadratic is 0 and so the
quadratic reduces to a linear equation in k. Thus it is easy to see why there
would be two cases to specify k: p 6= (d + 4)/3 and p = (d + 4)/3. So the
obvious question is why does p 6= (d+4)/3 split into two cases? The answer is
that in this case, there are two situations for the roots of the quadratic equation:
exactly one negative root and two negative roots. The factor√

k2− k
p−d
p−1
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appearing in (6) requires a positive radicand; moreover, (7) must hold. These are
automatically true for the situation of exactly one negative root for the quadratic,
while in the case of two negative roots, only one of the roots works. The two
cases for p 6= (d+4)/3 occur because sometimes only the smaller negative root
satisfies (7) and sometimes only the larger one works. To show (6) has a negative
root for which the radicand there is nonnegative and satisfies (7) is technically
demanding, so we state the essential conclusions in the next two Lemmas and
defer the tricky proofs to the final section.

Lemma 2.3. The number k in Lemma 2.2 is negative and satisfies k < p−d
p−1 .

Moreover,

a) if 2 < p <
d +2

2
then k >

p−d
p−2

;

b) if
d +2

2
< p < d then k <

p−d
p−2

.

Lemma 2.4. When p 6= d, with k from Lemma 2.2 and

β =

√
k2− k

p−d
p−1

.

we have
k(p−2)− (p−d)

β
+(p−2)+(p−d) = 0.

To specify the implicit solution a(θ) to (5), let k be from from Lemma 2.2
and let β be from Lemma 2.4. By Lemma 2.3, β is positive. Next, define
F : R2→ R by

F(θ ,a) =



−k(p−2)+d− p
β

tan−1 a
β

+(p−2) tan−1 a
k
+(p−d)θ , p 6= d

−d−2
2

a
a2 + k2 +

d
2k

tan−1 a
k
+(d−1)θ , p = d.

Using the definition of β , we have

∂F
∂a

=


p−d
p−1

· k2 +a2(p−1)
(β 2 +a2)(k2 +a2)

, p 6= d

k2 +(d−1)a2

(k2 +a2)2 , p = d.

(8)
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Since F(0,0)= 0 and ∂F
∂a (0,0) 6= 0, we can apply the Implicit Function Theorem

to get a maximal open interval (−N,M)—where M and N are both positive and
extended reals—and a unique C1 function a(θ), θ ∈ (−N,M), such that on that
interval, 

F(θ ,a(θ)) = 0

∂F
∂a

(θ ,a(θ)) 6= 0.

By (8) it follows that

a′(θ) =−

∂F
∂θ

∂F
∂a

=


−(p−1)(β 2 +a2)(k2 +a2)

k2 +a2(p−1)
, p 6= d

−(p−1)(k2 +a2)2

k2 +(p−1)a2 , p = d.

(9)

Using the definition of β when p 6= d, (9) implies that a(θ) solves (5) on
(−N,M). Now we list properties of a(θ).

Lemma 2.5. (a) The function a(θ) is decreasing and C∞ on its domain and
a(0) = 0;

(b) M = π

2 and so the domain of a is
(
−N, π

2

)
;

(c) a(θ)
(

π

2
−θ

)
=−1+O

((
π

2
−θ

)2
)
, as θ →

(
π

2

)−
.

Remark 2.6. It is not hard to show a extends uniquely to an odd function on
(−π/2,π/2), but we do not need this fact.

Proof. (a): Since F(0,0) = 0, by unicity, we must have a(0) = 0. That a is
decreasing on (−N,M) is immediate from (9). By repeatedly differentiating
(9), it follows that a ∈C∞(−N,M).

(b): By the monotonicity of a on (−N,M), the limit

lim
θ→M−

a(θ)

exists as an extended real number. The inverse tangent and the function x 7→
x/(x2 + k2) are bounded, and since

0 = F(θ ,a(θ))

=


−k(p−2)+d− p

β
tan−1 a(θ)

β

+(p−2) tan−1 a(θ)
k

+(p−d)θ , p 6= d

−d−2
2

a(θ)
a2 + k2 +

d
2k

tan−1 a(θ)
k

+(d−1)θ , p = d,
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it follows that M must be finite.
Write

L := lim
θ→M−

a(θ) ∈ [−∞,0).

To get a contradiction, assume L 6=−∞. Then

0 = lim
θ→M−

F(θ ,a(θ))

=


−k(p−2)+d− p

β
tan−1 L

β
+(p−2) tan−1 L

k
+(p−d)M, p 6= d

−d−2
2

L
L2 + k2 +

d
2k

tan−1 L
k
+(d−1)M, p = d,

= F(M,L).

Also, by (8),

∂F
∂a

(M,L) =


p−d
p−1

· k2 +L2(p−1)
(β 2 +L2)(k2 +L2)

, p 6= d

k2 +(d−1)L2

(k2 +L2)2 , p = d.

6= 0.

Then by the Implicit Function Theorem, there exists an interval (M− ε,M+ ε)
and a unique C1 function ã(θ), θ ∈ (M− ε,M + ε), such that F(θ , ã(θ)) = 0
on that interval. But then maximality of the interval (−N,M) is violated. Thus
we must have L =−∞.

Since k < 0 < β , this implies that

0 = lim
θ→M−

F(θ ,a(θ))

=


−k(p−2)+d− p

β

(
−π

2

)
+(p−2)

(
π

2

)
+(p−d)M, p 6= d

d
2k

(
π

2

)
+(d−1)M, p = d.

Upon using Lemma 2.4 when p 6= d and that k = − d
2(d−1)

when p = d, this

reduces to

0 =


−(p−d)

π

2
+(p−d)M, p 6= d

−(d−1)
π

2
+(d−1)M, p = d.
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Thus M = π/2 and we have proved that

lim
θ→(π/2)−

a(θ) =−∞, (10)

a fact we will use below.

(c): For θ ∈ (−N,π/2), the equation F(θ ,a(θ)) = 0 implies that

θ =


1

p−d

[
k(p−2)+d− p

β
tan−1 a

β
− (p−2) tan−1 a

k

]
, p 6= d

1
d−1

[
d−2

2
· a

a2 + k2 −
d
2k

tan−1 a
k

]
, p = d.

By (10), a(θ)→−∞ as θ → (π/2)−, and since k < 0 < β , we have

π

2
=


1

p−d

[
k(p−2)+d− p

β

(
−π

2

)
− (p−2)

(
π

2

)]
, p 6= d

1
d−1

[
− d

2k
· π

2

]
, p = d.

Thus

π

2
−θ =



1
p−d

[
− k(p−2)+d− p

β

(
π

2
+ tan−1 a

β

)

−(p−2)
(

π

2
− tan−1 a

k

)]
, p 6= d

1
d−1

[
− d

2k

(
π

2
− tan−1 a

k

)
− d−2

2
a

a2 + k2

]
, p = d.

Using the expansions

π

2
− tan−1 x =

1
x
+O

(
|x|−3) as x→ ∞,

π

2
+ tan−1 x =−1

x
+O

(
|x|−3) as x→−∞,

x
x2 + k2 =

1
x
+O

(
|x|−3) as x→−∞,
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together with (10), as θ → (π/2)−, we get

π

2
−θ =



1
p−d

[
− k(p−2)+d− p

β

(
− β

a(θ)
+O

(
|a(θ)|−3))

−(p−2)
(

k
a(θ)

+O
(
|a(θ)|−3

))]
, p 6= d

1
d−1

[
− d

2k

(
k

a(θ)
+O

(
|a(θ)|−3))

−d−2
2

(
1

a(θ)
+O

(
|a(θ)|−3

))]
, p = d.

=− 1
a(θ)

+O
(
|a(θ)|−3) .

Rearranging this yields

a(θ)
(

π

2
−θ

)
=−1+O

(
|a(θ)|−2) as θ →

(
π

2

)−
. (11)

In particular,

a2(θ)
(

π

2
−θ

)2
→ 1 as θ →

(
π

2

)−
.

Then (11) becomes

a(θ)
(

π

2
−θ

)
=−1+O

((
π

2
−θ

)2
)

as θ →
(

π

2

)−
.

This gives (c) and the proof of the Lemma 2.5 is complete.

Proof of Lemma 2.2. Define

f (θ) =

{
exp
(∫

θ

0 a(z)dz
)

θ ∈ [0,π/2),

0 θ = π/2.

Then f is positive on [0,π/2). Since a is smooth on (−N,π/2), we have that
f is smooth on ([0,π/2)), and since a(·) satisfies (9), f satisfies (4). Since a is
decreasing and a(0) = 0, a≤ 0 on [0,π/2), and so f is decreasing there too.

All that remains is to show f ∈C[0,π/2] and for some C > 0,

f (θ)≤C (π/2−θ) , θ ∈ [0,π/2]. (12)
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In light of the definition of f and that f ∈ C∞ ([0,π/2)), is it enough to prove
(12). By part (c) in Lemma 2.5, choose δ ∈ (0,π/2) so small that

Mδ := sup
|θ−π/2|<δ

a(θ)(π/2−θ)+1
(π/2−θ)2 < ∞.

Then for 0 < π/2−θ < δ ,

f (θ)
π/2−θ

= (π/2−θ)−1 exp
(∫

π/2−δ

0
a(z)dz

)
exp
(∫

θ

π/2−δ

a(z)dz
)

≤ (π/2−θ)−1Cδ exp
(∫

θ

π/2−δ

− 1
π/2− z

dz

+
∫

θ

π/2−δ

Mδ (π/2− z)dz
)

= (π/2−θ)−1Cδ exp
(

ln(π/2−θ)− lnδ

− 1
2

Mδ

[
(π/2−θ)2−δ

2])
≤ C̃δ ,

as desired. �

3. Proof of Theorem 1.1

Once we have the special p-superharmonic function from Section 2, we can use
some of the ideas of Peres et al. (2009) from the case p = ∞, replacing their use
of comparison with cones for the ∞-Laplacian with the Comparison Principle
for the p-Laplacian. If we denote the unit ball in Rd centered at the origin by Ω,
then it is no loss to assume that

Aδ = Bδ (S)∩∂Ω,

where S is the south pole of the unit sphere in Rd . For notational simplicity, we
will write

u(x) = ω
x
p(Aδ ). (13)

It is known (Heinonen et al. (2006)) that u is p-harmonic on Ω and has boundary
value 0 at all regular points interior to (∂Ω)\Aδ .

Define h : Ω→ [0,1] by

h(y) =
{

0, d(y,Aδ )> δ

1− 1
δ

d(y,Aδ ), d(y,Aδ )≤ δ .
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Then h is continuous and there exists a p-harmonic function v ∈C(Ω) with

v = h on ∂Ω

(see Theorem 2.16 in Lindqvist (2006)).
Apply Lemma 2.2 to get the p-superharmonic function

G(x) = G(r(x),θ(x)) = r(x)k f (θ(x)), x ∈ H,

where H is the upper half space, f enjoys the properties given in the Lemma
and k is as specified there. Notice α from the statement of Theorem 1.1 satisfies

k =−α

For x = (x1, . . . ,xd) define

Gδ (x) = δ
αG(x− (1+2δ )S), xd ≥−1

and note that Gδ is p-superharmonic on Ω. By Lemma 2.2 f is strictly positive
on the interval

[
−π

4 ,
π

4

]
and so for some C1 > 0,

G(x) = r(x)−α f (θ(x))≥C1 r(x)−α , θ(x)≤ π

4 .

Now for each x ∈ A2δ , if we denote the azimuthal angle of x− (1+2δ )S by
θ , then for δ < 1/2 and x̃ = (x1, . . . ,xd−1) we have

(xd +1)2 + |x̃|2 = 4δ
2

and

| tanθ |= |x̃|
xd +1+2δ

=

√
4δ 2− (xd +1)2

xd +1+2δ
≤ 2δ

2δ
= 1.

Thus θ ∈
[
0, π

4

]
and so for x ∈ A2δ , we have

h(x)≤ 1≤ 1
C1
|x− (1+2δ )S|α G(x− (1+2δ )S)

=
1

C1

[
|x− (1+2δ )S|

δ

]α

Gδ (x).

But
x ∈ A2δ =⇒ |x−S|= 2δ

and so

|x− (1+2δ )S| ≤ |x−S|+2δ

= 4δ .
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It follows that for some C3 > 0, independent of 0 < δ < 1
2 ,

h(x)≤C3 Gδ (x), x ∈ A2δ .

Since h≡ 0 on (∂Ω)\A2δ , we get that

h(x)≤C3 Gδ (x), x ∈ ∂Ω, δ < 1
2 .

Since v = h on ∂Ω, by an extension of the Comparison Principle in Lindqvist
(2006)–see the remark after Theorem 2.15 there–we have

v(x)≤C3 Gδ (x), x ∈Ω, δ < 1
2 .

In particular, for δ < 1
2 ,

v(0)≤C3 Gδ (0)

=C3 δ
α G(−(1+2δ )S)

=C3 δ
α (1+2δ )k f (0)

≤C4 δ
α ,

where C4 > 0 is independent of δ . By the definition of harmonic measure,

ω
0
p(Aδ ) = u(0)≤ v(0)≤C4 δ

α ,

as desired. �

4. Proof of Lemmas 2.3 and 2.4

Proof of Lemma 2.3. We distinguish several cases and simultaneously prove the
inequality

k <
p−d
p−1

and part a) or b) of the Lemma, according to the situation of the particular case
under consideration.

First note that since d > 2,

2 <
d +4

3
<

d +2
2

< d. (14)

Write

f (x) = (p−1)(4+d−3p)x2+
[
(d− p)2− (p−2)(2d− p)

]
x− (p−1)(d− p)
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and notice, after some simplification,

f
(

p−d
p−1

)
=

p−d
p−1

. (15)

It is easy to see that when p 6= (d +4)/3, k solves the equation

f (k) = 0.

For notational simplicity, we write this as

ak2 +bk+ c = 0.

• The cases p = (d +4)/3 and p = d follow easily by direct computation.

• p < (d +4)/3: Then a > 0 and c < 0. Thus the root

k =
−b−

√
b2−4ac

2a
is negative and the other root is positive.

Since the graph of y = f (x) is an upward parabola, it intersects the half
line y = x, x < 0, in exactly one point. By (15) and that p < d, the point
of intersection is

(
p−d
p−1 ,

p−d
p−1

)
. It follows that k < p−d

p−1 , as desired.

Moreover, if also 2 < p, then since p < (d+4)/3 < (d+2)/2 < d, we are
in the situation of part a) and we have (p−d)/(p−2)< 0. Hence to show
k > (p−d)/(p−2)–that is, to verify part a) of the lemma–inspection of
the graph of y= f (x) reveals it is enough to show f ((p−d)/(p−2))> 0.
For this, we have

f
(

p−d
p−2

)
= (p−1)(4+d−3p)

(
p−d
p−2

)2

+
[
(d− p)2− (p−2)(2d− p)

]( p−d
p−2

)
− (p−1)(d− p)

=
d− p

(p−2)2

[
[(p−2)+1] [(d− p)−2(p−2)] (d− p)

−
[
(d− p)2− (p−2)(d− p)−d(p−2)

]
(p−2)

− (p−1)(p−2)2
]
,

and after some manipulation, keeping the (d− p) and (p−2) as units, we
end up with

f
(

p−d
p−2

)
=

d− p
(p−2)2 [(p−d)+(p−2)]2 > 0,

p−d
p−2

< 0. (16)

Notice the derivation of (16) only required 2 < p < d.
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• (d + 4)/3 < p ≤ (d + 2)/2: It is easy to check that as a function of p ∈
(1,d +1/2), b is decreasing. Thus for p ∈ ((d +4)/3,d],

b(p)≤ b((d +4)/3) =−(d−2)(d +4)/9 < 0.

We have a < 0 and since p < d, we also have c < 0. Thus there are two
negative roots k and r, with the larger one being

k =
−b−

√
b2−4ac

2a
=
|b|−

√
b2−4ac

2a
.

Since the graph of y = f (x) is a downward parabola with two negative
roots, its intersection with the line y = x consists of two points (x1,x1)
and (x2,x2) with x1 < r < k < x2 < 0. Thus if we can show r ≤ (p−
d)/(p− 1), then since f ((p− d)/(p− 1)) = (p− d)/(p− 1), it follows
that x2 = (p− d)/(p− 1) and we would then have k < (p− d)/(p− 1),
as desired. To this end, observe that after some simplification,

r ≤ p−d
p−1

⇐⇒ −b+
√

b2−4ac
2a

≤ p−d
p−1

⇐⇒ [(d− p)− (p−2)]2 +2(p−2)+
√

b2−4ac≥ 0,

and this is true because

p >
d +4

3
>

2+4
3

= 2.

Since 2 < p < d, (16) holds and by looking at the graph of y = f (x), we

see this forces k >
p−d
p−2

. Thus part a) holds.

• (d+2)/2 < p < d: Exactly as in the previous case, the graph of y = f (x)
is a downward parabola with two negative roots, this time the smaller one
given by

k =
−b+

√
b2−4ac

2a
.

From (16), we have f ((p− d)/(p− 2)) > 0, and so it follows that k <
(p−d)/(p−2), giving part b). Since (p−d)/(p−2)< (p−d)/(p−1),
this immediately yields that k < (p−d)/(p−1).

• d < p: Here parts (a) and (b) of the lemma are irrelevant. We have c > 0
and a < 0. Thus

√
b2−4ac > |b| and so

k =
−b+

√
b2−4ac

2a
< 0 <

p−d
p−1

<
p−d
p−2

. �



p-HARMONIC MEASURE 169

Proof of Lemma 2.4. We distinguish the cases p = 2, p = (d+2)/2, p < d with
p 6= 2 or (d +2)/2, and d < p.

• p = 2: The first expression for k in Lemma 2.2 applies in this situation
and it is easy to show β 2 = 1. Then direct calculation yields the desired
conclusion.

• p = (d + 2)/2: The radicand in the definition of k reduces to 0 and then
k in turn reduces to k =−1. Direct calculation yields the desired conclu-
sion.

• p < d with p 6= 2 or (d + 2)/2: Notice (p− 2)+ (p− d) 6= 0. We first
show

k(p−2)+(d− p)
(p−2)+(p−d)

< 0. (17)

Indeed, if p < (d +2)/2, then the denominator in (17) is negative and so
the inequality (17) is equivalent to

k(p−2)− (p−d)> 0.

But this is equivalent to

k >
p−d
p−2

if p > 2

or

k <
p−d
p−2

if p < 2.

The first follows from part a) of Lemma 2.3 and the second follows from

Lemma 2.3 because
p−d
p−2

> 0 > k.

On the other hand, if p > (d+2)/2, then the denominator in (17) is posi-
tive and so the inequality (17) is equivalent to

k(p−2)− (p−d)< 0.

Since p > (d + 2)/2 > 2, this is the same as k <
p−d
p−2

, which follows

from part b) of Lemma 2.3.

In any case, we have that (17) holds. So rewriting the conclusion of
Lemma 2.4 as

β =−k(p−2)− (p−d)
(p−2)+(p−d)

,
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we see that it suffices to show

β
2 =

(
−k(p−2)− (p−d)

(p−2)+(p−d)

)2

.

For this, clear the denominator to get

β
2 [(p−2)+(p−d)]2 = [k(p−2)− (p−d)]2 .

Using the definition of β in terms of k, expand, keeping (p−2) and (p−
d) as units. Then collect coefficients of like powers of k. We end up with
the equation

(p−1)(4+d−3p)k2

+[(d− p)2− (p−2)(2d− p)]k

− (p−1)(d− p)

= 0.

Since k solves this equation, the conclusion of Lemma holds

• d < p: As in the previous case, it is enough to verify (17). Since p >
d > (d +2)/2, the denominator appearing in (17) is positive and so (17)
is equivalent to negativity of the numerator there. But this is immediate
since p > d > 2 and k < 0. �
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