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GREGUS TYPE FIXED POINT THEOREMS FOR WEAKLY
SUBSEQUENTIALLY CONTINUOUS MAPPINGS SATISFYING
STRICT CONTRACTIVE CONDITION OF INTEGRAL TYPE

SAID BELOUL - SUNNY CHAUHAN

In the present paper, we prove two common fixed point theorems
of Gregus type for two pairs of self mappings satisfying strict contrac-
tive condition of integral type by using the weak subsequential continuity
property with compatibility of type (E) due to Singh and Mishra [29] in
metric spaces. Our results improve and the results of Chauhan et al. [7]
and relevant literature.

1. Introduction

Jungck [14] firstly established a common fixed point theorem for a pair of com-
muting self mappings in metric spaces. In 1982, Sessa [28] defined the weakly
commuting mappings which is weaker than commuting mappings. Since then,
Jungck [15] investigated the notion of compatible mappings which is more gen-
eral than commuting and weakly commuting mappings. After that many authors
introduced various types of compatibility, compatibility of types (A), (B), (C)
and (P) for two self mappings in metric space respectively in [16, 21, 23] and
[22]. In 1996, Jungck [17] introduced the notion of weakly compatible map-
pings which generalizes all the above type of compatibility and is weaker than
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them. Pant [20] is the first who studied and used non-compatible mappings and
replaced them by a new concept which called reciprocal continuity to estab-
lish a common fixed point; later Aamri and Moutawakil [2] introduced property
(E.A) for two self mappings on metric spaces and they used it with general-
ized contractions. Since then, Al-Thagafi and Shahzad [3] weakened the weak
compatibility; they introduced the notion of occasionally weakly compatible
mappings on metric spaces. This was generalized by another concept of sub-
compatible mappings which was given by Bouhadjera and Godet Thobie [6];
the same authors in their paper [6] generalized reciprocal continuity to subse-
quential continuity.

On other hand, the Gregus fixed point had been generalized and improved
by many authors, as Djoudi and Nisse [11], Djoudi and Aliouche [10, 11],
Aliouche [2], Pathak and Shahzad [24]. Recently, Sintunavarat and Kumam
[30] proved some results for Gregus type common fixed point of integral type by
using the tangential property for two single and self mappings in metric spaces.
Also Chauhan et al. [7] used the subsequential continuity with compatibility to
prove some results concerning Gregus type fixed point. In the present paper, we
will prove two common fixed point theorems of Gregus type for four mappings
which satisfy strict contractive condition of integral type in metric spaces, by
using the subsequential continuity and compatibility of type (E) due to Singh et
al. [29].

2. Preliminaries

Definition 2.1. Two self mappings A and S of a metric space (X ,d) are said to
be compatible of type (E), if

lim
n→∞

S2xn = lim
n→∞

SAxn = At and lim
n→∞

A2xn = lim
n→∞

ASxn = St,

whenever {xn} is a sequence in X such that lim
n→∞

Axn = lim
n→∞

Sxn = t, for some
t ∈ X .

Remark 2.2. If At = St, then compatible of type (E) implies compatible (com-
patible of type (A), compatible of type (B), compatible of type (C), compatible
of type (P)), however the converse may be not be true. Generally, compatibility
of type (E) implies the compatibility of type (B).

Definition 2.3. Two self mappings A and S of a metric space (X ,d) are A-
compatible of type (E), if

lim
n→∞

S2xn = lim
n→∞

SAxn = At,
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for some t ∈ X . Also, the pair {A,S} is said to be S-compatible of type (E), if
lim
n→∞

S2xn = lim
n→∞

SAxn = At, for some t ∈ X .

Notice that if two self mappings A and S are compatible of type (E), then
they are A-compatible and S-compatible of type (E), but the converse is not true.

Definition 2.4 ([20]). Two self mappings A and S of a metric space (X ,d) are
said to be reciprocally continuous, if lim

n→∞
ASxn = At and lim

n→∞
SAxn = St, when-

ever {xn} is a sequence in X such that lim
n→∞

Axn = lim
n→∞

Sxn = t, for some t ∈ X .

Definition 2.5 ([6]). Two self mappings A and S of a metric space (X ,d) is
called to be subsequentially continuous if there exists a sequence {xn} such
that lim

n→∞
Axn = lim

n→∞
Sxn = t, for some t ∈ X and satisfy lim

n→∞
ASxn = At and

lim
n→∞

SAxn) = St.

Clearly continuous or reciprocally continuous mappings are subsequentially
continuous, but the converse may be not true.

Example 2.6. Let X = [0,∞) and d is the euclidian metric, we define A, S as
follows:

Ax =
{

2+ x, 0≤ x≤ 2
x+2

2 , x > 2
, Sx =

{
2− x, 0≤ x < 2
2x−2, x≥ 2

Clearly A and S are discontinuous at 2.

We consider a sequence {xn} such that for each n ≥ 1: xn =
1
n

, clearly
lim
n→∞

Axn = lim
n→∞

Sxn = 2, also we have:

lim
n→∞

ASxn = lim
n→∞

A(2− 1
n
) = 4 = A(2),

lim
n→∞

SAxn = lim
n→∞

S(2+
1
n
) = 2 = S(2),

then the pair {A,S} is subsequentially continuous.
On other hand, let {yn} be a sequence which defined or each n ≥ 1 by:

yn = 2+
1
n

, we have
lim
n→∞

Ayn = lim
n→∞

Syn = 2,

but
lim
n→∞

ASyn = lim
n→∞

A(2+
2
n
) = 2 6= A(2),

lim
n→∞

SAyn = lim
n→∞

S(4+
1
n
) = 6 6= S(2),

then A and S are never reciprocally continuous.
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Definition 2.7. Let A and S to be two self mappings of a metric space (X ,d),
the pair {A,S} is said to be weakly subsequentially continuous if there exists a
sequence {xn} such that lim

n→∞
Axn = lim

n→∞
Sxn = z, for some z∈ X and lim

n→∞
ASxn =

Az, lim
n→∞

SAxn) = Sz.

Notice that the subsequentially continuous or reciprocally continuous map-
pings are weakly subsequentially continuous, but the converse may be not true.

Example 2.8. Let X = [0,8] and d is the euclidian metric, we define A, S as
follows:

Ax =
{ x+4

2 , 0≤ x≤ 4
x+1, 4≤ x≤ 8

, Sx =
{

8− x, 0≤ x≤ 4
x−2, 4≤ x≤ 8

We consider a sequence {xn} such that for each n≥ 1: xn = 4−e−n, clearly
lim
n→∞

Axn = lim
n→∞

Sxn = 4, also we have:

lim
n→∞

ASxn = lim
n→∞

A(4+ e−n) = 5,

lim
n→∞

SAxn = lim
n→∞

S(4− 1
2

e−n) = 4 = S(4),

then the pair {A,S} is S-subsequentially continuous.

3. Main results

Theorem 3.1. Let A,B,S,T : X → X , be self mappings of a metric space (X ,d)
such for all x,y in X we have:(

1+a(
∫ d(Ax,By)

0
ϕ(t))p

)(∫ d(Sx,Ty)

0
ϕ(t)dt

)p
<

a

 (∫ d(Ax,Sx)
0 ϕ(t)dt

)p(∫ d(By,Ty)
0 ϕ(t)dt

)p

+
(∫ d(Sx,By)

0 ϕ(t)dt
)p(∫ d(Ax,Ty)

0 ϕ(t)dt
)p

+α

(∫ d(Ax,By)

0
ϕ(t)dt

)p)

+βτ

 (∫ d(Ax,Sx)
0 ϕ(t)dt

)p
,
(∫ d(By,Ty)

0 ϕ(t)dt
)p

,(∫ d(Ax,Ty)
0 ϕ(t)dt

)p
,
(∫ d(By,Sx)

0 ϕ(t)dt
)p

 (1)

where a,α,β are non-negative numbers such α +β < 1 and ϕ : R+ → R+ is
a Lebesgue-integrable function which is summable on each compact subset of
R+, non-negative, and such that for each ε > 0,

∫
ε

0 ϕ(t)dt > 0, if the pair {A,S}
is weakly subsequentially continuous and compatible of type (E) as well as
{B,T}, then A,B,S and T have a unique common fixed point in X.
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Proof. Suppose that {A,S} is A-subsequentially continuous, there is a sequence
{xn}inX such that lim

n→∞
Axn = lim

n→∞
Sxn = z and limn→∞ ASxn = Az,also the pair

is compatible of type (E) implies that limn→∞ ASxn = Sz, also the pair { f ,S}
is compatible implies that lim

n→∞
ASxn = Sz and lim

n→∞
SAxn = Sz, which implies

Sz = f z = and z is a coincidence point for f and S.
Similarly for the pair {B,T}, suppose that {B,T} is B-subsequentially con-

tinuous, there exists a sequence {yn} ∈ X such

lim
n→∞

Tyn = lim
n→∞

gyn = t,

and
lim
n→∞

BTyn = Bt,

also the pair {g,T} is compatible of type (E) implies

lim
n→∞

BTyn = lim
n→∞

T 2yn = Tt

and
lim
n→∞

T Byn = lim
n→∞

B2yn = Bt

which implies that Bt = Tt.
Firstly, we prove Az = Bt, if not by using (1) we get

(
1+a

(∫ d(Az,Bt)

0
ϕ(t)

)p)(∫ d(Sz,Tt)

0
ϕ(t)dt

)p
<

a
(∫ d(Az,Tt)

0
ϕ(t)dt

)p(∫ d(Bt,Sz)

0
ϕ(t)dt

)p
+α

(∫ d(Az,Bt)

0
ϕ(t)dt

)p

+βτ

(
0,0,

(∫ d(Az,Tt)

0
ϕ(t)dt

)p
,
(∫ d(Sz,Bt)

0
ϕ(t)dt

)p)

since Az = Sz and Bt = Tt, we get

(∫ d(Az,Bt)

0
ϕ(t)dt

)p
=
(∫ d({Az},{Bt})

0
ϕ(t)dt

)p
< α(

∫ d(Az,Bt)

0
ϕ(t))p

+βτ

(
0,0,

(∫ d(Az,Bt)

0
ϕ(t)dt

)p
,
(∫ d(Az,Bt)

0
ϕ(t)dt

)p

< (α +β )
(∫ d(Az,Bt)

0
ϕ(t)dt

)p
<
(∫ d(Az,Bt)

0
ϕ(t)dt

)p
,
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which is a contradiction, then Az = Bt. Now, we prove z = Az, if not by using
(1), we get

(
1+a(

∫ d(AxnBt)

0
ϕ(t)

)p(∫ d(Sxn,Tt)

0
ϕ(t)dt

)p
<

a

 (∫ d(Axn,Sxn)
0 ϕ(t)dt

)p
.
(∫ d(Bt,Tt)

0 ϕ(t)dt
)p

+
(∫ d(Bt,Sxn)

0 ϕ(t)dt
)p

.
(∫ d(Axn,Tt)

0 ϕ(t)dt
)p

+α

(∫ d(Axn,Bt)

0
ϕ(t)dt

)p

+βτ

 (∫ d(Axn,Sxn)
0 ϕ(t)dt)p,0,

(∫ d(Axn,Tt)
0 ϕ(t)dt

)p
,(∫ d(Sxn,Bt)

0 ϕ(t)dt
)p


Letting n→ ∞, we get:

(
1+a(

∫ d(z,Az)

0
ϕ(t)

)p(∫ d(z,Az)

0
ϕ(t)dt

)p
≤

a
(∫ d(Bt,z)

0
ϕ(t)dt

)p
.
(∫ d(z,Tt)

0
ϕ(t)dt)

)p
+α

(∫ d(z,Az)

0
ϕ(t)dt

)p

+βτ

(
0,0,

(∫ d(z,Tt)

0
ϕ(t)dt

)p
,
(∫ d(Az,t)

0
ϕ(t)dt

)p)
,

since Az = Sz = Bt, we get(∫ d(z,Az)

0
ϕ(t)dt

)p
≤ (α +β )

(∫ d(z,Az)

0
ϕ(t)dt

)p
<
(∫ d(z,Az)

0
ϕ(t)dt

)p
,

which is a contradiction, then z = Az = Sz. Nextly we prove z = t, if not then by
using (1), we get

(
1+a(

∫ d(Axn,Byn)

0
ϕ(t))p

)(∫ d(Sxn,Tyn)

0
ϕ(t)dt

)p
<

a

 (∫ d(Axn,Sxn)
0 ϕ(t)dt

)p
.
(∫ d(Byn,Tyn)

0 ϕ(t)dt
)p

+
(∫ d(Axn,Tyn)

0 ϕ(t)dt
)p

.
(∫ d(Byn,Sxn)

0 ϕ(t)dt
)p

+α

(∫ d(Axn,Byn)

0
ϕ(t)dt

)p

+βτ

 (∫ d(Axn,Sxn)
0 ϕ(t)dt

)p
,
(∫ d(Byn,Tyn)

0 ϕ(t)dt
)p

,(∫ d(Axn,Tyn)
0 ϕ(t)dt

)p
,
(∫ d(Sxn,Byn)

0 ϕ(t)dt
)p

 .

Letting n→ ∞, we get(
1+a

(∫ d(z,t)

0
ϕ(t)

)p)(∫ d(z,t)

0
ϕ(t)dt

)p
≤
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a
(∫ d(z,t)

0
ϕ(t)dt

)p(∫ d(z,t)

0
ϕ(t)dt

)p
+α

(∫ d(z,t)

0
ϕ(t)dt

)p

+βτ

(
0,0,

(∫ d(z,t)

0
ϕ(t)dt

)p
,
(∫ d(z,t)

0
ϕ(t)dt

)p
)
,

and so we have (∫ d(z,t)

0
ϕ(t)dt

)p
≤ α

(∫ d(z,t)

0
ϕ(t)dt

)p

+βτ

((
0,0,

(∫ d(z,t)

0
ϕ(t)dt

)p
,
(∫ d(z,t)

0
ϕ(t)dt

)p)
,

which implies that

(∫ d(z,t)

0
ϕ(t)dt

)p
≤ (α +β )

(∫ d(z,t)

0
ϕ(t)dt

)p
<
(∫ d(z,t)

0
ϕ(t)dt

)p
,

which is a contradiction, then z is a common fixed point for A,B,S and T .
For the uniqueness, suppose there is another fixed point w, by using (1) we

get

(
1+a(

∫ d(Az,Bw)

0
ϕ(t))p

)
(
∫ d(Sz,Tw)

0
ϕ(t)dt)p <

a
(∫ d(Az,Tw)

0
ϕ(t)dt)p

)
.
(∫ d(Bw,Sz)

0
ϕ(t)dt

)p)
+α

(∫ d(Az,Bw)

0
ϕ(t)dt

)p)
+βτ

(
0,0,

(∫ d(Az,Tw)

0
ϕ(t)dt

)p
,
(∫ d(Bw,Sz)

0
ϕ(t)dt

)p)
,

since z and w are fixed points, and so

(∫ d(z,w)

0
ϕ(t)dt

)p
≤ (α +β )

(∫ d(z,w)

0
ϕ(t)dt

)p

<

(∫ d(z,w)

0
ϕ(t)dt

)p

,

which is a contradiction, then z = w.

Theorem 3.1 improves Theorem 2 of Chauhan et al. [7] and some main
results of Djoudi and Aliouche [11] and Theorem 2.5 in [25].

If α = 0, we obtain the following natural result:
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Corollary 3.2. Let A,B,S,T : X → X, be self mappings such that

(∫ d(Sx,Ty)

0
ϕ(t)

)p
< α

(∫ d(Ax,By)

0
ϕ(t)dt

)p)
+βτ

 (∫ d(Ax,Sx)
0 ϕ(t)dt

)p
,
(∫ d(By,Ty)

0 ϕ(t)dt
)p

,(∫ d(Ax,Ty)
0 ϕ(t)dt

)p
,
(∫ d(By,Sx)

0 ϕ(t)dt
)p


where α,β are non negative numbers such α +β < 1 and ϕ : R+ → R+ is a
Lebesgue-integrable function which defined in Theorem 3.1. Suppose that the
pairs {A,S} and {B,T} are A-subsequentially continuous and A-compatible of
type(E), then A,B,S and T have a unique common fixed point in X.

Corollary 3.2 improves Corollary 2 of Chauhan et al. [7] and Corollary 2 in
[10].

If we take

τ(x1,x2,x3,x4) = max{x1,x2,
√

x1x3,
√

x3x4},

we get the following corollary:

Corollary 3.3. Let A,B,S and T self mappings of metric space (X ,d) such that(
1+a(

∫ d(Ax,By)

0
ϕ(t))

)∫ d(Sx,Ty)

0
ϕ(t)dt <

a

(
(
∫ d(Ax,Sx)

0 ϕ(t)dt).(
∫ d(By,Ty)

0 ϕ(t)dt)
+(
∫ d(Sx,By)

0 ϕ(t)dt).(
∫ d(Ax,Ty)

0 ϕ(t)dt)

)
+α

(∫ d(Ax,By)

0
ϕ(t)dt

)

+(1−α)max


∫ d(Ax,Sx)

0 ϕ(t)dt,
∫ d(By,Ty)

0 ϕ(t)dt,(∫ d(Ax,Ty)
0 ϕdt

) 1
2
.
(∫ d(By,Sx)

0 ϕ(t)dt
) 1

2
,(∫ d( f x,Ty)

0 ϕ(t)dt
) 1

2
.
(∫ d(By,Sx)

0 ϕ(t)dt
) 1

2

 ,

where 0 ≤ α < 1, and ϕ : R+ → R+ is a Lebesgue-integrable function which
defined in Theorem 3.1. Suppose that

1. the pair {A,S} is A-subsequentially continuous and A-compatible of type
(E),

2. the pair and {B,T} is B-subsequentially continuous and B-compatible of
type (E),

then A,B,S and T have a unique common fixed point in X.
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Corollary 3.3 improves and generalizes Theorem 2.5 of Pathak and Sha-
hazad in [25].

Corollary 3.4. Let A,B,S and T be self mappings such that

(1+adp(Ax,By))dp(Sx,Ty)< a [dp(Ax,Sx)dp(Bt,Ty)+dp(Ax,Sx)dp(Ax,Sx)]

+αdp(Ax,By)+βτ

(
dp(Ax,Sx),dp(By,Ty),
d(Ax,Ty),dp(By,Sx)

)
,

if two of the following conditions hold:

1. the pair {A,S} and {B,T} are subsequentially continuous,

2. the pair {A,S} is A-compatible or S-compatible of type (E),

3. the pair {B,T} is B-compatible or T compatible of type (E),

then A,B,S and T have a unique common fixed point in X.

Let Λ be a set of all continuous function Λ :R5
+→R+, such λ (0,0,x,x,x) =

kx, where 0 < k < 1.

Theorem 3.5. Let A,B,S and T be self mappings on metric space (X ,d) such
for all x,y in X we have:(

1+a
(∫ d(Ax,By)

0
ϕ(t)dt

)p)(∫ d(Sx,Ty)

0
ϕ(t)dt

)p
<

λ

 (∫ d(Ax,Sx)
0 ϕ(t)dt

)p
,
(∫ d(Ax,Sx)

0 ϕ(t)dt
)p

,
(∫ d(By,Ty)

0 ϕ(t)dt
)p

,(∫ d(Ax,Ty)
0 ϕ(t)dt

)p
,
(∫ d(By,Sx)

0 ϕ(t)dt
)p

 (2)

where λ ∈ Λ and ϕ : R+ → R+ is a Lebesgue-integrable function which is
summable on each compact subset of R+, non-negative, and such that for each
ε > 0,

∫
ε

0 ϕ(t)dt > 0, assume that the two pairs {A,S} and {B,T} are weakly
subsequentially continuous and compatible of type (E), then A,B, ,S and T have
a unique common fixed point in X.

Proof. As in proof of Theorem 3.1, z is a coincidence point for A and S and t is
a coincidence point for B and T , where

lim
n→∞

Byn = t and lim
n→∞

Axn = z,

we claim Az = Bt, if not by using (2) we get(∫ d(Az,Bt)

0
ϕ(t)

)p
=
(∫ d(Sz,Tt)

0
ϕ(t)dt

)p
<
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< λ

 0,0,(
∫ d(Az,Tt)

0 ϕ(t)dt
)p

,(∫ d(Sz,Bt)
0 ϕ(t)dt

)p
,
(∫ d(Az,Bt)

0 ϕ(t)dt
)p


since d(Sz,Bt)≤ d( f z,gt) and d(Az,Tt)≤ d(Az,Bt), we get

(∫ d(Az,Bt)

0
ϕ(t)

)p
< λ

 0,0,(
∫ d(Az,Bt)

0 ϕ(t)dt
)p

,(∫ d(Az,Bt)
0 ϕ(t)dt

)p
,
(∫ d(Az,Bt)

0 ϕ(t)dt
)p


< k
(∫ d(Az,Bt)

0
ϕ(t)dt

)p

<
(∫ d(Az,Bt)

0
ϕ(t)dt

)p
,

which is a contradiction, then Az = Bt. Now, we prove z = Az, if not by using
(2) we get(∫ d(Sxn,Tt)

0
ϕ(t)dt

)p
≤
(

1+a
(∫ d(Axn,Bt)

0
ϕ(t)dt

)p)(∫ d(Sxn,Tt)

0
ϕ(t)dt

)p
<

λ

 (∫ d(Axn,Sxn)
0 ϕ(t)dt

)p
,
(∫ d(Bt,Tt)

0 ϕ(t)dt
)p

,
(∫ d(Axn,Sxn)

0 ϕ(t)dt
)p

,(∫ d(Bt,Sxn)
0 ϕ(t)dt

)p
,
(∫ d(Axn,Bt)

0 ϕ(t)dt
)p

 ,

letting n→ ∞, we get(
1+a

(∫ d(z,Bt)

0
ϕ(t)dt

)p)(∫ d(z,Tt)

0
ϕ(t)dt

)p
≤

λ

 0,0,
(∫ d(z,Tt)

0 ϕ(t)dt
)p

,(∫ d(Bt,z)
0 ϕ(t)dt

)p
,
(∫ d(z,Bt)

0 ϕ(t)dt
)p

 ,

consequently we get

(∫ d(z,Az)

0
ϕ(t)

)p
≤ λ

 0,0,
(∫ d(z,Az)

0 ϕ(t)
)p

,(∫ d(z,Az)
0 ϕ(t)

)p
,
(∫ d(z,Az)

0 ϕ(t)
)p


= k
(∫ d(z,Az)

0
ϕ(t)

)p

<
(∫ d(z,Az)

0
ϕ(t)

)p
,

which is a contradiction, then z = Az = Sz, nextly we claim z = t, if not by using
(2), we get (

1+a
(∫ d(Axn,Byn)

0
ϕ(t)dt

)p)(∫ d(Sxn,Tyn)

0
ϕ(t)dt

)p
<
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< λ

 (∫ d(Axn,Sxn)
0 ϕ(t)dt

)p
,
(∫ d(Byn,Tyn)

0 ϕ(t)dt
)p

,
(∫ d(Axn,Tyn)

0 ϕ(t)dt
)p

,(∫ d(Byn,Sxn)
0 ϕ(t)dt

)p
,
(∫ d(Axn,Byn)

0 ϕ(t)dt)p

 ,

letting n→ ∞, we get

(
1+a

(∫ d(z,t)

0
ϕ(t)dt

)p)(∫ d(z,t)

0
ϕ(t)dt

)p

≤ λ

 0,0,
(∫ d(z,t)

0 ϕ(t)
)p

,(∫ d(z,t)
0 ϕ(t)

)p


= k
(∫ d(z,t)

0
ϕ(t)

)p

<

(∫ d(z,t)

0
ϕ(t)

)p

,

which is a contradiction, then z is a common fixed point for A,B,S and T .
For the uniqueness, it is similar as in proof of Theorem 1.

Corollary 3.6. For four self-mappings A,B,S and T on metric space (X ,d),
satisfying for all x,y ∈ X:

(1+adp(Ax,By))dp(Sx,Ty)< λ

(
dp(Ax,Sx),dp(By,Ty),dp(Ax,Ty),

dp(By,Sx),dp(Ax,By)

)
,

if the pairs {A,S} and {B,T} are A-subsequentially continuous and A-compati-
ble of type (E), then A,B,S and T have a unique common fixed point in X.

Remark 3.7. Corollary 3.6 improves Corollary 4 in [7] and generalizes of [9,
Theorem 3.1].
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