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ON PROPERTIES OF THE NUMBERS

COPRIME WITH THE PRIMES UP TO pn

GIOVANNI FIORITO

In this paper we investigate about the effective distribution of the numbers
coprime with the primes up to pn .

More precisely we prove that these numbers form a periodically monotone
sequence �pn

. Then we examine some properties of � pn
which, in a certain

sense, are transferred to the sequence of primes. Moreover we study the
distribution of twin and cousin terms within the sequence � pn

. This study
also makes furthermore strongly plausible that the set of twin primes as well
as the set of cousin primes is infinite.

Introduction.

In this paper we investigate, by elementary method, about the effective
distribution of the numbers coprime with the primes up to pn , i.e.
the natural numbers that are greater than pn and are not divisible
by p1, p2, . . . , pn (here {pn} denotes, as usual, the sequence of prime
numbers). Some properties of these numbers were studied many years
ago by J. Deschamps and H.J.S. Smith (see [2] p. 439).

More precisely we prove that, for every prime number pn , the numbers
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coprime with the primes up to pn form a periodically monotone sequence
that we denote by �pn . Then we examine some properties of �pn which,
in a certain sense, are transferred to the sequence of primes. From this
perspective, in the first section, we prove that the mean distance between
two consecutive terms of �pn is a property shared by the primes less than
p2

n+1. In the second section we study the distribution of twin and cousin
terms of �pn (two consecutive terms ψk and ψk+1 of �pn are called
twin terms if ψk+1 − ψk = 2 and similarly are called cousin terms if
ψk+1 −ψk = 4). This study and in particular the theorem 2.1 agrees with
the conjecture B of Hardy and Littewood (see [5] p. 19) and extensively
explains the experimental fact that the numbers π2(x) (of the pairs of
twin primes less than or equal to x ∈ N) and π4(x) (of the pairs of
cousin primes less than or equal to x ∈ N) are almost the same (see [8]).
Moreover this study and the theorem 2.2 makes furthermore strongly
plausible that the set of twin primes as well as the set of cousin primes
is infinite. In the sequel we put as usual

N = {1, 2, 3, ...} and N0 = {0, 1, 2, 3, ...}.

Moreover if � is a periodically monotone sequence(1) we denote by
µd(�) the number of couples (ψn, ψn+1) of consecutive principal terms
of � such that the difference ψn+1 − ψn is equal to d (if d = 2 the
terms (ψn, ψn+1) are called twin terms and similarly if d = 4 the terms
(ψn, ψn+1) are called cousin terms). Finally we denote by R(m

n
) the

remainder of the integral division of m by n for m, n ∈ N, m ≥ n.

1. The distribution of the terms of �pn .

Let us begin with the following theorem.

Theorem 1.1. For every prime number pn there exists a periodically
monotone sequence �pn (of natural numbers greater than pn) with

(1) A sequence {xn} in R is called periodically monotone if there exist a natural number
q and a real number k such that

(∗) xn+q = xn + k ∀ n ∈ N

The lowest natural number q for which (∗) holds is called period. The constant k is
called monotony constant. The terms x1, x2, ..., xq are called principal terms of {xn}.
The periodically monotone sequences generalize the periodic sequences and the arithmetic
progressions (see [3]).
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period(2)

1 · 2 · 4 · . . . · (pn − 1),

whose monotony constant is

2 · 3 · 5 · . . . · pn

and such that every term p of �pn satisfies the condition

R

�
p

pr

�

�= 0

∀ r = 1, 2, 3, 4, 5, ..., n.

Proof. Let us take as sequence �2 the sequence

{3 + 2k}k∈N0,

which is an arithmetic progression with difference 2. Now, for finding
�3, let us consider the sequence {3 + 2k}k∈N0 and search k such that

(1.1) R

�
3 + 2k

3

�

�= 0

Computing

R

�
3 + 2k

3

�

for k = 0, 1, 2, we obtain respectively the numbers 0, 2, 1; therefore, by
observing that the sequence

�

R

�
3 + 2k

3

��

is periodic with period 3, it follows that the condition 1.1 is verified if

k = 1 + 3h or k = 2 + 3h (h ∈ N0).

In this way we get the 2 sequences

{5 + 6k}k∈N0, {7 + 6k}k∈N0,

(which are arithmetic progressions with difference 6). So we obtain as
�3 the periodically monotone sequence whose principal terms are

5, 7,

(2) Let us observe that the period is equal to the value of the Eulero’s function ϕ(m)

calculated for m = 2 · 3 · 5 · . . . · pn .
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whose period is 2 and whose monotony constant is 6. Now, for finding
�5, let us search k such that

(1.2) R

�
5 + 6k

5

�

�= 0, and R

�
7 + 6k

5

�

�= 0.

Computing all the remainders for k = 0, 1, 2, 3, 4 and taking into account
that the sequences

�

R

�
5 + 6k

5

��

,

�

R

�
7 + 6k

5

��

are periodic with period 5, we obtain the following 8 sequences (which
are arithmetic progressions with difference 2 · 3 · 5 = 30 and k ∈ N0):

{11 + 30k}, {17 + 30k}, {23 + 30k}, {29 + 30k},

{7 + 30k}, {13 + 30k}, {19 + 30k}, {31 + 30k}.

Thus we obtain as �5 the periodically monotone sequence whose principal
terms are

7, 11, 13, 17, 19, 23, 29, 31

whose period is 8 = 1 ·2 ·4 and whose monotony constant is 30 = 2 ·3 ·5.
The reasoning can be iterated so that the proof is completed. �

Remark 1.1. The terms of the sequence �pn represent all the natural
numbers, greater than pn , that are not divisible by p1, p2, ..., pn , thus the
terms of the sequence �pn that are in the interval ]p2

n, p2
n+1[ or, more

generally, that are less than p2
n+1 are all prime numbers. Moreover it

follows easily that the formula

(1.3)

�
p1 = 2,
pn+1 = min�pn ∀ n ≥ 1

is a (very simple) recursive formula for the sequence of primes, that gives
also a direct and simple proof of the infinity of primes because, for the
theorem 1.1, the set of the numbers coprime with the primes up to pn

is not empty for all n ∈ N.

We have also the following theorems.

Theorem 1.2. The recursive formula(3)

(1.4) �pn+1 = �pn − pn+1�pn − {pn+1}

(3) In this formula �pn
as well as �pn+1

represent the ordered (in the natural way) set of

the terms of the sequences �pn
and �pn+1

.
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holds.

Proof. To prove the theorem it is sufficient to prove that the terms of
the sequence

pn+1�pn

represent all the terms of �pn , greater than pn+1, that are divisible by
pn+1. Indeed for any term p of the sequence �pn , the number pn+1 · p
is divisible, obviously, by pn+1, but it is not divisible by p1, p2, ..., pn

and so it is a term of the sequence �pn .

Conversely if p is a term of the sequence �pn , greater than pn+1,
that is divisible by pn+1, we must have

p = pn+1 · q,

where q is not divisible by p1, p2, ..., pn ; therefore p is a term of the
sequence pn+1�pn . �

Remark 1.2. Taking into account the remark 1.1, the recursive formula
1.4 can be used to generate the sequence of primes more fastly than using
the recursive formula 1.1 of [4].

Theorem 1.3. The principal terms of the sequence �pn are obtained
from the principal terms of �pn−1 by deleting the T numbers

ψ1, pnψ1, pnψ2, . . . , pnψT−1

in the matrix

Apn =







ψ1 ψ2 . . . ψT

ψ1 + k ψ2 + k . . . ψT + k

· · · . . . . . . . . .

ψ1 + (pn − 1)k ψ2 + (pn − 1)k . . . ψT + (pn − 1)k







where T and k represent, respectively, the period and the monotony
constant of �pn−1 and ψ1, ψ2, . . . , ψT are the principal terms of the
same sequence.

Proof. By virtue of the the theorem 1.1, for obtaining the principal terms
of �pn we must take the first pn terms of each arithmetic progression

{ψi + hk}h∈N0 (i = 1, 2, . . . , T )

and eliminate among them the term such that

R
�ψi + hk

pn

�
= 0.
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In this way we delete T terms in the matrix Apn ; but for the theorem
1.2 these T terms are the numbers

ψ1, pnψ1, pnψ2, . . . , pnψT−1

and the proof is completed. �

Example 1.1. For the principal terms of the sequence �5 are the 8
numbers

7, 11, 13, 17, 19, 23, 29, 31

and the monotony constant of �5 is 30, according to the theorem 1.3
we must eliminate in the matrix

A7 =














7 11 13 17 19 23 29 31

37 41 43 47 49 53 59 61

67 71 73 77 79 83 89 91

97 101 103 107 109 113 119 121

127 131 133 137 139 143 149 151

157 161 163 167 169 173 179 181

187 191 193 197 199 203 209 211














the numbers

7, 49, 77, 91, 119, 133, 161, 203.

Therefore the principal terms of the sequence �7 are the 48 numbers of
the table

11 13 17 19 23 29 31

37 41 43 47 53 59 61

67 71 73 79 83 89

97 101 103 107 109 113 121

127 131 137 139 143 149 151

157 163 167 169 173 179 181

187 191 193 197 199 209 211

Remark 1.3. If

ψ
(n)

1 , ψ
(n)

2 , . . . , ψ
(n)

Tn

denote the principal terms of the sequence �pn , we have

ψ
(n)

1 = pn+1 and ψ
(n)

Tn
= kn + 1 ∀ n ∈ N,
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where Tn and kn represent respectively the period and the monotony
constant of �pn . Indeed the first equality is a consequence of the remark
1.1 and the second can be proved easily by induction.

Moreover it results

pn+1ψ
(n)
Tn

> ψ
(n)
Tn

+ (pn+1 − 1)kn ∀ n ∈ N.

Therefore the principal terms of the sequence �pn (∀ n ∈ N) are distributed
in the interval [pn+1, p1 · p2 · . . . · pn + 1].

Remark 1.4. In the matrix considered in the theorem 1.3 we have
∀ n ∈ N

ψ1 + ik − (ψT + (i − 1)k) = pn − 1 for i = 1, 2, ..., pn − 1,

thus the gap pn − 1 between two consecutive terms in the matrsix Apn

appears at least pn − 1 times.

Remark 1.5. The numbers

ψ1, pnψ1, pnψ2, . . . , pnψT−1

considered in the theorem 1.3 are distributed in the matrix Apn in a
such way that in every column is located one and only one of them. In
particular ψ1 = pn is located in the first column and in the first row;
moreover, for pn ≥ 11, pnψ1 = p2

n is located in the first row.

The following definitions will be used in the sequel.

Definition 1.1. The number

ρn =
2 · 3 · 5 · 7 · . . . · pn

1 · 2 · 4 · 6 · . . . · (pn − 1)
,

that is the quotient of the monotony constant by the period of the sequence
�pn , is called mean distance between two consecutive terms of �pn .

Definition 1.2. Let (a, b) an interval (a ≥ pn). The number

b − a

ρn

is called mean number of the terms of the sequence �pn that are in the
interval (a, b).

Definition 1.3. Let x ∈ N, x ≥ 3 and let π(x) the number of primes p
such that p ≤ x . The number

x

π(x)
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is called mean distance between two consecutive primes less than or equal
to x .

The following theorem allows to consider the quantity 2e−γ ρn (γ is
the Eulero constant) as an approximation of the mean distance between two
consecutive primes less than p2

n+1. Thus ρn , the mean distance between
two consecutive terms of �pn , appears as a property which is transferred
from the sequence �pn to the sequence of primes.

Theorem 1.4. The number π(p2
n+1) of prime numbers less than p2

n+1

is asymptotic, as n goes to ∞, to

eγ

2

p2
n+1

ρn
,

where γ denotes the Eulero constant and ρn is the mean distance between
two consecutive terms of �pn .

Proof. We have

π(p2
n+1)

p2
n+1

ρn

=
π(p2

n+1)

p2
n+1

log p2
n+1

p2
n+1

log p2
n+1

p2
n+1

ρn

=
π(p2

n+1)

p2
n+1

log p2
n+1

ρn

2 log pn+1
=

(1.5) =
π(p2

n+1)

p2
n+1

log p2
n+1

ρn+1

2 log pn+1

pn+1 − 1

pn+1

Now for the prime number theorem (see [7] p. 289 ) it results

lim
n→∞

π(p2
n+1)

p2
n+1

log p2
n+1

= 1

and for the Mertens’ theorem (see [6] p. 351) it results

lim
n→∞

ρn+1

log pn+1
= eγ ,

therefore from 1.5 the thesis follows. �
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2. The distribution of twin and cousin terms in the sequence �pn .

Taking into account the theorem 1.3 we are able to prove the following
theorem.

Theorem 2.1. For pn ≥ 5 we have

(2.1) µ2(�pn ) = µ4(�pn ) = 3 · 5 · 9 · . . . · (pn − 2).

Proof. Let us begin by observing that, for pn ≥ 7, in the matrix Apn ,
considered in the theorem 1.3, the number of couples of consecutive
terms whose difference is 2 or 4 is given respectively by

µ2(�pn−1) · pn and µ4(�pn−1) · pn.

On the other hand, by effect of the elimination of the T numbers

ψ1, pnψ1, pnψ2, . . . , pnψT−1

in the matrix Apn , the number of couples of consecutive terms, whose
difference is 2 or 4, that are dropped is given respectively by

2µ2(�pn−1) and 2µ4(�pn−1).

In fact if ψi and ψi+1 are principal twin terms of �pn−1 , the element
that must be elimineted in the column i of Apn is of the form ψi + h1k ,
where k is the monotony constant of �pn−1 , h1 ∈ {0, 1, 2, ..., pn −1} and
h1 is such that

R

�
ψi + h1k

pn

�

= 0.

From this it follows

R

�
ψi+1 + h1k

pn

�

= R

�
2 + ψi + h1k

pn

�

= 2,

therefore the element that must be deleted in the column i + 1 of Apn

is of the form ψi+1 + h2k , where h2 ∈ {0, 1, 2, ..., pn − 1} and h2 �= h1.
This implies that the elements ψi + h1k and ψi+1 + h2k are located in
two different rows of Apn . Therefore the number of couples of twin terms
that are dropped in the matrix Apn is 2µ2(�pn−1). Obviousvly the same
considerations hold if ψi and ψi+1 are cousin terms.

Thus we obtain

(2.2) µ2(�pn ) = µ2(�pn−1) · pn − 2µ2(�pn−1) = µ2(�pn−1)(pn − 2)
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and

(2.3) µ4(�pn ) = µ4(�pn−1) · pn − 2µ4(�pn−1) = µ4(�pn−1)(pn − 2).

But we also have

µ2(�5) = µ4(�5) = 3,

therefore from 2.2 and 2.3 the thesis follows easily by induction. �

Remark 2.1. The formula

µ2(�pn ) = 3 · 5 · 9 · . . . · (pn − 2)

that holds for pn ≥ 5 can be also proved in the following way. Let us
begin by observing that the terms of the sequence �pn considered in the
theorem 3.1 of [4] represent all the natural numbers p greater than pn

such that p and p + 2 are not divisible by p1, p2, ..., pn . Therefore, if
p is a principal term of �pn then p and p + 2 are principal terms of
�pn . Conversely, if p and p + 2 are principal terms of �pn then p is
a principal term of �pn . Taking into account the theorem 3.1 of [4] the
asserted formula follows easily.

Finally we observe that the computation of µ2(�pn ) can be derived
from the (more complicated) considerations about twin primes made in
[6] on p. 412.

The following definitions are useful to state the next corollary.

Definition 2.1. Let (a, b) an interval (a ≥ pn). The number

b − a

2 · 3 · 5 · 7 · . . . · pn

µ2(�pn )

is called mean number of the pairs of twin terms of the sequence �pn

that are in the interval (a, b).

Definition 2.2. Let (a, b) an interval (a ≥ pn). The number

b − a

2 · 3 · 5 · 7 · . . . · pn

µ4(�pn )

is called mean number of the pairs of cousin terms of the sequence �pn

that are in the interval (a, b).

The following corollary follows immediately from the theorem 2.1.
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Corollary 2.1. The mean number σpn of pairs of twin terms (or of pairs
of cousin terms) of the sequence �pn that are in the interval ]p2

n, p2
n+1[

is given by

σpn =
p2

n+1 − p2
n

2 · 3 · 5 · 7 · . . . · pn

1 · 3 · 5 · 9 · . . . · (pn − 2)

.

Remark 2.2. The theorem 2.1 and the corollary 2.1 explain well the
experimental fact that the numbers π2(x) (of the pairs of twin primes
less than or equal to x ∈ N) and π4(x) (of the pairs of cousin primes
less than or equal to x ∈ N) are almost the same (see [8]).

The following theorem improves strongly the theorem 3.4 of [4].

Theorem 2.2. There exists a subsequence {pnk } of {pn} such that

lim
k→∞

σpnk
= +∞,

where σpn denotes the mean number of pairs of twin terms (or of pairs
of cousin terms) of �pn that are in the interval ]p2

n, p2
n+1[.

Proof. Let us begin by setting

dn = pn+1 − pn ∀ n ∈ N

and let be dnk such that (4)

dnk+1

dnk

≥ 2 ∀ k ∈ N.

We have

(2.4) σpnk
=

p2
nk+1 − p2

nk

2 · 3 · 5 · 7 · . . . · pnk

1 · 3 · 5 · 9 · . . . · (pnk − 2)

≥
2dnk pnk

2 · 3 · 5 · 7 · . . . · pnk

1 · 3 · 5 · 9 · . . . · (pnk − 2)

.

Setting

Sk =
2dnk pnk

2 · 3 · 5 · 7 · . . . · pnk

1 · 3 · 5 · 9 · . . . · (pnk − 2)

,

(4) We can do this in consequence of the theorem 5 of [6].
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it results

(2.5)
Sk+1

Sk
=

dnk+1

dnk

pnk+1

2 · 3 · 5 · 7 · . . . · pnk+1

1 · 3 · 5 · 9 · . . . · (pnk+1 − 2)
pnk

2 · 3 · 5 · 7 · . . . · pnk

1 · 3 · 5 · 9 · . . . · (pnk − 2)

≥ 2,

because the sequence





pnk

2 · 3 · 5 · 7 · . . . · pnk

1 · 3 · 5 · 9 · . . . · (pnk − 2)





k∈N

is not decreasing for it is a subsequence of the sequence





pn

2 · 3 · 5 · 7 · . . . · pn

1 · 3 · 5 · 9 · . . . · (pn − 2)





n∈N

which is not decreasing (see theorem 3.4 of [4]).

From 2.5 it follows

(2.6) lim
k→∞

Sk = +∞,

and finally from 2.6 and 2.4 we get the thesis. �

Remark 2.3. The previous theorems and the theorem 3.4 of [4] make
furthermore strongly plausible that the set of twin primes (as well as the
set of cousin primes) is infinite.
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