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ZIP PROPERTY ON MALCEV-NEUMANN SERIES MODULES

R. SALEM - A. E. RADWAN - H. ABD-ELMALK

Let R be a ring, MR a right R-module, G a totally ordered group, σ

a map from G into the group of automorphisms of R which assigns to
each x ∈ G an automorphism σx ∈ Aut(R), τ a map from G×G to U(R)
(the group of unit elements of R) and M((G;σ ;τ)) the Malcev-Neumann
series module. Then, under some certain conditions, we show that MR
is a right zip R-module if and only if M((G;σ ;τ))R((G;σ ;τ)) is a right zip
R((G;σ ;τ))-module, where R((G;σ ;τ)) is the Malcev-Neumann series
ring.

1. Introduction

Throughout this paper R denotes an associative ring with identity. Recall from
[3] that R is a right zip ring if the right annihilator of a subset X ⊆ R is zero,
then rR(X0) = 0 for a finite subset X0 of X , equivalently for a left ideal L of R if
rR(L)= 0, then there exists a finitely generated ideal L0⊆ L such that rR(L0)= 0.

The concept of zip rings was initiated by Zelmanowitz [8] where it was
not so called zip at that time, however he showed that any ring satisfying the
descending chain condition on right annihilator ideals is a right zip ring but the
converse is not true.

Extensions of zip rings were studied by several authors. In [1] Beachy and
Blair showed that if R is a commutative zip ring, then R[x] is a zip ring.
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In ([4], Theorem 1) Hong et al showed that if R is an Armendariz ring, then
R is a right zip ring if and only if R[x] is a right zip ring.

In ([2], Theorem 2.8) Cortes studied skew polynomial extension over zip
rings and he showed that, if σ is an automorphism of R and R is σ -Armendariz,
then R is a right zip ring if and only if R[x;σ ] is a right zip ring.

Recall from [9] that a right R-module MR is called a right zip module pro-
vided that if the right annihilator of a subset X of MR is zero, then there exists a
finite subset X0 ⊆ X such that rR(X0) = 0.

In the following section we introduce results concerned with the transfer
of a right zip property of MR and a twisted Malcev-Neumann series module
extension M((G;σ ;τ)).

2. Zip Modules over Twisted Malcev-Neumann Series Rings

Let R be a ring, G a totally ordered group, σ a map from G into the group of
automorphisms of R which assigns to each x ∈G an automorphism σx ∈Aut(R)
where σ1 = idR with 1 the identity of group G, and τ a map from G×G to U(R)
(the group of invertible elements of R). Let A= R((G;σ ;τ)) denote the set of all
formal sums f = ∑

x∈G
axx such that supp( f ) = {x ∈ G| ax 6= 0} is a well ordered

subset of G, with componentwise addition and the multiplication rule is given
by

(∑
x∈G

axx)(∑
y∈G

byy) = ∑
z∈G

( ∑
{(x,y)|xy=z}

axσx(by)τ(x,y))z,

for each ∑
x∈G

axx and ∑
y∈G

byy ∈ A. In order to ensure the associativity it is neces-

sary that

(i) σx(τ(y,z))τ(x,yz) = τ(x,y)τ(xy,z) and

(ii) σxσy = η(x,y)σxy,

where η(x,y) denotes the automorphism of R induced by the unit τ(x,y), for all
x,y,z∈G, see ([5], Lemma 1.1). It is now routine to check that A is a ring which
is called the ring of Malcev-Neumann series.

The Malcev-Neumann construction appeared for the first time in the latter
part of the 1940 (the Laurent series ring, a particular case of Malcev-Neumann
ring, was used before by Hilbert). Using them, Malcev and Neumann inde-
pendently showed (in 1948 and 1949, respectively.) that the group ring of an
ordered group over a division ring can be embedded in a division ring. Since
then, the construction has appeared in many papers, mainly in the study of vari-
ous properties of division rings and related topics.
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In [7] Sonin generalized the construction to obtain Malcev-Neumann mod-
ules over Malcev-Neumann rings as follows:

If MR is a right R-module, then the Malcev-Neumann series module B =
M((G;σ ;τ)) is the set of all formal sums ∑

x∈G
mxx with coefficients in M and

well-ordered supports, with pointwise addition and scalar multiplication rule
defined by

(∑
x∈G

mxx)(∑
y∈G

ayy) = ∑
z∈G

( ∑
{(x,y)|xy=z}

mxσx(ay)τ(x,y))z,

where ∑
x∈G

mxx ∈ B and ∑
y∈G

ayy ∈ A. One can easily check that (i) and (ii) ensure

that M((G;σ ;τ)) is a right A-module.
Let V be a subset of MR, then V ((G;σ ;τ)) is defined as follows:

V ((G;σ ;τ)) = {ϕ = ∑
x∈G

mxx ∈ B |0 6= mx ∈V and x ∈ supp(ϕ)}.

For ϕ = ∑
x∈G

mxx ∈ B, let Cϕ = {mx| x ∈ supp(ϕ)} and for a subset V ⊆ B, we

have CV = ∪ϕ∈VCϕ .
As usual we shall identify R with the subring R1G ⊆ A, identify G with the

subgroup 1RG of invertible elements in A, and identify MR with the submodule
M1G ⊆ B.

In this section, we generalize the results of [6] to the Malcev-Neumann se-
ries modules. We start with the following definitions, see [10] and the literature
therein for more details.

Definition 2.1. A ring R is called σ -compatible if, for all a,b ∈ R and x ∈ G,
ab = 0 if and only if aσx(b) = 0.

Definition 2.2 ([10]). A right R-module MR is called σ -compatible if, for each
m ∈M, a ∈ R and x ∈ G, ma = 0 if and only if mσx(a) = 0.

Definition 2.3. A ring R is called (G,σ)-Armendariz if whenever f g = 0 im-
plies axσx(by) = 0 for each x ∈ supp( f ) and y ∈ supp(g), where f = ∑

x∈G
axx and

g = ∑
y∈G

byy be elements of A.

We extend the (G,σ)-Armendariz concept to modules as follows:

Definition 2.4. A right R-module MR is called (G,σ)-Armendariz if whenever
ϕ f = 0 implies mxσx(ay) = 0 for each x ∈ supp(ϕ) and y ∈ supp( f ), where
ϕ = ∑

x∈G
mxx ∈ B and f = ∑

y∈G
ayy ∈ A.
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It is clear that, R is a (G,σ)-Armendariz and σ -compatible ring if and only
if RR is a (G,σ)-Armendariz and σ -compatible module.

For a subset X of MR, we define rA(X) as the set:

rA(X) = { f ∈ A| (x1) f = 0 for each x ∈ X} .

Lemma 2.5. Let MR be a right R-module. Then rA(X) = rR(X)((G;σ ;τ)), for
any subset X of MR.

Proof. Let f = ∑
g∈G

agg ∈ rA(X). Then for each x ∈ X we have (x1) f = 0. Thus

0 = (x1)(∑
g∈G

agg) = ∑
g∈G

xσ1(ag)τ(1,g)g = ∑
g∈G

xagτ(1,g)g,

which implies that xagτ(1,g) = 0 for each g ∈ supp( f ). Since τ(1,g) is invert-
ible, xag = 0. Hence ag ∈ rR(X) for each g ∈ supp( f ). So f ∈ rR(X)((G;σ ;τ))
and rA(X)⊆ rR(X)((G;σ ;τ)).

On the other hand, suppose that f = ∑
g∈G

agg ∈ rR(X)((G;σ ;τ)), then ag ∈

rR(X) for each g ∈ supp( f ). Thus xag = 0 for each x ∈ X and g ∈ supp( f ).
We have xσ1(ag) = 0 and we have that xσ1(ag)τ(1,g) = 0 for each x ∈ X and
g ∈ supp( f ). Hence (x1) f = 0 for each x ∈ X , and it follows that f ∈ rA(X). So
rR(X)((G;σ ;τ))⊆ rA(X). Therefore rA(X) = rR(X)((G;σ ;τ)).

For a right R-module MR, we define

rR(2M) = {rR(U)|U ⊆M} ,
rA(2B) = {rA(V )|V ⊆ B} .

The above Lemma gives us the map ψ : rR(2M) −→ rA(2B) defined by ψ(I) =
I((G;σ ;τ)) for every I ∈ rR(2M). Obviously ψ is an injective map.

In the following Lemma we show that ψ is a bijective map if and only if MR

is (G,σ)-Armendariz.

Lemma 2.6. Let MR be a σ -compatible module. The following conditions are
equivalent:
(1) MR is a (G,σ)-Armendariz module.
(2) ψ : rR(2M)−→ rA(2B) defined by ψ(I) = I((G;σ ;τ)) is a bijective map.

Proof. (1)⇒(2)
It is only necessary to show that ψ is surjective. Let V ⊆ B and T = CV =
∪ϕ∈VCϕ = ∪ϕ∈V {mx| x ∈ supp(ϕ)}. We show that

rA(V ) = ψ(rR(T )) = rR(T )((G;σ ;τ))
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and it is enough to show that rA(ϕ) = rR(Cϕ)((G;σ ;τ)) for each ϕ = ∑
x∈G

mxx ∈

V . In fact, let f = ∑
y∈G

ayy ∈ rA(ϕ). Then ϕ f = 0. Since MR is a (G,σ)-

Armendariz and σ -compatible module, mxay = 0 for each x ∈ supp(ϕ) and
y∈ supp( f ). Then ay ∈ rR(Cϕ) for each y∈ supp( f ). Thus f ∈ rR(Cϕ)((G;σ ;τ))
and rA(ϕ)⊆ rR(Cϕ)((G;σ ;τ)). Now, let f = ∑

y∈G
ayy ∈ rR(Cϕ)((G;σ ;τ)). Then

ay ∈ rR(Cϕ) for each y ∈ supp( f ). Hence mxay = 0 for each x ∈ supp(ϕ) and
y ∈ supp( f ). Since MR is σ -compatible, it follows that mxσx(ay) = 0, which
implies that mxσx(ay)τ(x,y) = 0 for each x ∈ supp(ϕ) and y ∈ supp( f ). Hence

0 = ∑
z∈G

( ∑
{(x,y)|xy=z }

mxσx(ay)τ(x,y))z = ϕ f .

So f ∈ rA(ϕ) and it follows that rR(Cϕ)((G;σ ;τ))⊆ rA(ϕ). Consequently,

rA(V ) = ∩ϕ∈V rA(ϕ) = ∩ϕ∈V rR(Cϕ)((G;σ ;τ))

= (∩ϕ∈V rR(Cϕ))((G;σ ;τ))

= rR(T )((G;σ ;τ)) = ψ(rR(T )).

(2)⇒(1)
Let f = ∑

y∈G
ayy ∈ A and ϕ = ∑

x∈G
mxx ∈ B such that ϕ f = 0. Then f ∈ rA(ϕ).

By assumption rA(ϕ) = T ((G;σ ;τ)) for some right ideal T of R. Hence f ∈
T ((G;σ ;τ)) which implies that ay ∈ T ⊆ rA(ϕ) for each y ∈ supp( f ). So,
ϕ(ay1) = 0 and we have that

0 = (∑
x∈G

mxx)(ay1) = ∑
x∈G

mxσx(ay)τ(x,1)x

for each x ∈ supp(ϕ) and y ∈ supp( f ). Since τ(x,1) is an invertible element, it
follows that mxσx(ay) = 0 for each x ∈ supp(ϕ) and y ∈ supp( f ). Therefore MR

is a (G,σ)-Armendariz module.

Theorem 2.7. Let MR be σ -compatible and a (G,σ)-Armendariz module. Then
MR is a right zip R-module if and only if BA is a right zip A-module.

Proof. Suppose that BA is a right zip A-module and X ⊆MR such that rR(X) = 0.
Let Y = {m1| m ∈ X} be the embedding of X in BA. Then, by Lemma 2.5, we
have

rA(Y ) = { f ∈ A| (m1) f = 0, for all m ∈ X}
= rA(X) = rR(X)((G;σ ;τ)) = 0.
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Since BA is a right zip A-module, for some m1,m2, . . . ,mn ∈ X there exists a
finite set Y

′
= {m11,m21, . . . ,mn1} such that Y

′ ⊆ Y and rA(Y
′
) = 0. Let X

′
=

{m1,m2, . . . ,mn} which is a nonempty finite subset of X . Then, from Lemma
2.5, we have

0 = rA(Y
′
) = { f ∈ A |(m1) f = 0, for all m ∈ X

′}

= rA(X
′
) = rR(X

′
)((G;σ ;τ))

which implies that rR(X
′
) = 0. Hence MR is a right zip R-module.

Conversely, suppose that MR is a right zip R-module and Y ⊆ BA such that
rA(Y ) = 0. Let

T =CY = ∪ϕ∈YCϕ = ∪ϕ∈Y {mx| x ∈ supp(ϕ)} .

Then, by Lemma 2.6,

0 = rA(Y ) = rR(T )((G;σ ;τ))

which implies that rR(T ) = 0. Since MR is a right zip R-module, there exists a
finite subset T0 ⊆ T such that rR(T0) = 0. For each m ∈ T0 there exists ϕm ∈ Y
such that for some x ∈ supp(ϕm), mx = m. Let Y0 be a minimal subset of Y with
respect to inclusion such that ϕm ∈ Y0 for each m ∈ T0. Then Y0 is a nonempty
finite subset of Y . We consider

T1 =CY0 = ∪ϕ∈Y0Cϕ = ∪ϕ∈Y0 {mx| x ∈ supp(ϕ)} .

Note that T0 ⊆ T1 and we have that rR(T1) ⊆ rR(T0) = 0. Thus, by Lemma 2.6,
we have

rA(Y0) = rR(T1)((G;σ ;τ)) = 0.

So BA is a right zip A-module.

When MR = RR we have the following consequence of the last theorem.

Corollary 2.8 ([6], Theorem 2.1). Suppose that R is σ -compatible and a (G,σ)-
Armendariz ring. Then R is a right zip ring if and only if A is a right zip ring.

Let α be a ring automorphism of R and set G = Z endowed with the usual
order. Define σ : G −→ Aut(R) via σ(x) = αx for every x ∈ Z and τ(x,y) = 1
for any x,y ∈ Z. Then M((G;σ ;τ))R((G;σ ;τ)) = M[[x,x−1;α]]R[[x,x−1;α]] the usual
skew Laurent power series extension of MR.

We can introduce the restricted version of (G,σ)-Armendariz condition on
skew Laurent power series modules and skew formal power series modules,
respectively, as follows:
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Definition 2.9. A right R-module MR is called an α-skew Laurent power se-
rieswise Armendariz (shortly, α-SLPA) module if ϕ(x) f (x) = 0, where ϕ(x) =
∞

∑
i=s

mixi ∈M[[x,x−1;α]] and f (x) =
∞

∑
j=t

a jx j ∈ R[[x,x−1;α]] for s, t ∈ Z, implies

that miα
i(a j) = 0 for all i≥ s and j ≥ t.

Definition 2.10. A right R-module MR is called an α-skew power serieswise

Armendariz (shortly, α-SPA) module if ϕ(x) f (x) = 0, where ϕ(x) =
∞

∑
i=0

mixi ∈

M[[x;α]] and f (x) =
∞

∑
j=0

a jx j ∈ R[[x;α]], implies that miα
i(a j) = 0 for all i≥ 0

and j ≥ 0.

It is clear that R is an α-SLPA (resp. α-SPA) ring if and only if RR is an
α-SLPA (resp. α-SPA) module.

Proposition 2.11. Let α be a ring automorphism of R. Then a right R-module
MR is α-SPA if and only if MR is α-SLPA.

Proof. Since M[[x;α]]⊆M[[x,x−1;α]] and R[[x;α]]⊆R[[x,x−1;α]], we can eas-
ily conclude that: if MR is α-SLPA, then MR is α-SPA.

Conversely, assume that MR is α-SPA and let ϕ(x)=
∞

∑
i=−s

mixi ∈M[[x,x−1;α]],

f (x) =
∞

∑
j=−t

a jx j ∈ R[[x,x−1;α]], for s, t ∈ Z≥0, be such that ϕ(x) f (x) = 0. We

have

0 = (ϕ(x) f (x))xs+t = (
∞

∑
i=−s

mixi)(
∞

∑
j=−t

a jx j)xs+t

= (
∞

∑
i=−s

mixi)(
∞

∑
j=−t

xs
α
−s(a j)x jxt)

= (
∞

∑
i=−s

mixi)(xs
∞

∑
j=−t

α
−s(a j)x j+t)

= (
∞

∑
i=−s

mixixs)(
∞

∑
j=−t

α
−s(a j)x j+t)

= (
∞

∑
i=−s

mixi+s)(
∞

∑
j=−t

α
−s(a j)x j+t).

Set i+ s = k and j+ t = l, we get that

0 = (ϕ(x) f (x))xs+t = (
∞

∑
k=0

mk−sxk)(
∞

∑
l=0

α
−s(al−t)xl) = (ϕ(x)xs)g(x).
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Hence, ϕ(x)xs =
∞

∑
k=0

mk−sxk ∈ M[[x;α]] and g(x) =
∞

∑
l=0

α−s(al−t)xl ∈ R[[x;α]].

So,
0 = mk−sα

k(α−s(al−t)) = mk−sα
k−s(al−t)

for all k ≥ 0 and l ≥ 0. Hence miα
i(a j) = 0 for all i ≥ −s and j ≥ −t, as

required.

From Theorem 2.7, we obtain the following result:

Corollary 2.12. Let α be a ring automorphism of R, MR an α-compatible and
α-SLPA module. Then MR is a right zip R-module if and only if
M[[x,x−1;α]]R[[x,x−1;α]] is a right zip R[[x,x−1;α]]-module.

Proof. Take G = Z and τ(x,y) = 1 for any x,y ∈ Z. For any x ∈ Z, let σx = αx.
Then the result follows from Theorem 2.7.

Set MR = RR in Corollary 2.12, we get:

Corollary 2.13. Let α be a ring automorphism of R, R an α-compatible and
α-SLPA ring. Then R is a right zip ring if and only if R[[x,x−1;α]] is a right zip
ring.
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