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COHOMOLOGICAL DIMENSION AND ARITHMETICAL
RANK OF SOME DETERMINANTAL IDEALS

DAVIDE BOLOGNINI - ALESSIO CAMINATA
ANTONIO MACCHIA - MARAL MOSTAFAZADEHFARD

Let M be a (2× n) non-generic matrix of linear forms in a polyno-
mial ring. For large classes of such matrices, we compute the cohomo-
logical dimension (cd) and the arithmetical rank (ara) of the ideal I2(M)
generated by the 2-minors of M. Over an algebraically closed field, any
(2×n)-matrix of linear forms can be written in the Kronecker-Weierstrass
normal form, as a concatenation of scroll, Jordan and nilpotent blocks.
Bădescu and Valla computed ara(I2(M)) when M is a concatenation of
scroll blocks. In this case we compute cd(I2(M)) and extend these results
to concatenations of Jordan blocks. Eventually we compute ara(I2(M))
and cd(I2(M)) in an interesting mixed case, when M contains both Jordan
and scroll blocks. In all cases we show that ara(I2(M)) is less than the
arithmetical rank of the determinantal ideal of a generic matrix.

1. Introduction

Determinantal ideals are a classical topic in Commutative Algebra and have
been extensively studied because of their connections with other fields, such
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as Algebraic Geometry, Combinatorics, Invariant Theory and Representation
Theory (see e.g. [6]). In this paper we focus on the ideals I2(M) generated by
the 2-minors of a (2× n) non-generic matrix M in a polynomial ring R over a
field K. In particular, we compute the cohomological dimension (cd) and the
arithmetical rank (ara) for large classes of such matrices.

We recall that the cohomological dimension of an ideal I of a Noetherian
ring R is

cd
R
(I) = max{i ∈ Z : H i

I(R) 6= 0},

where H i
I(R) denotes the i-th local cohomology module of R with support in I,

and the arithmetical rank of I is the smallest integer s for which there exist s
elements of R, a1, . . . ,as, such that

√
I =
√
(a1, . . . ,as). If there is no ambiguity,

we will write simply cd(I) and omit the subscript R. In general, the following
inequalities hold (see, e.g., [14, Proposition 9.2]):

ht(I)≤ cd(I)≤ ara(I),

where ht is the height of the ideal. If ht(I) = ara(I), then I is called a set-
theoretic complete intersection. In particular, if I is a squarefree monomial ideal
in the polynomial ring R = K[x1, . . . ,xn], then

ht(I)≤ pd
R
(R/I) = cd(I)≤ ara(I)≤ µ(I), (1)

where µ(I) denotes the minimum number of generators of I and the equality
between the projective dimension (pd) and the cohomological dimension was
proved by Lyubeznik in [16, Theorem 1].

For a generic (2×n)-matrix X , Bruns and Schwänzl have shown in [5] that
ara(I2(X)) = 2n− 3 and it is independent of the field. On the other hand, the
cohomological dimension has a different behavior:

cd(I2(X)) =

{
ht(I2(X)) = n−1 if char(K) = p > 0
ara(I2(X)) = 2n−3 if char(K) = 0

.

Motivated by [17, Question 8.1], we investigate the following special case.

Question 1. Let M = (xi j) be a (2×n) non-generic matrix of linear forms and
consider the ideal I2(M) in the polynomial ring R = K[xi j] generated by the
2-minors of M. If X is a (2×n)-generic matrix, is it true that I2(M) can be gen-
erated up to radical by less than ara(I2(X)) = 2n−3 elements, i.e. ara(I2(M))<
ara(I2(X))?

In order to study non-generic matrices, we first introduce the Kronecker-
Weierstrass normal form of a matrix: a (2× n)-matrix M, whose entries are
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linear forms, can be written, by means of an invertible transformation, as a con-
catenation of blocks. Each block can be a nilpotent, a scroll or a Jordan matrix
(see Section 3). First we treat all the possible mixed cases of (2×3)-matrices in
Remark 3.4. In Example 3.5 we compute cd and ara when M consists of exactly
one block. In all three cases I2(M) is a set-theoretic complete intersection with
ara(I2(M)) = n− 1. In the rest of the paper we deal with matrices consisting
of at least 2 blocks and with n ≥ 4 columns. In Proposition 3.6 we show that,
if X is a matrix of linear forms and we add a nilpotent block Nn with length
n+ 1 defining a new matrix M = (X |Nn), then cd(I2(M)) = cd(I2(X))+ n and
ara(I2(M))≤ ara(I2(X))+n. This implies that, if we have a matrix X for which
cd(I2(X)) = ara(I2(X)), then the concatenation of an arbitrary number of nilpo-
tent blocks to X preserves the equality between cohomological dimension and
arithmetical rank.

In all the cases examined throughout the paper, we noticed a behavior simi-
lar to the generic case: the upper bound for the arithmetical rank is independent
of the field, while the cohomological dimension is equal to the height of the
ideal in positive characteristic and to the arithmetical rank in characteristic zero.

In Section 4 we analyze concatenations of scroll blocks. Bădescu and Valla,
in [1], computed the arithmetical rank of the ideal I2(M), showing that it is
independent of the field. On the other hand, using some tools from Algebraic
Geometry, we prove that the cohomological dimension equals the height of the
ideal if char(K) = p > 0, while it is equal to the arithmetical rank if char(K) = 0
(see Theorem 4.2).

In Section 5 we consider concatenations of Jordan blocks when char(K)= 0.
We show that also in this situation cd(I2(M)) = ara(I2(M)).

Finally, in Section 6, we study an interesting mixed case. We start with a
(2×n)-matrix M with 2 zeros in different rows and columns, and we transform
it in the Kronecker-Weierstrass form. In this way M can be written as a con-
catenation of two Jordan blocks of length 1 with different eigenvalues and n−2
scroll blocks of length 1. The ideal I2(M) is generated by both monomials and
binomials. First we find an upper bound for the arithmetical rank independent
of the field, showing that ara(I2(M))≤ 2n−5. In the proof of Theorem 6.4 we
combine the classical result by Bruns and Schwänzl (Theorem 2.2) and a well-
known technique due to Schmitt and Vogel (Lemma 2.1). To reduce the number
of generators up to radical, we sum some of them in a suitable way and use
Plücker relations to prove the claim. Concerning the cohomological dimension,
for small values of n, the ideal I2(M) is a set-theoretic complete intersection. For
n≥ 5, in Theorem 6.5 we prove that cd(I2(M)) = ht(I2(M)) if char(K) = p > 0,
while cd(I2(M)) = ara(I2(M)) if char(K) = 0.
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For the last fact, we prove a stronger result, showing also the vanishing of
all local cohomology modules with indices between the height and 2n− 5, if
char(K) = 0.

For all the classes of (2× n)-matrices considered in Sections 4, 5 and 6,
except for small values of n, we always prove that I2(M) can be generated with
less than 2n−3 polynomials up to radical. Hence we give a positive answer to
Question 1.

2. Preliminaries

In this section we recall some results that will be useful in the rest of the paper.
A well-known technique that provides an upper bound for the arithmetical

rank of an arbitrary ideal is due to Schmitt and Vogel.

Lemma 2.1 (Schmitt, Vogel [23, Lemma p. 249]). Let R be a ring, P be a finite
subset of elements of R and P0, . . . ,Pr subsets of P such that

(i)
⋃r

`=0 P̀ = P,

(ii) P0 has exactly one element,

(iii) if p and p′′ are different elements of P̀ , with 0≤ `≤ r, there is an integer
`′, with 0≤ `′ < `, and an element p′ ∈ P̀ ′ such that pp′′ ∈ (p′).

We set q` = ∑
p∈P̀

pe(p), where e(p)≥ 1 are arbitrary integers. We will write (P)

for the ideal of R generated by the elements of P. Then
√

(P) =
√
(q0, . . . ,qr).

In [4] and [5], Bruns and Schwänzl computed the cohomological dimension
and the arithmetical rank of determinantal ideals of generic matrices. Let X
be an (m×n)-matrix of indeterminates and It(X) be the ideal generated by the
t-minors of X .

Theorem 2.2 (Bruns, Schwänzl, [5, Theorem 2]). Let X be an (m× n)-matrix
of indeterminates over a ring R. Then

ara(It(X)) = mn− t2 +1.

In [4, Corollary 2.2], Bruns proved that ara(It(X)) ≤ mn− t2− 1 over any
commutative ring, by defining a poset attached to the matrix X . We recall here
this construction. We denote by [a1, . . . ,at |b1, . . . ,bt ] the minor of X with row in-
dices a1, . . . ,at and column indices b1, . . . ,bt . On the set ∆(X) of all minors of X
we define a partial order given by [a1, . . . ,au|b1, . . . ,bu] ≤ [c1, . . . ,cv|d1, . . . ,dv]
if and only if

u≥ v,ai ≤ ci and bi ≤ di, for i = 1, . . . ,v. (2)
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The polynomials that generate It(X) up to radical have the form

p j = ∑
ξ∈∆(X),
rk(ξ )= j

ξ
e(ξ ), for j = 1, . . . , rk(∆(X)), (3)

where rk(∆(X)) denotes the rank of the poset, e(ξ ) = m
degξ

and m is the least
common multiple of the degrees of the elements ξ ∈ ∆(X).
In particular, we are interested in the case t = m = 2, for which

p j =
b j+1

2 c−1−δ j

∑
k=0

[k+1+δ j, j− k+1−δ j]

for j = 1, . . . ,2n− 3, where δ j = ( j− n+ 1)b j
nc. Here and in what follows,

when we deal with 2-minors, we use the notation [a,b] instead of [a,b|1,2].

Example 2.3. We give an explicit example of the construction of the poset and
of the polynomial generators up to radical for the ideal I2(X), where

X =

(
x1 x2 x3 x4 x5
x6 x7 x8 x9 x10

)
.

The poset ∆(X) is

rk 1 2 3 4 5 6 7

[1,2] [1,3] [1,4] [1,5]

[2,3] [2,4] [2,5]

[3,4] [3,5]

[4,5]
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Figure 1: The poset ∆(X)
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The ideal I2(X) is generated by the following 7 polynomials up to radical:

p1 = [1,2] = x1x7− x2x6,

p2 = [1,3] = x1x8− x3x6,

p3 = [1,4]+ [2,3] = x1x9− x4x6 + x2x8− x3x7,

p4 = [1,5]+ [2,4] = x1x10− x5x6 + x2x9− x4x7,

p5 = [2,5]+ [3,4] = x2x10− x5x7 + x3x9− x4x8,

p6 = [3,5] = x3x10− x5x8,

p7 = [4,5] = x4x10− x5x9.

While the arithmetical rank of It(X) is independent of the ring, the coho-
mological dimension has a different behavior. In fact, if R is a polynomial ring
on a field of characteristic 0, then cd(It(X)) = ara(It(X)) = mn− t2 +1 (see [5,
Corollary p. 440]). On the other hand, if R is a polynomial ring on a field of
prime characteristic p > 0, then cd(It(X)) = ht(It(X)) = (m− t +1)(n− t +1)
by [19, Proposition 4.1, p. 110], since It(X) is a perfect ideal in light of [12].

In Sections 4, 5 and 6, we will see that a similar result occurs also for some
classes of non-generic matrices.

The following Lemma will be employed more than once in the rest of the
paper. Even if it was proved in [22, Lemma 1.19 p. 258], we give a more explicit
proof for the sake of completeness.

Lemma 2.4. Let R be a Noetherian commutative ring and I be an ideal of R.
Consider a set of variables y1, . . . ,yk and the polynomial ring S = R[y1, . . . ,yk].
Then

cd
S
(I +(y1, . . . ,yk)) = cd

R
(I)+ k.

Proof. We proceed by induction on k ≥ 1. It suffices to prove the statement for
k = 1. For simplicity, let y = y1. Consider the following long exact sequence

· · · → Hc
I (S)

ϕ→ (Hc
I (S))y→ Hc+1

I+(y)(S)→ Hc+1
I (S)→ ·· · .

Since S is a free R-module, it follows that Hc+1
I (S) = 0. Then Hc+1

I+(y)(S) is the
cokernel of the map ϕ , and hence it is isomorphic to Hc

I (Sy/S), which is nonzero
since Sy/S is a free R-module.

Thus cdS(I + (y)) ≥ c+ 1 and, on the other hand, the inequality cdS(I +
(y)) ≤ cdS(I)+1 is clear. Notice that cdS(I) = c by virtue of the invariance of
local cohomology with respect to the change of basis.
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3. Kronecker-Weierstrass decomposition

Let K be an algebraically closed field and R be a polynomial ring over K. We
require K to be algebraically closed in order to transform the matrix into the
Kronecker-Weierstrass form, but we can drop this assumption if the matrix is
already in that form.

We consider a (2×n)-matrix M, whose entries are linear forms of R. From
the Kronecker-Weierstrass theory of matrix pencils, there exist two invertible
matrices C and C′ such that the matrix X =CMC′ is a concatenation of blocks,

X =
(
Nn1 | · · · |Nnc |Jλ1,m1 | · · · |Jλd ,md |B`1 | · · · |B`g

)
, (4)

where the blocks are matrices of the form

Nni =

(
xi,1 xi,2 · · · xi,ni 0
0 xi,1 · · · xi,ni−1 xi,ni

)
,

Jλ j,m j =

(
y j,1 y j,2 · · · y j,m j

λ jy j,1 y j,1 +λ jy j,2 · · · y j,m j−1 +λ jy j,m j

)
,

B`p =

(
zp,0 zp,1 · · · zp,`p−2 zp,`p−1

zp,1 zp,2 · · · zp,`p−1 zp,`p

)
.

Here, x = {xi,h},y = {y j,h},z = {zp,h} are independent linear forms of R,
c,d,g ≥ 0, ni,m j, `p are positive integers, and λ j ∈ K. We call Nni nilpotent
block of length ni + 1, Jλ j,m j Jordan block of length m j and eigenvalue λ j and
B`p scroll block of length `p, respectively. The number of scroll and nilpotent
blocks g and c, together with the lengths `p and ni of each of these blocks, are
invariants for M, while the eigenvalues λ j of the Jordan blocks and the length m j

of each of them are not invariant. We call the matrix X a Kronecker-Weierstrass
normal form of M. Since the matrices C and C′ are invertible, the determinantal
ideals defined by X and M coincide. For a detailed discussion of Kronecker-
Weierstrass theory we refer to [8, Chapter 12].

Remark 3.1. We point out that the blocks of length 1 are the following:

N1 =

(
0
0

)
, Jλ ,1 =

(
y1

λy1

)
and B1 =

(
z0
z1

)
.

In particular, a (2×n)-matrix with generic entries is a concatenation of exactly
n scroll blocks of the form B1.

Example 3.2. Consider the following matrix of linear forms over the polyno-
mial ring K[x1, . . . ,x6](

x1 + x6 x2 x2 + x3 x4 x2 + x6 x4
−x6 x1 x1− x3 + x4 −x4 + x5 x1− x6 −x4 + x5 + x6

)
.
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Subtracting the second column from the fifth and the fourth from the sixth, we
get (

x1 + x6 x2 x2 + x3 x4 x6 0
−x6 x1 x1− x3 + x4 −x4 + x5 −x6 x6

)
.

Subtracting the second column from the third and the fifth from the first, we get(
x1 x2 x3 x4 x6 0
0 x1 −x3 + x4 −x4 + x5 −x6 x6

)
.

Then adding the first row to the second one we obtain the canonical form(
x1 x2 x3 x4 x6 0
x1 x1 + x2 x4 x5 0 x6

)
,

which is a concatenation of a Jordan block J1,2 of length 2 and eigenvalue 1, a
scroll block B2 of length 2 and a nilpotent block N2 of length 2.

When the matrix is in the Kronecker-Weierstrass form, a result due to Nas-
rollah Nejad and Zaare-Nahandi allows us to easily compute the height of the
ideal of 2-minors. Since we will use it several times, we state it here for ease of
reference.

Proposition 3.3 (Nasrollah Nejad, Zaare-Nahandi, [18, Proposition 2.2]). Let
X be a matrix in the Kronecker-Weierstrass form (4). Then the height of I2(X)
in K[x,y,z] is given by the following formulas.

1. If X consists of exactly c≥ 1 nilpotent blocks, then

ht
(
I2(X)

)
=

c

∑
i=1

ni.

2. If X consists of c≥ 0 nilpotent blocks and g≥ 1 scroll blocks, then

ht
(
I2(X)

)
=

c

∑
i=1

ni +
g

∑
p=1

`p−1.

3. If X consists of c ≥ 0 nilpotent blocks, g ≥ 0 scroll blocks and d ≥ 1
Jordan blocks, then

ht
(
I2(X)

)
=

c

∑
i=1

ni +
g

∑
p=1

`p +
d

∑
j=1

m j− γ,

where γ is the maximum number of Jordan blocks with the same eigen-
value.
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We are interested in computing the cohomological dimension and the arith-
metical rank of I2(X) for some special Kronecker-Weierstrass decompositions.
We begin with some easy cases.

If X is (2×2)-matrix, then the ideal I = I2(X) is principal. Hence cd(I) =
ara(I) = 1, provided that I is not the zero ideal. The first non trivial case occurs
for matrices of size 2× 3. In [13, Corollary 6.5], Huneke, Katz, and Marley
proved that, if A is a commutative Noetherian ring containing the field of rational
numbers, with dim(A)≤ 5, and I = I2(M) is the ideal generated by the 2-minors
of a (2×3)-matrix M with entries in A, then H3

I (A) = 0. In the following remark
we show that, under these assumptions, the arithmetical rank is strictly less than
3 whenever M is a matrix of linear forms.

Remark 3.4. Let A,M and I be as the above. Suppose that M is in the
Kronecker-Weierstrass form. If M contains at least one nilpotent block, the
result is clear. If M consists of only scroll blocks, the arithmetical rank has been
settled in [1] and the cohomological dimension is explicitly studied in Section
4. On the other hand, the case of a concatenation of Jordan blocks is studied in
Section 5. It remains to consider the concatenation of scroll and Jordan blocks.
The matrix M with a scroll block of length 2 and a Jordan block of length 1 is a
special case of [24, Theorem 2.1]. Suppose now that M consists of two Jordan
blocks of length 1 and one scroll block of length 1. If the Jordan blocks have
the same eigenvalue, then M can be transformed into a matrix with two zeros
on the same row, hence I2(M) is a squarefree monomial ideal generated by 2
monomials and the arithmetical rank is 2. This is also the case if M consists of a
scroll block of length 1 and a Jordan block of length 2. Otherwise, if the Jordan
blocks have different eigenvalues, M can be transformed into a matrix with one
zero and the arithmetical rank is 2 in light of [2, Example 2]. This is also the
case if M has two scroll blocks of length 1 and a Jordan block of length 1. Thus
we completely settle the case of (2×3)-matrices of linear forms.

This is the starting point of our investigation about the cohomological di-
mension and the arithmetical rank of determinantal ideals of (2×n)-matrices of
linear forms.

Example 3.5. Let X be a (2× (n + 1))-matrix in the Kronecker-Weierstrass
form and assume that X consists of exactly one block.

i) If X = Bn+1 is a scroll block, where

Bn+1 =

(
z0 z1 · · · zn−1 zn

z1 z2 · · · zn zn+1

)
,

then I2(X) is the defining ideal of a rational normal curve of degree n in
Pn. In [21], Robbiano and Valla proved that I2(X) is set-theoretic com-
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plete intersection with ht(I2(X)) = cd(I2(X)) = ara(I2(X)) = n. In partic-
ular

√
I2(X) =

√
(F1, . . . ,Fn), where

Fi(z0, . . . ,zn+1) =
i

∑
α=0

(−1)α

(
i
α

)
zi−α

i+1 zαzα
i , i = 1, . . . ,n.

ii) If X = Nn is a nilpotent block of length n+1, where

Nn =

(
x1 x2 · · · xn 0
0 x1 · · · xn−1 xn

)
, (5)

it easy to check that
√

I2(X)= (x1, . . . ,xn). Then ht(I2(X))= cd(I2(X))=
ara(I2(X)) = n. In particular, I2(X) is set-theoretic complete intersection.

iii) If X = Jλ ,n+1 is a Jordan block of eigenvalue λ and length n+1, then, by
subtracting λ times the first row from the second one, we transform the
matrix into the following:(

y1 y2 · · · yn yn+1
0 y1 · · · yn−1 yn

)
.

It is now easy to see that
√

I2(X) = (y1, . . . ,yn). Then I2(X) is set-theor-
etic complete intersection with

ht(I2(X)) = cd(I2(X)) = ara(I2(X)) = n.

Remark 3.4 and Example 3.5 describe completely the situation where the
number of blocks is 1 or the number of columns is n = 3, respectively. So for
the rest of the paper we may assume, if necessary, that the number of blocks is
at least 2 and n≥ 4.

As it appears in Example 3.5, the ideal of minors of nilpotent blocks corre-
spond to linear subspaces. These are complete intersections. Precisely we have
the following result.

Proposition 3.6. Let X = (li) be a matrix of linear forms, where li ∈ R =
K[y1, . . . ,ym]. Let J = I2(X), Nn be a nilpotent block of length n+1 as in (5) and
S = R[x1, . . . ,xn]. Consider the matrix M = (X |Nn) given by the concatenation
of X and Nn, then:

cd
S

(
I2(M)

)
= cd

R
(J)+n and ara

(
I2(M)

)
≤ ara(J)+n.
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Proof. Set r = ara(J). Then
√

J = (p1, . . . , pr), for some polynomials pi ∈ R.
We define n = (x1, . . . ,xn), then

√
I2(Nn) = n by Example 3.5 ii). We consider

the ideals J, n and I2(M) in the ring S and we prove that

√
I2(M) =

√√
J+n. (6)

We have I2(Nn)⊆ I2(M) and J⊆ I2(M), hence J+I2(Nn)⊆ I2(M). It follows
that √√

J+n=

√√
J+
√

I2(Nn) =
√

J+ I2(Nn)⊆
√

I2(M),

where the second equality holds in general for every pair of ideals in a polyno-
mial ring. For the other inclusion, consider a 2-minor q of M. If q involves two
columns of X or two columns of Nn, then clearly q ∈ J or q ∈ n respectively.
Otherwise q = lixα − l jxβ or q = −lix1 or q = lixn. In any case it is clear that

q ∈ n. This shows that I2(M)⊂
√

J+n, which implies
√

I2(M)⊂
√√

J+n.
From (6) and Lemma 2.4 we get

cd
S

(
I2(M)

)
= cd

S

(√
I2(M)

)
= cd

S

(√√
J+n

)
= cd

S

(√
J+n

)
= cd

R

(√
J
)
+n = cd

R
(J)+n.

Moreover the equality (6) implies ara
(
I2(M)

)
≤ ara(J)+n.

We close this Section by providing explicitly an upper bound for the arith-
metical rank that was implicit in [2]. Let n,k be positive integers and f1, . . . , fk
be polynomials in R = K[x1, . . . ,xn]. We recall that a syzygy of ( f1, · · · , fk) is a
vector [s1, · · · ,sk] ∈ Rk such that ∑

k
i=1 si fi = 0.

Lemma 3.7. Let k ≥ 2 be an integer and I = ( f1, . . . , fk) be a homogeneous
ideal in R = K[x1, . . . ,xn]. Assume that there exist a positive integer r and a
syzygy [g1, . . . ,gk−1] ∈ Rk−1 of ( f1, . . . , fk−1) such that f r

k ∈ (g1, . . . ,gk−1). Then
ara(I)≤ k−1.

Proof. Since f r
k ∈ (g1, . . . ,gk−1), there exist h1, . . . ,hk−1 ∈ R such that f r

k =
h1g1 + · · ·+hk−1gk−1. Let qi = fkhi + fi for 1≤ i≤ k−1. We claim that

√
I =√

(q1, . . . ,qk−1). Clearly
√
(q1, . . . ,qk−1) ⊂

√
I, since (q1, . . . ,qk−1) ⊂ I. For

the other inclusion, let g ∈
√

I. Then there exist r1, . . . ,rk ∈ R such that gs =
r1 f1 + · · ·+ rk fk for some positive integer s. Then

gs =
k−1

∑
i=1

riqi− fk

(
k−1

∑
i=1

rihi− rk

)
.
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We claim that f r+1
k ∈ (q1, . . . ,qk−1). In fact,

k−1

∑
i=1

giqi =
k−1

∑
i=1

gi( fkhi + fi) = fk

(
k−1

∑
i=1

gihi

)
+

k−1

∑
i=1

gi fi = f r+1
k ,

where the last equality holds since [g1, . . . ,gk−1] is a syzygy of ( f1, . . . , fk−1).
Then

gs(r+1) =
r

∑
j=0

(−1) j
(

r+1
j

)(k−1

∑
i=1

riqi

)r+1− j(k−1

∑
i=1

rihi− rk

) j

f j
k

+(−1)r+1

(
k−1

∑
i=1

rihi− rk

)r+1

f r+1
k ∈ (q1, . . . ,qk−1).

Hence g ∈
√

(q1, . . . ,qk−1), as desired.

Up to finding a syzygy with the required properties, we are able to decrease
by one the number of generators of I up to radical. We give a simple application
of Lemma 3.7.

Example 3.8. Let M =

(
0 x1 x2 x3
x4 x5 x6 x7

)
and I = I2(M) in the polynomial

ring R = K[x1, . . . ,x7], where K is a field of characteristic 0. We prove that
ara(I) = 4. By [17, Remark 5.2], we have cdR(I) = 4. Then ara(I) ≥ 4. To
prove the claim it suffices to find 4 polynomials that generate I up to radical.
Recall that [i, j] denotes the minor corresponding to the i-th and j-th columns of
M. Then

I = ([1,2], [1,3], [2,3], [1,4], [2,4], [3,4]).

Notice that [x2,−x1] is a syzygy for ([1,2], [1,3]) and [2,3] = x1x6 − x2x5 ∈
(x2,−x1). Following the proof of Lemma 3.7, define q1 = −x5[2,3] + [1,2]
and q2 =−x6[2,3]+ [1,3]. Then

√
I =

√
(q1,q2, [1,4], [2,4], [3,4]).

By the Plücker relations (see (15))

[1,4][2,3]− [2,4][1,3]+ [3,4][1,2] = 0

we have that [[2,3],−[1,3], [1,2]] is a syzygy for ([1,4], [2,4], [3,4]). Notice that

q2 =−x6[2,3]− (−[1,3]) ∈ ([2,3],−[1,3], [1,2]).

Again, following the proof of Lemma 3.7, we define p1 = −x6q2 + [1,4],
p2 =−q2 +[2,4], p3 = [3,4]. Then

√
I =
√

q1, p1, p2, p3, and hence ara(I)≤ 4.
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4. Scroll blocks

In this section we assume that the Kronecker-Weierstrass decomposition of our
matrix contains only scroll blocks. We fix an algebraically closed field K and
some integers d ≥ 2 and n1,n2, . . . ,nd > 0. We consider the matrix

M=(Bn1 | · · · |Bnd )=

(
x1,0 x1,1 . . . x1,n1−1 . . . xd,0 xd,1 . . . xd,nd−1
x1,1 x1,2 . . . x1,n1 . . . xd,1 xd,2 . . . xd,nd

)
, (7)

where xi, j are algebraically independent variables over K. We also denote by
N = ∑

d
i=1 ni+d−1 the number of variables minus 1 and by In1,...,nd = I2(M) the

homogeneous ideal generated by the 2-minors of the matrix M in the polynomial
ring R = K[xi, j].

The projective variety Rn1,...,nd = Proj(R/In1,...,nd )⊂ PN
K associated to In1,...,nd

has dimension d and is called d-dimensional rational normal scroll. These vari-
eties have been widely studied and many properties are known. In the following
Proposition we collect a few facts that will be used later on. For a proof and a
survey on rational normal scrolls the reader may consult [20, Chapter 2].

Proposition 4.1. Let d ≥ 2, n1, . . . ,nd > 0 be integers and let In1,...,nd , R and
Rn1,...,nd be as above. Then

1. Rn1,...,nd is irreducible, i.e. In1,...,nd is a prime ideal,

2. R/In1,...,nd is a Cohen-Macaulay ring of dimension d +1,

3. Pic(Rn1,...,nd )
∼=Z⊕Z, where Pic(Rn1,...,nd ) is the Picard group of Rn1,...,nd .

In their paper [1], Bădescu and Valla proved that ara(In1,...,nd ) = N − 2.
They exhibit N− 2 polynomials which generate the rational normal scroll set-
theoretically and they use Grothendieck-Lefschetz theory to show that
ara(In1,...,nd ) ≥ N− 2. In particular, it turns out that Rn1,...,nd is a set-theoretic
complete intersection if and only if d = 2 and, in this case, ht(In1,n2) =
cdR(In1,n2) = ara(In1,n2) = n1 +n2−1.

The goal of this section is to compute the cohomological dimension of
In1,...,nd . We are going to prove the following result.

Theorem 4.2. Let K be an algebraically closed field, d ≥ 2 and n1, . . . ,nd > 0
integers, and In1,...,nd = I2(M) be the ideal generated by the 2-minors of the
matrix (7) in the polynomial ring R = K[xi, j] in N +1 variables. Then

cd
R
(In1,...,nd ) =


ht(In1,...,nd ) = N−d =

d

∑
i=1

ni−1 if char(K) = p > 0

ara(In1,...,nd ) = N−2 =
d

∑
i=1

ni +d−3 if char(K) = 0
.
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The proof of this theorem will use geometric tools. In fact, we will study
the variety Rn1,...,nd rather than the ideal In1,...,nd . We recall some Algebraic Ge-
ometry facts. When not explicitly stated, we refer to [11] and [3, Chapter 20]
for proofs and further details.

Let S =
⊕

n∈N Sn be a positively graded ring where S0 is a field and let
m=

⊕
n>0 Sn its homogeneous maximal ideal. We consider a finitely generated

graded S-module N and the associated coherent sheaf F = Ñ on X = Proj(S).
The Serre-Grothendieck Correspondence states that there are isomorphisms of
S0-modules between the sheaf cohomology modules and the local cohomology
modules:

H i(X ,F(n))∼= H i+1
m (N)n, (8)

for all i > 0 and n ∈ Z.
The cohomological dimension of X is defined as

cd(X) = min{n ∈ N : H i(X ,F) = 0 for every i > n,F coherent sheaf over X}.

If S0 is a field and I is a homogeneous non-nilpotent ideal, then by a result
of Hartshorne [9] we have

cd
S
(I)−1 = cd(Proj(S)\Proj(S/I)). (9)

Thus, in order to bound cdS(I), we can find bounds on cd(X \Y ), where
Y = Proj(S/I).

When the base field S0 is the field of complex numbers C, we have a strong
connection between the vanishing of the sheaf cohomology modules H i(X \
Y,−) and the singular cohomology groups H i

sing(Xan,C) and H i
sing(Yan,C). Here

Xan and Yan denote X and Y regarded as topological spaces with the euclidean
topology and are called analytification of X and Y .

Theorem 4.3 (Hartshorne [10, Theorem 7.4, p. 148]). Let X be a complete
scheme of dimension N over C, Y be a closed subscheme, and assume that X \Y
is non-singular. Let r be an integer. Then cd(X \Y )< r implies that the natural
maps

H i
sing(Xan,C)−→ H i

sing(Yan,C)

are isomorphisms for i < N− r, and injective for i = N− r.

The assumption S0 = C is not restrictive. In fact, the following Remark
shows that we may assume it in many cases.

Remark 4.4. Let K be a field of characteristic 0, RK = K[x1, . . . ,xn] the polyno-
mial ring in n variables over K and I an ideal of RK . Since RK is Noetherian, I
is finitely generated, say I = ( f1, . . . , fm). The coefficients of the polynomials fi



ON SOME DETERMINANTAL IDEALS 287

are elements of a finite extension of Q, say L. We denote by RL = L[x1, . . . ,xn]
the corresponding polynomial ring. Notice that L is a subfield of K and a sub-
field of C. We consider the ideal IL = I∩RL, then I = ILRK by construction. Set
RC = C[x1, . . . ,xn] and IC = ILRC. We claim that

cd
RK
(I) = cd

RC
(IC).

Let i and j be integers, we look at the j-th graded piece of the local cohomology
modules with support in I:

H i
I(RK) j = H i

ILRK
(RL⊗L K) j = H i

IL
(RL) j⊗L K.

Since the field extension L ⊂ K is faithfully flat, we have that H i
I(RK) j 6= 0 if

and only if H i
IL
(RL) j 6= 0. In particular, cdRK (I) = cdRL(IL). The same argument

applied to the ideals IL and IC and to the faithfully flat field extension L ⊂ C,
yields cdRL(IL) = cdRC(IC), which proves the claim.

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. For ease of notation, we set I = In1,...,nd and Y = Rn1,...,nd .
If K is a field of positive characteristic p, then the statement follows from

[19, Proposition 4.1, p. 110].
Now let char(K) = 0. In light of Remark 4.4, we may assume K = C.

We know that cdR(I) ≤ ara(I) and ara(I) = N − 2, so we need to prove that
cdR(I)≥ N−2.

We consider the exponential sequence of sheaves over Yan, the analytifica-
tion of Y :

0→ Z→OYan →O∗Yan
→ 0, (10)

where Z denotes the constant sheaf and the map OYan →O∗Yan
is given by f 7→

exp(2πi f ). The sequence (10) induces a long exact sequence of sheaf cohomol-
ogy modules, in particular we have

· · ·→H1(Yan,OYan)→H1(Yan,O∗Yan
)→H2(Yan,Z)→H2(Yan,OYan)→·· · . (11)

By definition H1(Yan,O∗Yan
) = Pic(Y ) and, since Z is a constant sheaf, it fol-

lows that H2(Yan,Z) = H2
sing(Yan,Z). An application of the GAGA principle and

(8) yield H1(Yan,OYan) = H1(Y,OY ) = H2
m(R/I)0, where m is the homogeneous

maximal ideal of R. Since R/I is a Cohen-Macaulay ring of dimension d+1≥ 3
we have that H2

m(R/I)0 = 0, therefore (11) yields the group injection

Pic(Y ) ↪→ H2
sing(Yan,Z). (12)
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Now we assume that cdR(I) < N− 2 and proceed by contradiction. From
(9) it follows that

cd(PN \Y ) = cd
R
(I)−1 < N−2−1 = N−3.

Theorem 4.3 with r = N−3 yields

H i
sing(PN

an,C)∼= H i
sing(Yan,C) for i < 3,

which implies dimC H i
sing(PN

an,C) = dimC H i
sing(Yan,C). By the Universal Coef-

ficients Theorem, this is equivalent to

rankZH i
sing(PN

an,Z) = rankZH i
sing(Yan,Z).

It is well known that

H i
sing(PN

an,Z) =

{
Z if i even,0≤ i≤ 2N
0 otherwise

.

In particular, rankZH i
sing(Yan,Z)≤ 1. On the other hand, Pic(Y ) =Z2, which

contradicts (12).

From Theorem 4.2 and Proposition 3.6 we immediately deduce

Corollary 4.5. Let K be an algebraically closed field of characteristic 0, let R
be a polynomial ring over K and M be a (2×n)-matrix of linear forms over R.
If the Kronecker-Weierstrass decomposition of M is

(Bn1 | · · · |Bnd |Nm1 | · · · |Nmc)

for some integers d ≥ 2, c≥ 0, n1, . . . ,nd > 0 and m1, . . . ,mc ≥ 0, then

cd
R

(
I2(M)

)
= ara

(
I2(M)

)
=

d

∑
i=1

ni +
c

∑
j=1

m j +d−3.

5. Jordan blocks

Let K be a field of characteristic zero, d ≥ 1 and αi ≥ 1 for i = 1, . . . ,d. We
consider the following (2× n)-matrix M consisting of αi Jordan blocks with
eigenvalue λi for i = 1, . . . ,d, such that αi ≥ α j if j > i:

M =
(

J1
λ1,m11

∣∣J2
λ1,m12

∣∣ · · · ∣∣Jα1
λ1,m1α1

∣∣J1
λ2,m21

∣∣ · · · ∣∣J1
λd ,md1

∣∣J2
λd ,md2

∣∣ · · · ∣∣Jαd
λd ,mdαd

)
. (13)
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Here we use the following notation for the Jordan blocks, for j = 1, . . . ,d
and i = 1, . . . ,α j:

Ji
λ j,m ji

=

(
yi

j,1 yi
j,2 · · · yi

j,m ji

λ jyi
j,1 yi

j,1 +λ jyi
j,2 · · · yi

j,m ji−1 +λ jyi
j,m ji

)
,

where m ji is the length of the block.
Consider the ideal I2(M) in the polynomial ring R = K[yi

j,h : 1≤ j ≤ d,1≤
i ≤ α j,1 ≤ h ≤ m ji]. Let α = ∑

d
i=1 αi be the number of blocks in M and N =

∑ 1≤ j≤d
1≤i≤α j

m ji be the number of variables in R.

The following Theorem shows that, even though the height of I2(M) de-
pends on the maximum number of blocks with the same eigenvalue, the coho-
mological dimension equals the arithmetical rank of I2(M) and they are inde-
pendent on how many blocks have the same eigenvalue.

Theorem 5.1. Let K be a field of characteristic zero and M be a matrix of the
form (13). Then

cd(I2(M)) = ara(I2(M)) =

{
N−α if d = 1
N−1 if d > 1

.

Proof. First we observe that √
I2(M) = J+LM, (14)

where J is the ideal generated by all the N −α variables yi
j,h, for every j =

1, . . . ,d, i = 1, . . . ,α j and h = 1, . . . ,m ji− 1. To describe the ideal LM first we
simplify the notation: we denote the last variable yi

j,m ji
of each block by yi

j. Then
LM is the squarefree monomial ideal generated by the quadratics monomials of
the form yi

jy
`
k, for j 6= k, 1≤ j,k≤ d, 1≤ i≤ α j and 1≤ `≤ αk. Notice that LM

is an ideal in the ring S = K[yi
j : 1≤ j ≤ d,1≤ i≤ α j]. The equality (14) holds

because if we consider a minor involving at most one of the last columns of the
blocks, then it is a multiple of some yi

j,h ∈ J; otherwise if the minor involves the
last columns of two blocks, then it is a multiple of some monomial yi

jy
`
k ∈ LM.

This implies that I2(M) ⊂ J +LM, hence
√

I2(M) ⊂ J +LM, since J +LM is a
radical ideal. Vice versa, first we show that J ⊂

√
I2(M). We fix a block Ji

λ j,m ji

and we prove that yi
j,h ∈

√
I2(M) by induction on h ≥ 1. For h = 1,

(
yi

j,1

)2
=

yi
j,1(y

i
j,1 +λ jyi

j,2)−λ jyi
j,1yi

j,2 ∈ I2(M) since it is the minor corresponding to the
first two columns of the block Ji

λ j,m ji
. Suppose that h > 1 and yi

j,k ∈
√

I2(M)
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for 1≤ k < h. Then
(

yi
j,h

)2
=
(

yi
j,h

)2
− yi

j,h−1yi
j,h+1 + yi

j,h−1yi
j,h+1 ∈

√
I2(M),

since
(

yi
j,h

)2
− yi

j,h−1yi
j,h+1 ∈ I2(M) is the minor corresponding to the columns

h and h+1 and yi
j,h−1yi

j,h+1 ∈
√

I2(M) by induction hypothesis. Now we prove
that LM ⊂

√
I2(M). Notice that

(λk−λ j)yi
jy
`
k=(λk−λ j)yi

j,m ji
y`k,mk`

=∣∣∣∣∣ yi
j,m ji

y`k,mk`

yi
j,m ji−1+λ jyi

j,m ji
y`k,mk`−1+λky`k,mk`

∣∣∣∣∣−(yi
j,m ji

y`k,mk`−1−yi
j,m ji−1y`k,mk`

)
∈
√

I2(M),

since y`k,mk`−1,y
i
j,m ji−1 ∈ J ⊂

√
I2(M). This yields the equality (14).

If d = 1, all the blocks have the same eigenvalue λ1. Hence LM = (0) and√
I2(M) = J. This implies that cd(I2(M)) = ara(I2(M)) = N−α .

Let d ≥ 2. Notice that LM is the edge ideal of a complete d-partite graph
Kα1,α2,...,αd . By [15, Theorem 4.2.6], we have cd(LM) = pdS(S/LM) = α − 1.
Then cd(I2(M)) = cd(J)+cd(LM) = N−α +α−1 = N−1 by Proposition 3.6.

Now we show that ara(I2(M)) ≤ N − 1. In light of Example 3.5 iii),
ara
(
I2
(
Ji

λ j,m ji

))
= m ji − 1 and I2

(
Ji

λ j,m ji

)
is generated by the variables yi

j,1,
yi

j,2, . . . ,y
i
j,m ji−1 up to radical.

Since J is generated by N − α variables, in order to prove the claim, it
suffices to show that LM is generated by α − 1 polynomials up to radical. We
construct the following matrix with ∑

d
i=2 αi rows and ∑

d−1
i=1 αi columns:

Q =



y1
1y1

d y2
1y1

d · · · yα1
1 y1

d y1
2y1

d · · · yα2
2 y1

d · · · y1
d−1y1

d · · · yαd−1
d−1 y1

d
y1

1y2
d y2

1y2
d · · · yα1

1 y2
d y1

2y2
d · · · yα2

2 y2
d · · · y1

d−1y2
d · · · yαd−1

d−1 y2
d

...
...

. . .
...

...
. . .

...
...

...
. . .

...
y1

1yαd
d y2

1yαd
d · · · yα1

1 yαd
d y1

2yαd
d · · · yα2

2 yαd
d · · · y1

d−1yαd
d · · · yαd−1

d−1 yαd
d

y1
1y1

d−1 y2
1y1

d−1 · · · yα1
1 y1

d−1 y1
2y1

d−1
... yα2

2 y1
d−1

...
...

. . .
...

...
. . .

...
y1

1yα3
3 y2

1yα3
3 · · · yα1

1 yα3
3 y1

2yα3
3 · · · yα2

2 yα3
3

y1
1y1

2 y2
1y1

2 · · · yα1
1 y1

2
...

...
. . .

...
y1

1yα2
2 y2

1yα2
2 · · · yα1

1 yα2
2



,

The first block of Q is obtained by multiplying the variables yi
1 by yh

j for 2 ≤
j≤ d and 1≤ h≤ α j; the second block is obtained by multiplying the variables
yi

2 by yh
j for 3≤ j ≤ d and 1≤ h≤ α j and so on.

Let T to be the set of all the entries of Q, that are the generators of LM.
For every ` = 1, . . . ,α − 1, we define T` as the set of all the monomials of the
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`-th antidiagonal of Q and q` as the sum of these monomials. In particular,
T1 = {y1

1y1
d} and T =

⋃
α−1
`=1 T`. To show the last equality, we count the number

of nonzero antidiagonals of Q. Every element on the first row is contained in
exactly one T`, hence we have ∑

d−1
i=1 αi sets. Moreover, every nonzero element

in the last column is contained in exactly one T`, thus we have αd sets. In total
we have ∑

d
i=1 αi−1 sets, since the element yαd−1

d−1 y1
d has been counted twice. All

the other antidiagonals of Q are zero because the elements of the form yα j
j yαh

h
belong to the (α − 1)-th antidiagonal. This shows that the first two conditions
of Lemma 2.1 are fulfilled.

As for the third condition, if we pick two monomials on the `-th antidiagonal
of Q, they have the form yi1

j1yi2
j2 and yh1

k1
yh2

k2
. We may assume that either j1 < k1

or ( j1 = k1 and i1 < h1). Hence their product yi1
j1yi2

j2 · y
h1
k1

yh2
k2

is a multiple of
yi1

j1yh2
k2

that belongs to the m-th antidiagonal, for some 1≤m < ` (this element is
placed in the intersection of the column containing yi1

j1yi2
j2 and the row containing

yh1
k1

yh2
k2

). From Lemma 2.1 it follows that LM =
√

LM =
√

(q1, . . . ,qα−1) and thus
ara(LM)≤ α−1. Therefore

ara(I2(M))≤ ara(J)+ ara(LM)≤ N−α +α−1 = N−1.

From Theorem 5.1 and Proposition 3.6 we deduce

Corollary 5.2. Let K be a field of characteristic 0, let R be a polynomial ring
over K and M′ be a (2× n)-matrix of linear forms over R. Suppose that the
Kronecker-Weierstrass decomposition of M′ is

(M|Nm1 | · · · |Nmc)

for some integers d ≥ 1, c≥ 0, α1, . . . ,αd ≥ 1 and m1, . . . ,mc ≥ 0, and where M
is the matrix (13). Then

cd
(
I2(M′)

)
= ara

(
I2(M′)

)
=

{
N−α +∑

c
k=1 mk if d = 1

N−1+∑
c
k=1 mk if d > 1

.

6. (2×n)-matrices with a zero diagonal

In Sections 4 and 5 we analyzed the cases of concatenations of scroll blocks
or Jordan blocks. In this Section we study a mixed case, in which there are
both scroll and Jordan blocks. Precisely, let n ≥ 2, R = K[x1, . . . ,x2n−2] and
Jn = I2(An) be the ideal generated by the 2-minors of the matrix

An =

(
0 x1 x2 · · · xn−2 xn−1
xn xn+1 xn+2 · · · x2n−2 0

)
.
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Remark 6.1. We add the first row of An to the second one and we apply the
following linear change of variables yi = xi +xn+i for every i = 1, . . . ,n−2. We
get the matrix

A′n =
(

0 x1 x2 · · · xn−2 xn−1
xn y1 y2 · · · yn−2 xn−1

)
which is a Kronecker-Weierstrass form of An. In particular, we can write A′n =
(J0,1|B1| · · · |B1|J1,1) as a concatenation of a Jordan block of length 1 and eigen-
value 0, n− 2 scroll blocks of length 1 and a Jordan block of length 1 and
eigenvalue 1. From Proposition 3.3 it follows that ht(Jn) = n−1.

Notation 6.2. We label the columns of An with the indices from 0 to n−1. Re-
call that [i, j] denotes the 2-minor xixn+ j− x jxn+i corresponding to the columns
i and j.

Remark 6.3. We recall that, if M is a (2×n)-matrix of indeterminates and we
label the columns with indices from 0 to n−1, then the Plücker relations are the
following: for every h ∈ {0, . . . ,n−1} and for every 0≤ j1 < j2 < j3 ≤ n−1,

[h, j1][ j2, j3]− [h, j2][ j1, j3]+ [h, j3][ j1, j2] = 0. (15)

As in the case of generic matrices, we find an upper bound for the arithmeti-
cal rank of Jn, independent of the field.

Theorem 6.4. Let An the matrix above with entries in a commutative ring R.
For every n≥ 4,

ara(Jn)≤ 2n−5.

Proof. For n ≥ 4, the ideal Jn contains both monomials and minors and it can
be written in the form Jn = J′n + J′′n , where

J′n = (x1xn,x2xn, . . . ,xn−1xn,xn−1xn+1, . . . ,xn−1x2n−2),

J′′n = (xixn+ j− xn+ix j : 1≤ i < j ≤ n−2).

In particular, the ideal J′′n is the ideal of 2-minors of the submatrix Cn of
An, obtained by removing the first and the last column from An. We prove
that ara(Jn) ≤ 2n− 5. To do this we will define n− 1 polynomials containing
all the monomial generators of Jn and 2(n− 2)− 4+ 1 = 2n− 7 polynomials
containing all the binomial generators of Jn. In total we get 3n−8 polynomials
that generate Jn up to radical. Then we will reduce these polynomials to 2n−5
by summing in a suitable way some of the polynomials in the first group to some
of the polynomials in the second group.
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First we define the following polynomials containing all the monomial gen-
erators of Jn:

q1 = xn−1xn,

q2 = x1xn + xn−1xn+1,

q3 = x2xn + xn−1xn+2,

...

qn−1 = xn−2xn + xn−1x2n−2.

From Lemma 2.1, it follows that J′n =
√

(q1, . . . ,qn−1). On the other hand,
by applying Theorem 2.2 we get ara(J′′n ) = 2(n− 2)− 4+ 1 = 2n− 7, where
J′′n =

√
(p1, . . . , p2n−7) and pi is the sum of the minors corresponding to rank i

elements in the poset ∆(Cn) (see (2) and (3)).
For n≥ 4, we prove that Jn =

√
Kn, where

Kn = (p1, . . . , pn−4,q1 + pn−3,q2 + pn−2, . . . ,qn−3 + p2n−7,qn−2,qn−1).

In other words, we consider the lowest n− 4 levels of the poset ∆(Cn) and
the corresponding polynomials p1, . . . , pn−4 will also be generators of Jn up to
radical. Then each of the remaining n−3 polynomials pn−4+i will be summed
to qi for i = 1, . . . ,n−3. Finally we consider qn−2 and qn−1.

Let J̃n = J̃′n + J̃′′n , where

J̃′n = (q1, . . . ,qn−1) and J̃′′n = (p1, . . . , p2n−7).

Notice that
√

J′n =
√

J̃′n and
√

J′′n =
√

J̃′′n . Then

√
Jn =

√
J′n + J′′n =

√√
J′n +

√
J′′n =

√√
J̃′n +

√
J̃′′n =

√
J̃′n + J̃′′n =

√
J̃n,

where the second and the fourth equality are true for any pair of ideals. Hence
it suffices to prove that

√
J̃n =

√
Kn. Of course Kn ⊂ J̃n, thus

√
Kn ⊂

√
J̃n.

Conversely, we show that the generators of J̃n belong to
√

Kn. We know that
p1, . . . , pn−4,qn−2,qn−1 ∈ Kn. We need to prove that

q1, . . . ,qn−3 ∈
√

Kn. (16)

It will follow that pn−3, . . . , p2n−7 ∈
√

Kn, thus J̃n ⊂
√

Kn.
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With respect to the Notation 6.2, the polynomials qi and pn−4+i can be writ-
ten in the form

q1 =−[0,n−1], qi =−[0, i−1]− [i−1,n−1] for i = 2, . . . ,n−1,

pn−4+i =
b n−3+i

2 c−i

∑
k=0

[i+ k,n−2− k] for i = 1, . . . ,n−3.

We know that qn−2,qn−1 ∈ Kn. Let i ∈ {2, . . . ,n−3} and suppose that q j ∈√
Kn for every j ∈ {i+1, . . . ,n−1}. We prove that qi ∈

√
Kn. Notice that

q2
i = qi(qi + pn−4+i)−qi pn−4+i

Since qi + pn−4+i ∈ Kn, it is enough to show that −qi pn−4+i ∈
√

Kn. By
using the Notation 6.2, this element can be rewritten in the form

−qi pn−4+i =
b n−3+i

2 c−i

∑
k=0

(
[0, i−1]+ [i−1,n−1]

)
[i+ k,n−2− k]. (17)

Let k ∈ {0, . . . ,bn−3+i
2 c− i}, then the k-th summand of (17) is(

[0, i−1]+ [i−1,n−1]
)
[i+ k,n−2− k]

= [0, i−1][i+ k,n−2− k]+ [i−1,n−1][i+ k,n−2− k]

= [0, i+ k][i−1,n−2− k]− [0,n−2− k][i−1, i+ k]

+[i+ k,n−1][i−1,n−2− k]− [n−2− k,n−1][i−1, i+ k]

= [i−1,n−2− k]
(
[0, i+ k]+ [i+ k,n−1]

)
−[i−1, i+ k]

(
[0,n−2− k]+ [n−2− k,n−1]

)
=−[i−1,n−2− k]qi+k+1 +[i−1, i+ k]qn−k−1,

where the second equality follows from the Plücker relations (15) with respect
to the indices h = 0, j1 = i− 1, j2 = i+ k, j3 = n− 2− k for the first summand
and h = n− 1, j1 = i− 1, j2 = i+ k, j3 = n− 2− k for the second summand.
Hence

−qi pn−4+i =
b n−3+i

2 c−i

∑
k=0

(
− [i−1,n−2− k]qi+k+1 +[i−1, i+ k]qn−k−1

)
,
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where qi+k+1,qn−k−1 ∈
√

Kn since i+k+1 and n−k−1 are both greater than i
and less than or equal to n−1. Thus q2

i ∈
√

Kn and therefore qi, pn−4+i ∈
√

Kn.
It remains to prove that q1 ∈

√
Kn. Notice that

q2
1 = q1(q1 + pn−3)−q1 pn−3

Since q1 + pn−3 ∈ Kn, it is enough to show that −q1 pn−3 ∈
√

Kn. By using
the Notation 6.2, this element can be rewritten in the form

−q1 pn−3 =
b n−2

2 c−1

∑
k=0

[0,n−1][1+ k,n−2− k]. (18)

Let k ∈ {0, . . . ,bn−2
2 c−1}, then the k-th summand of (18) is

[0,n−1][1+ k,n−2− k] =

[0,1+ k][n−2− k,n−1]− [0,n−2− k][1+ k,n−1]

= [0,1+ k][n−2− k,n−1]− [0,n−2− k][1+ k,n−1]

+[1+ k,n−1][n−2− k,n−1]− [1+ k,n−1][n−2− k,n−1]

= [n−2− k,n−1]
(
[0,1+ k]+ [1+ k,n−1]

)
−

[1+ k,n−1]
(
[0,n−2− k]+ [n−2− k,n−1]

)
=−[n−2− k,n−1]q2+k +[1+ k,n−1]qn−k−1,

where the first equality follows from the Plücker relations (15) with respect to
the indices h = 0, j1 = 1+ k, j2 = n−2− k, j3 = n−1. Hence

−q1 pn−3 =
b n−2

2 c−1

∑
k=0

(
− [n−2− k,n−1]q2+k +[1+ k,n−1]qn−k−1

)
,

where q2+k,qn−k−1 ∈
√

Kn since 2+ k and n− k−1 are both greater than 1 and
less than or equal to n−1. Thus q2

1 ∈
√

Kn and therefore q1, pn−3 ∈
√

Kn.

Now we compute the cohomological dimension of Jn. Again, as for the
generic matrices, it depends on the characteristic of the field.

Theorem 6.5. Let n ≥ 2, R = K[x1, . . . ,x2n−2] and Jn = I2(An) be the ideal
generated by the 2-minors of An. Then

i) ht(J2) = cd(J2) = ara(J2) = 1 and ht(J3) = cd(J3) = ara(J3) = 2,
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ii) for n≥ 4,

cd(Jn) =

{
ht(Jn) = n−1 if char(K) = p > 0
ara(Jn) = 2n−5 if char(K) = 0

.

First we consider the case char(K) = 0. Under this assumption, not only we
prove that cd(Jn) = 2n−5, but we also show the vanishing of all local cohomol-
ogy modules with indices between ht(Jn) and 2n−5.

Theorem 6.6. Let K be a field of characteristic 0 and R = K[x1, . . . ,x2n−2]. For
every n≥ 4,

H i
Jn
(R) 6= 0⇐⇒ i = n−1 or i = 2n−5.

In particular, cdR(Jn) = 2n−5.

Notation 6.7. We fix S = K[x,y,x1, . . . ,x2n−2] and A = S/(x), then R = A/(y) =
S/(x,y). We consider the generic (2×n)-matrix Mn over S

Mn =

(
x x1 · · · xn−2 xn−1
xn xn+1 · · · x2n−2 y

)
and I = I2(Mn) the ideal of 2-minors of Mn. Notice that, if x = y = 0, the ideal
I coincides with the ideal Jn. In other words, Jn = IR.

The basic idea is to reduce the vanishing of H i
IR(R) to the vanishing of H i

I(S)
by using the multiplication maps by x and by y. The modules H i

I(S) are well-
understood thanks to the following results due to Witt and Lyubeznik, Singh and
Walther.

Theorem 6.8 (Witt, [25, Theorem 1.1]). Let S and I be as above. Then

H i
I(S) 6= 0⇐⇒ i = n−1 or i = 2n−3.

Theorem 6.9 (Lyubeznik, Singh, Walther, [17, Theorem 1.2]). Let S and I be
as above, and let m= (x,y,x1, . . . ,x2n−2) the homogeneous maximal ideal of S.
Then we have an isomorphism of S-modules

H2n−3
I (S)∼= H2n

m (S).

Proof of Theorem 6.6. It is clear that Hn−1
Jn

(R) 6= 0 and H i
Jn
(R) = 0 for i < n−1,

since ht(Jn) = n−1. By Theorem 6.4, we have also H i
Jn
(R) = 0 for i > 2n−5.

For n = 4, one has that 2n−5 = 3 = ht(J4), then H3
J4
(R) 6= 0.

Now let n≥ 5 and let S, A and I be as in Notation 6.7.
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We consider the map S ·x−→ S, it induces a long exact sequence of local coho-
mology modules:

· · · → H j
I (S)→ H j

IA(A)→ H j+1
I (S) ·x−→ H j+1

I (S)→ ·· · . (19)

For j = 2n−4 we get

H2n−4
IA (A) = ker

(
H2n−3

I (S) ·x−→ H2n−3
I (S)

)
,

since H2n−4
I (S) = 0 by Theorem 6.8. On the other hand, by using the Čech

complex, it is easy to see that

H2n−1
mA (A) = ker

(
H2n
m (S) ·x−→ H2n

m (S)
)
.

Then the isomorphism of Theorem 6.9 yields H2n−4
IA (A)∼=H2n−1

mA (A), the lat-
ter being non-zero since mA is the homogeneous maximal ideal of A. Moreover,
by Theorem 6.8, if n− 1 < j < 2n− 4, then H j

I (S) = H j+1
I (S) = 0. Therefore

H j
IA(A) = 0 by virtue of (19).

Now we consider the multiplication map A
·y−→ A and the corresponding long

exact sequence:

· · · → H i
IA(A)→ H i

IR(R)→ H i+1
IA (A)

·y−→ H i+1
IA (A)→ ··· . (20)

For i = 2n−5, from Theorem 6.9 it follows that

H2n−5
IR (R) = ker

(
H2n−4

IA (A)
·y−→ H2n−4

IA (A)
)∼=

ker
(
H2n−1
mA (A)

·y−→ H2n−1
mA (A)

)
= H2n−2

mR (R),

since H2n−5
IA (A) = 0 and H2n−2

mA (A) = 0. Then mR is the homogeneous maximal
ideal of R, hence H2n−2

mR (R) 6= 0. This implies H2n−5
Jn

(R) 6= 0, since Jn = IR.
It remains to prove that H i

Jn
(R) = 0 for n− 1 < i < 2n− 5. For such i, we

have H i
IA(A) = H i+1

IA (A) = 0, as shown above. Then (20) yields H i
IR(R) = 0, as

required.

Proof of Theorem 6.5. For n = 2, the ideal J2 is principal, thus cd(J2) =
ara(J2) = 1. For n = 3, we have cd(J3) = ara(J3) = 2, as computed in Ex-
ample 3.4. Let n ≥ 4. If char(K) = 0, the claim follows from Theorem 6.6. If
char(K) = p > 0, the claim follows from [19, Proposition 4.1, p. 110], since Jn

is a perfect ideal. In fact, ht(Jn) = grade(Jn) = n−1. Moreover, by [7, Theorem
2, p. 201], pdR(R/I) = n−2+1 = n−1.
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