SUFFICIENT CONDITION FOR GENERALIZED SAKAGUCHI TYPE SPIRAL-LIKE FUNCTIONS

TRAILOKYA PANIGRAHI

In the present paper, the author defines a class of analytic generalized Sakaguchi type spiral-like functions on the open unit disk \(U \) and obtain certain sufficient condition for functions to be in this class. Several corollaries and consequences of the main results are also considered.

1. Introduction and Motivation

Let \(A_n \) denote the class of all functions \(f(z) \) of the form:

\[
f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k
\]

which are analytic in the open unit disk

\[
U := \{ z \in \mathbb{C} : |z| < 1 \}.
\]

In particular, for \(n = 1 \) we write \(A_1 := A \).

A function \(f(z) \in A_n \) is said to be starlike of order \(\alpha \) if it satisfies the inequality

\[
\Re \left[\frac{zf'(z)}{f(z)} \right] > \alpha \quad (0 \leq \alpha < 1; \ z \in U).
\]
We denote such class by $S_n^*(\alpha)$. For $n = 1$, we denote such class by $S^*(\alpha)$. Further, a function $f \in A_n$ is said to be λ-spiral-like function of order β denoted by $SP_n(\lambda, \beta)$ if and only if the following inequality holds true:

$$\Re \left[e^{i\lambda} \frac{zf'(z)}{f(z)} \right] > \beta \quad (0 \leq \beta < 1, \quad |\lambda| < \frac{\pi}{2}; \quad z \in \mathbb{U}).$$

(3)

For $\beta = 0$ and $n = 1$, the class $SP_1(\lambda, 0)$ reduces to $S_p(\lambda)$ (see [1]). Špaček [2] proved that members of $S_p(\lambda)$ known as λ-spiral-like functions that are univalent in the unit disk \mathbb{U}.

Recently, Goyal et al. [3] introduced and studied the class $S_n(\beta, t)$ as follows. A function $f(z) \in A_n$ is said to be in the class $S_n(\beta, t)$ if it satisfies

$$\Re \left[\frac{(1-t)zf'(z)}{f(z) - f(tz)} \right] > \beta \quad (|t| \leq 1, \quad |t| \neq 1)$$

(4)

for some β $(0 \leq \beta < 1)$ and for all $z \in \mathbb{U}$.

Motivated by above mentioned work, we define the subclass of A_n as follows:

Definition 1.1. A function $f(z) \in A_n$ is said to be in the generalized Sakaguchi type spiral-like class $S_n(\lambda, \beta, s, t)$ if it satisfies

$$\Re \left[e^{i\lambda} \frac{(s-t)zf'(sz)}{f(sz) - f(tz)} \right] > \beta \cos \lambda \quad (z \in \mathbb{U}),$$

(5)

for some β $(0 \leq \beta < 1)$, s and t are real parameters, $s > t$ and λ is real with $|\lambda| < \frac{\pi}{2}$.

By specializing the parameters $\lambda, \ n, \ s, \ t$ and β, we obtain the following subclasses studied by earlier authors. For

- $\lambda = 0, \ s = 1$, the class $S_n(0, \beta, 1, t) = S_n(\beta, t)$ has been studied by Goyal et al. [3];
- $s = n = 1, \lambda = 0$, the class $S_1(0, \beta, 1, t) = S(\beta, t)$ has been studied by Owa et al. [4, 5], Goyal and Goswami [6] and Cho et al. [7];
- $s = 1, \lambda = 0, \ n = 1, \ \beta = 0, \ t = -1$, the class $S_1(0, 0, 1, -1) = S(0, -1)$ has introduced and studied by Sakaguchi [8].

We note that for $\lambda = 0, \ n = 1, \ s = 1, \ t = 0$, the above class reduce to the well-known subclass of A consisting of univalent starlike functions of order β [9].

The object of the present paper is to obtain certain sufficient condition for a function $f \in A_n$ to be in the class $S_n(\lambda, \beta, s, t)$.

We need the following lemma for our investigation:

```
```
Lemma 1.2 (see [10]). Let \(\Omega \) be a set in the complex plane \(\mathbb{C} \) and suppose that \(\phi \) is a mapping from \(\mathbb{C}^2 \times U \) to \(\mathbb{C} \) which satisfies \(\phi(ix,y,z) \notin \Omega \) for \(z \in U \), and for all real \(x, y \) such that \(y \leq \frac{n}{2}(1+x^2) \). If the function \(p(z) = 1+c_nz^n+\cdots \) is analytic in \(U \) and \(\phi(p(z),zp'(z);z) \in \Omega \) for all \(z \in U \), then \(\Re(p(z)) > 0 \).

2. Main Results

Unless otherwise stated, we assume throughout our sequel, that \(\lambda \) is real with \(|\lambda| < \frac{\pi}{2} \), \(0 \leq \beta < 1 \), \(n \in \mathbb{N} \), \(s \) and \(t \) are reals such that \(s > t \).

Theorem 2.1. If \(f(z) \in A_n \) satisfies

\[
\Re \left[\left(e^{i\lambda} \frac{(s-t)^2zf'(sz)}{f(sz) - f(tz)} \right) \left(\frac{\alpha szf''(sz)}{f'(sz)} + \frac{\alpha tf'(tz)}{f(sz) - f(tz)} + 1 \right) \right] > \frac{Q^2}{4P} + R, \tag{6}
\]

where \(0 \leq \alpha \leq 1 \) and

\[
P = \alpha(1-\beta) \left\{ \frac{n}{2}(s-t) + s(1-\beta)\cos^2 \lambda \right\} \cos \lambda, \tag{7}
\]

\[
Q = \alpha s(1-\beta)(\beta \cos \lambda - 1)\sin 2\lambda \cos \lambda, \tag{8}
\]

\[
R = \left[\beta(1-\alpha) - \frac{n\alpha}{2}(1-\beta) \right] (s-t)\cos \lambda + \alpha s\beta^2 \cos^3 \lambda + \alpha s \left(\beta - \frac{1}{2} \right) \sin \lambda \sin 2\lambda, \tag{9}
\]

then \(f(z) \in S_n(\lambda,\beta,s,t) \).

Proof. Define the function \(p(z) \) by

\[
e^{i\lambda} \frac{(s-t)zf'(sz)}{f(sz) - f(tz)} = [(1-\beta)p(z) + \beta] \cos \lambda + isin \lambda. \tag{10}
\]

Then \(p(z) = 1+c_nz^n+\cdots \) is analytic in \(U \) with \(p(0) = 1 \).

Taking logarithmic differentiation on both sides of (10) with respect to \(z \), we get

\[
\frac{\alpha szf''(sz)}{f'(sz)} + \frac{\alpha tf'(tz)}{f(sz) - f(tz)} + 1 = \frac{\alpha szf'(sz)}{f(sz) - f(tz)}
\]

\[
+ \left[(1-\beta)p(z) + \beta \right] \cos \lambda + isin \lambda + 1 - \alpha. \tag{11}
\]
Therefore, it follows that

\[
\frac{e^{i\lambda} (s - t)^2 z f'(sz)}{f(sz) - f(tz)} \left[\frac{\alpha sz f''(sz)}{f'(sz)} + \frac{\alpha tz f'(tz)}{f(sz) - f(tz)} + 1 \right] = Lzp'(z) + Mp^2(z) + Np(z) + O = \phi(p(z), zp'(z); z) \text{ (say),}
\]

where

\[
L = (s-t)(1-\beta)cos\lambda,
\]

\[
M = \alpha se^{-i\lambda} (1-\beta)^2 cos^2\lambda,
\]

\[
N = (1-\beta)[(1-\alpha)(s-t)cos\lambda + \alpha se^{-i\lambda}(2\beta cos^2\lambda + i sin2\lambda)],
\]

\[
O = (1-\alpha)(s-t)(\beta cos\lambda + i sin\lambda) + \alpha se^{-i\lambda}(2\beta^2 cos^2\lambda - sin^2\lambda + i\beta sin2\lambda).
\]

Now, for all real \(x \) and \(y \) satisfying \(y \leq -\frac{m}{2}(1 + x^2) \), we have

\[
\phi(ix, y; z) = Ly - Mx^2 + iNx + O
\]

Taking real part on both side of (13), we have

\[
\Re\phi(ix, y; z) \leq -Px^2 + Qx + R
\]

\[
= -\left[\sqrt{P}x - \frac{Q}{2\sqrt{P}} \right]^2 + \frac{Q^2}{4P} + R
\]

\[
\leq \frac{Q^2}{4P} + R,
\]

where \(P, Q \) and \(R \) are given by (7), (8) and (9) respectively.

Let

\[
\Omega = \{ w : \Re w > \frac{Q^2}{4P} + R \}.
\]

Then

\[
\phi(p(z), zp'(z); z) \in \Omega \quad \text{and} \quad \phi(ix, y; z) \notin \Omega
\]

for all real \(x \) and \(y \) satisfying \(y \leq -\frac{m}{2}(1 + x^2), \ z \in \mathbb{U} \).

Hence by virtue of Lemma 1.2, we obtain the desired result.

If we take \(\lambda = 0 \) in Theorem 2.1, we obtain
Corollary 2.2 (see [11]). If \(f(z) \in \mathcal{A}_n \) satisfies
\[
\Re \left[\left(\frac{(s-t)^2 zf'(sz)}{f(sz) - f(tz)} \right) \left(\frac{\alpha szf''(sz)}{f'(sz)} + \frac{\alpha tf'(tz)}{f(sz) - f(tz)} + 1 \right) \right]
> \alpha \beta \left\{ s\beta + \frac{n}{2} (s-t) - (s-t) \right\} + \left\{ \beta - \frac{n\alpha}{2} \right\} (s-t)
\]
\[
(0 \leq \alpha \leq 1, \ 0 \leq \beta < 1, \ s > t; \ z \in \mathbb{U}),
\]
then \(f(z) \in \mathcal{S}_n(\beta, s, t) \).

If we take \(s = 1 \) in Corollary 2.2, we obtain

Corollary 2.3 (see [3]). If \(f(z) \in \mathcal{A}_n \) satisfies
\[
\Re \left[\left(\frac{(1-t)^2 zf'(z)}{f(z) - f(tz)} \right) \left(\frac{\alpha zf''(z)}{f'(z)} + \frac{\alpha tf'(tz)}{f(z) - f(tz)} + 1 \right) \right]
> \alpha \beta \left\{ \beta + \frac{n}{2} (1-t) - (1-t) \right\} + \left\{ \beta - \frac{n\alpha}{2} \right\} (1-t)
\]
\[
(0 \leq \alpha \leq 1, \ 0 \leq \beta < 1, \ |t| \leq 1, \ t \neq 1; \ z \in \mathbb{U}),
\]
then \(f(z) \in \mathcal{S}_n(\beta, t) \).

Taking \(t = -1 \) in Corollary 2.3 gives:

Corollary 2.4. If \(f(z) \in \mathcal{A}_n \) satisfies
\[
\Re \left[\left(\frac{zf'(z)}{f(z) - f(-z)} \right) \left(\frac{\alpha zf''(z)}{f'(z)} - \frac{\alpha zf'(-z)}{f(z) - f(-z)} + 1 \right) \right]
> \frac{\alpha \beta}{4} \left(\beta + n - 2 \right) + \left(\frac{2\beta - n\alpha}{4} \right)
\]
\[
(0 \leq \alpha \leq 1, \ 0 \leq \beta < 1; \ z \in \mathbb{U}),
\]
then \(f(z) \in \mathcal{S}_n(\beta, -1) \).

By taking \(\beta = 0 \) in Corollary 2.4, we have

Corollary 2.5. If \(f(z) \in \mathcal{A}_n \) satisfies
\[
\Re \left[\left(\frac{zf'(z)}{f(z) - f(-z)} \right) \left(\frac{\alpha zf''(z)}{f'(z)} - \frac{\alpha zf'(-z)}{f(z) - f(-z)} + 1 \right) \right] > \frac{-n\alpha}{4}
\]
\[
(0 \leq \alpha \leq 1; \ z \in \mathbb{U}),
\]
then \(f(z) \in \mathcal{S}_n(0, -1) \).
Putting $t = 0$ in Corollary 2.3, we obtain the following result.

Corollary 2.6 (see [12]). If $f(z) \in A_n$ satisfies
\[
\Re \left[\frac{zf'(z)}{f(z)} \left(\frac{\alpha z f''(z)}{f'(z)} + 1 \right) \right] > \alpha \beta \left(\beta + \frac{n}{2} - 1 \right) + \left(\frac{\beta - n \alpha}{2} \right)
\]
\[(0 \leq \alpha \leq 1, \ 0 \leq \beta \leq 1; \ z \in \mathbb{U}),\]
then $f(z) \in S_n(\beta, 0) = S^*_n(\beta)$.

If we take $n = 1$ and $\beta = 0$ in Corollary 2.6, we obtain

Corollary 2.7 (see [13]). If $f \in A$ satisfies the inequality
\[
\Re \left[\frac{zf'(z)}{f(z)} \left(\frac{\alpha z f''(z)}{f'(z)} + 1 \right) \right] > -\frac{\alpha}{2} \quad (z \in \mathbb{U}),
\]
for some $\alpha \ (0 \leq \alpha \leq 1)$, then $f(z) \in S_1(0, 0) = S^*$.

Taking $\lambda = 0, n = 1, \beta = \frac{\alpha}{2}$ and $s = 1$ in Theorem 2.1 yields

Corollary 2.8 (see [12]). If $f(z) \in A$ satisfies the condition
\[
\Re \left[\frac{(1-t)^2zf'(z)}{f(z)-f(tz)} \left(\frac{\alpha z f''(z)}{f'(z)} + \frac{\alpha t z f'(tz)}{f'(z) + 1} \right) \right] > \frac{\alpha^2}{4} (\alpha - (1-t))
\]
\[(|t| \leq 1, \ t \neq 1, \ 0 \leq \alpha \leq 1; z \in \mathbb{U}),\]
then $f(z) \in S_1(0, \frac{\alpha}{2}, 1, t)$.

Putting $t = 0$ in the Corollary 2.8. we have

Corollary 2.9. If $f(z) \in A$ satisfies the condition
\[
\Re \left[\frac{zf'(z)}{f(z)} \left(\frac{\alpha z f''(z)}{f'(z)} + 1 \right) \right] > -\frac{\alpha^2}{4} (1 - \alpha) \quad (z \in \mathbb{U}),
\]
for some $\alpha \ (\alpha \geq 0)$, then $f(z) \in S_1(0, \frac{\alpha}{2}, 1, 0) = S^*(\frac{\alpha}{2})$.

Theorem 2.10. If $f(z) \in A_n$ satisfies the condition
\[
\Re \left[e^{i\lambda} \frac{f(z)}{z} \left(\frac{\alpha z f'(z)}{f(z)} - \alpha + 1 \right) \right] > -\frac{n \alpha}{2} (1 - \beta) \cos \lambda + \beta \cos \lambda, \quad (15)
\]
then
\[
\Re \left[e^{i\lambda} \frac{f(z)}{z} \right] > \beta \cos \lambda \quad (16)
\]
Proof. Consider
\[e^{i\lambda} \frac{f(z)}{z} = [(1 - \beta)p(z) + \beta] \cos \lambda + i \sin \lambda. \] (17)

Taking logarithmic differentiation on both sides of (17) with respect to \(z \) and after simplification, we get
\[e^{i\lambda} \frac{f(z)}{z} \left(\frac{af'(z)}{f(z)} - \alpha + 1 \right) = \alpha(1 - \beta) \cos \lambda z p'(z) \]
\[+ [(1 - \beta)p(z) + \beta] \cos \lambda + i \sin \lambda = \phi(p(z), zp'(z); z). \] (18)

Therefore, for all real \(x \) and \(y \) satisfying \(y \leq -\frac{n}{2}(1 + x^2) \), we obtain
\[\phi(ix, y; z) = \alpha(1 - \beta)ycos \lambda + [(1 - \beta)ix + \beta] \cos \lambda + isin \lambda. \] (19)

Taking real part on both sides of (19), we have
\[\Re \phi(ix, y; z) = \alpha(1 - \beta)ycos \lambda + \beta cos \lambda \]
\[\leq \alpha(1 - \beta)cos \lambda \left(-\frac{n}{2}(1 + x^2) \right) + \beta cos \lambda \]
\[= -\frac{n\alpha}{2}(1 - \beta)x^2 \cos \lambda - \frac{n\alpha}{2}(1 - \beta) \cos \lambda + \beta \cos \lambda \]
\[\leq -\frac{n\alpha}{2}(1 - \beta) \cos \lambda + \beta \cos \lambda. \] (20)

Let \(\Omega = \{ w : \Re w > -\frac{n\alpha}{2}(1 - \beta) \cos \lambda + \beta \cos \lambda \} \).

Then from (15), (18) and (20) we obtain \(\phi(p(z), zp'(z); z) \in \Omega \) and \(\phi(ix, y; z) \notin \Omega \) for all real \(x \) and \(y \) satisfying \(y \leq -\frac{n}{2}(1 + x^2) \). Hence by application of Lemma 1.2, we obtain the desired result. The proof of Theorem 2.10 is thus completed.

Acknowledgements

The author thanks the referees for their careful reading, valuable suggestions and comments, which helped to improve the presentation of this paper.
REFERENCES

TRAILOKYA PANIGRAHI
Department of Mathematics
School of Applied Sciences,
KIIT University,
Bhubaneswar-751024,
Orissa, India

e-mail: trailokyap6@gmail.com