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SUFFICIENT CONDITION FOR GENERALIZED
SAKAGUCHI TYPE SPIRAL-LIKE FUNCTIONS

TRAILOKYA PANIGRAHI

In the present paper, the author defines a class of analytic generalized
Sakaguchi type spiral-like functions on the open unit disk U and obtain
certain sufficient condition for functions to be in this class. Several corol-
laries and consequences of the main results are also considered.

1. Introduction and Motivation

Let An denote the class of all functions f (z) of the form:

f (z) = z+
∞

∑
k=n+1

akzk (1)

which are analytic in the open unit disk

U := {z ∈ C : |z|< 1}.

In particular, for n = 1 we write A1 :=A.
A function f (z) ∈An is said to be starlike of order α if it satisfies the inequality

ℜ

[
z f ′(z)
f (z)

]
> α (0≤ α < 1; z ∈ U). (2)
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We denote such class by S∗n (α). For n = 1, we denote such class by S∗(α).
Further, a function f ∈An is said to be λ -spiral-like function of order β denoted
by SPn(λ ,β ) if and only if the following inequality holds true:

ℜ

[
eiλ z f ′(z)

f (z)

]
> β (0≤ β < 1, |λ |< π

2
; z ∈ U). (3)

For β = 0 and n = 1, the class SP1(λ ,0) reduces to Sp(λ ) (see [1]). Špaěck
[2] proved that members of Sp(λ ) known as λ -spiral-like functions that are
univalent in the unit disk U.

Recently, Goyal et al. [3] introduced and studied the class Sn(β , t) as fol-
lows. A function f (z) ∈ An is said to be in the class Sn(β , t) if it satisfies

ℜ

[
(1− t)z f ′(z)
f (z)− f (tz)

]
> β (|t| ≤ 1, |t| 6= 1) (4)

for some β (0≤ β < 1) and for all z ∈ U.
Motivated by above mentioned work, we define the subclass of An as fol-

lows:

Definition 1.1. A function f (z) ∈An is said to be in the generalized Sakaguchi
type spiral-like class Sn(λ ,β ,s, t) if it satisfies

ℜ

[
eiλ (s− t)z f ′(sz)

f (sz)− f (tz)

]
> βcosλ (z ∈ U), (5)

for some β (0 ≤ β < 1), s and t are real parameters, s > t and λ is real with
|λ |< π

2 .

By specializing the parameters λ , n, s, t and β , we obtain the following
subclasses studied by earlier authors. For

• λ = 0, s = 1, the class Sn(0,β ,1, t) = Sn(β , t) has been studied by Goyal
et al. [3];

• s = n = 1,λ = 0, the class S1(0,β ,1, t) = S(β , t) has been studied by
Owa et al. [4, 5], Goyal and Goswami [6] and Cho et al. [7];

• s= 1, λ = 0, n= 1, β = 0, t =−1, the class S1(0,0,1,−1) =S(0,−1)
has introduced and studied by Sakaguchi [8].

We note that for λ = 0, n = 1, s = 1, t = 0, the above class reduce to the
well-known subclass of A consisting of univalent starlike functions of order β

[9].
The object of the present paper is to obtain certain sufficient condition for a
function f ∈ An to be in the class Sn(λ ,β ,s, t).
We need the following lemma for our investigation:
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Lemma 1.2 (see [10]). Let Ω be a set in the complex plane C and suppose that
φ is a mapping from C2×U to C which satisfies φ(ix,y,z) /∈ Ω for z ∈ U, and
for all real x, y such that y ≤ −n

2 (1+ x2). If the function p(z) = 1+ cnzn + · · ·
is analytic in U and φ(p(z),zp′(z);z) ∈Ω for all z ∈ U, then ℜ(p(z))> 0.

2. Main Results

Unless otherwise stated, we assume throughout our sequel, that λ is real with
|λ |< π

2 , 0≤ β < 1, n ∈ N, s and t are reals such that s > t.

Theorem 2.1. If f (z) ∈ An satisfies

ℜ

[(
eiλ (s− t)2z f ′(sz)

f (sz)− f (tz)

)(
αsz f ′′(sz)

f ′(sz)
+

αtz f ′(tz)
f (sz)− f (tz)

+1
)]

>
Q2

4P
+R, (6)

where 0≤ α ≤ 1 and

P = α(1−β )
{n

2
(s− t)+ s(1−β )cos2

λ

}
cosλ , (7)

Q = αs(1−β )(βcosλ −1)sin2λcosλ , (8)

R =
[
β (1−α)− nα

2
(1−β )

]
(s− t)cosλ +αsβ

2cos3
λ

+αs
(

β − 1
2

)
sinλ sin2λ , (9)

then f (z) ∈ Sn(λ ,β ,s, t).

Proof. Define the function p(z) by

eiλ (s− t)z f ′(sz)
f (sz)− f (tz)

= [(1−β )p(z)+β ]cosλ + isinλ . (10)

Then p(z) = 1+ cnzn + · · · is analytic in U with p(0) = 1.
Taking logarithmic differentiation on both sides of (10) with respect to z, we get
after simplification

αsz f ′′(sz)
f ′(sz)

+
αtz f ′(tz)

f (sz)− f (tz)
+1 =

αsz f ′(sz)
f (sz)− f (tz)

+
α(1−β )zp′(z)cosλ

[(1−β )p(z)+β ]cosλ + isinλ
+1−α. (11)
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Therefore, it follows that

eiλ (s− t)2z f ′(sz)
f (sz)− f (tz)

[
αsz f ′′(sz)

f ′(sz)
+

αtz f ′(tz)
f (sz)− f (tz)

+1
]

= Lzp′(z)+Mp2(z)+N p(z)+O

= φ(p(z),zp′(z);z)(say), (12)

where

L = α(s− t)(1−β )cosλ

M = αse−iλ (1−β )2cos2
λ

N = (1−β )[(1−α)(s− t)cosλ +αse−iλ (2βcos2
λ + isin2λ )]

O = (1−α)(s− t)[βcosλ + isinλ ]+αse−iλ (β 2cos2
λ − sin2

λ + iβ sin2λ ).

Now, for all real x and y satisfying y≤ −n
2 (1+ x2), we have

φ(ix,y;z) = Ly−Mx2 + iNx+O (13)

Taking real part on both side of (13), we have

ℜφ(ix,y;z)≤−Px2 +Qx+R

=−
[√

Px− Q
2
√

P

]2

+
Q2

4P
+R

≤ Q2

4P
+R, (14)

where P, Q and R are given by (7), (8) and (9) respectively.
Let

Ω = {w : ℜw >
Q2

4P
+R}.

Then
φ(p(z),zp′(z);z) ∈Ω and φ(ix,y;z) /∈Ω

for all real x and y satisfying y≤ −n
2 (1+ x2), z ∈ U.

Hence by virtue of Lemma 1.2, we obtain the desired result.
If we take λ = 0 in Theorem 2.1, we obtain
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Corollary 2.2 (see [11]). If f (z) ∈ An satisfies

ℜ

[(
(s− t)2z f ′(sz)
f (sz)− f (tz)

)(
αsz f ′′(sz)

f ′(sz)
+

αtz f ′(tz)
f (sz)− f (tz)

+1
)]

> αβ

{
sβ +

n
2
(s− t)− (s− t)

}
+
{

β − nα

2

}
(s− t)

(0≤ α ≤ 1, 0≤ β < 1, s > t; z ∈ U),

then f (z) ∈ Sn(β ,s, t).

If we take s = 1 in Corollary 2.2, we obtain

Corollary 2.3 (see [3]). If f (z) ∈ An satisfies

ℜ

[(
(1− t)2z f ′(z)
f (z)− f (tz)

)(
αz f ′′(z)

f ′(z)
+

αtz f ′(tz)
f (z)− f (tz)

+1
)]

> αβ

{
β +

n
2
(1− t)− (1− t)

}
+
{

β − nα

2

}
(1− t)

(0≤ α ≤ 1, 0≤ β < 1, |t| ≤ 1, t 6= 1; z ∈ U),

then f (z) ∈ Sn(β , t).

Taking t =−1 in Corollary 2.3 gives:

Corollary 2.4. If f (z) ∈ An satisfies

ℜ

[(
z f ′(z)

f (z)− f (−z)

)(
αz f ′′(z)

f ′(z)
− αz f ′(−z)

f (z)− f (−z)
+1
)]

>
αβ

4
(β +n−2)+

(
2β −nα

4

)
(0≤ α ≤ 1, 0≤ β < 1; z ∈ U),

then f (z) ∈ Sn(β ,−1).

By taking β = 0 in Corollary 2.4, we have

Corollary 2.5. If f (z) ∈ An satisfies

ℜ

[(
z f ′(z)

f (z)− f (−z)

)(
αz f ′′(z)

f ′(z)
− αz f ′(−z)

f (z)− f (−z)
+1
)]

>
−nα

4

(0≤ α ≤ 1; z ∈ U),

then f (z) ∈ Sn(0,−1).
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Putting t = 0 in Corollary 2.3, we obtain the following result.

Corollary 2.6 (see [12]). If f (z) ∈ An satisfies

ℜ

[
z f ′(z)
f (z)

(
αz f ′′(z)

f ′(z)
+1
)]

> αβ

(
β +

n
2
−1
)
+
(

β − nα

2

)
(0≤ α ≤ 1, 0≤ β ≤ 1; z ∈ U),

then f (z) ∈ Sn(β ,0) = S∗n (β ).

If we take n = 1 and β = 0 in Corollary 2.6, we obtain

Corollary 2.7 (see [13]). If f ∈ A satisfies the inequality

ℜ

[
z f ′(z)
f (z)

(
αz f ′′(z)

f ′(z)
+1
)]

>−α

2
(z ∈ U),

for some α (0≤ α ≤ 1), then f (z) ∈ S1(0,0) = S∗.

Taking λ = 0,n = 1,β = α

2 and s = 1 in Theorem 2.1 yields

Corollary 2.8 (see [12]). If f (z) ∈ A satisfies the condition

ℜ

[
(1− t)2z f ′(z)
f (z)− f (tz)

{
αz f ′′(z)

f ′(z)
+

αtz f ′(tz)
f (z)− f (tz)

+1
}]

>
α2

4
(α− (1− t))

(|t| ≤ 1, t 6= 1, 0≤ α ≤ 1;z ∈ U),

then f (z) ∈ S1(0, α

2 ,1, t).

Putting t = 0 in the Corollary 2.8. we have

Corollary 2.9. If f (z) ∈ A satisfies the condition

ℜ

[
z f ′(z)
f (z)

(
αz f ′′(z)

f ′(z)
+1
)]

>−α2

4
(1−α) (z ∈ U),

for some α (α ≥ 0), then f (z) ∈ S1(0, α

2 ,1,0) = S
∗(α

2 ).

Theorem 2.10. If f (z) ∈ An satisfies the condition

ℜ

[
eiλ f (z)

z

(
αz f ′(z)

f (z)
−α +1

)]
>
−nα

2
(1−β )cosλ +βcosλ , (15)

then

ℜ

[
eiλ f (z)

z

]
> βcosλ (16)
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Proof. Consider

eiλ f (z)
z

= [(1−β )p(z)+β ]cosλ + isinλ . (17)

Taking logarithmic differentiation on both sides of (17) with respect to z and
after simplification, we get

eiλ f (z)
z

(
αz f ′(z)

f (z)
−α +1

)
= α(1−β )cosλ zp′(z)

+[(1−β )p(z)+β ]cosλ + isinλ = φ(p(z),zp′(z);z). (18)

Therefore, for all real x and y satisfying y≤ −n
2 (1+ x2), we obtain

φ(ix,y;z) = α(1−β )ycosλ +[(1−β )ix+β ]cosλ + isinλ . (19)

Taking real part on both sides of (19), we have

ℜφ(ix,y;z) = α(1−β )ycosλ +βcosλ

≤ α(1−β )cosλ

(
−n

2
(1+ x2)

)
+βcosλ

=−nα

2
(1−β )x2cosλ − nα

2
(1−β )cosλ +βcosλ

≤ −nα

2
(1−β )cosλ +βcosλ . (20)

Let Ω =
{

w : ℜw >−nα

2 (1−β )cosλ +βcosλ
}

.

Then from (15), (18) and (20) we obtain φ(p(z),zp′(z);z) ∈Ω and
φ(ix,y;z) /∈Ω for all real x and y satisfying y≤−n

2(1+ x2). Hence by applica-
tion of Lemma 1.2, we obtain the desired result. The proof of Theorem 2.10 is
thus completed.
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