COEFFICIENT ESTIMATES FOR A CERTAIN SUBCLASS OF BI-UNIVALENT FUNCTIONS

ŞAHSENE ALTINKAYA - SIBEL YALÇIN

In the present investigation, we find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the function class $S_{\Sigma}(\lambda, h)$. The results presented in this paper improve or generalize the recent work of Magesh and Yamini.

1. Introduction and Definitions

Let A denote the class of analytic functions in the unit disk

$$
U=\{z \in \mathbb{C}:|z|<1\}
$$

that have the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

Further, by S we shall denote the class of all functions in A which are univalent in U.

The Koebe one-quarter theorem [9] states that the image of U under every function f from S contains a disk of radius $\frac{1}{4}$. Thus every such univalent function has an inverse f^{-1} which satisfies

$$
f^{-1}(f(z))=z,(z \in U)
$$

Entrato in redazione: 18 giugno 2015

AMS 2010 Subject Classification: 30C45, 30C50.
Keywords: Analytic and univalent functions, bi-univalent functions, bi-starlike and bi-convex functions, coefficient bounds.
and

$$
f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots
$$

A function $f(z) \in A$ is said to be bi-univalent in U if both $f(z)$ and $f^{-1}(z)$ are univalent in U.

Let Σ denote the class of bi-univalent functions defined in the unit disk U. For a brief history and interesting examples in the class Σ, (see [20]).

Lewin [14] studied the class of bi-univalent functions, obtaining the bound 1.51 for modulus of the second coefficient $\left|a_{2}\right|$. Subsequently, Brannan and Clunie [5] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$ for $f \in \Sigma$. Netanyahu [18] showed that $\max \left|a_{2}\right|=\frac{4}{3}$ if $f(z) \in \Sigma$.

Brannan and Taha [4] introduced certain subclasses of the bi-univalent function class Σ similar to the familiar subclasses $S^{\star}(\alpha)$ and $K(\alpha)$ of starlike and convex function of order $\alpha(0<\alpha \leq 1)$ respectively (see [18]). Thus, following Brannan and Taha [4], a function $f(z) \in A$ is said to be in the class $S_{\Sigma}^{\star}(\alpha)$ of strongly bi-starlike functions of order $\alpha(0<\alpha \leq 1)$ if each of the following conditions is satisfied:

$$
f \in \Sigma, \quad\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, z \in U)
$$

and

$$
\left|\arg \left(\frac{w g^{\prime}(w)}{g(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, w \in U)
$$

and is said to be in the class $K_{\Sigma}(\alpha)$ of strongly bi-convex functions of order α $(0<\alpha<1)$ if each of the following conditions is satisfied:

$$
f \in \Sigma, \quad\left|\arg \left(1+\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, z \in U)
$$

and

$$
\left|\arg \left(1+\frac{w g^{\prime}(w)}{g(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, w \in U)
$$

where g is the extension of f^{-1} to U. The classes $S_{\Sigma}^{\star}(\alpha)$ and $K_{\Sigma}(\alpha)$ of bistarlike functions of order α and bi-convex functions of order α, corresponding to the function classes $S^{\star}(\alpha)$ and $K(\alpha)$, were also introduced analogously. For
each of the function classes $S_{\Sigma}^{\star}(\alpha)$ and $K_{\Sigma}(\alpha)$, they found non-sharp estimates on the initial coefficients. In fact, the aforecited work of Srivastava et al. [20] essentially revived the investigation of various subclasses of the bi-univalent function class Σ in recent years. Recently, many authors investigated bounds for various subclasses of bi-univalent functions ($[1-3,7,8,10,13,15-17,19,20$, $22,23]$). Not much is known about the bounds on the general coefficient $\left|a_{n}\right|$ for $n \geq 4$. In the literature, there are only a few works determining the general coefficient bounds $\left|a_{n}\right|$ for the analytic bi-univalent functions ([6, 11, 12]). The coefficient estimate problem for each of $\left|a_{n}\right|(n \in \mathbb{N} \backslash\{1,2\} ; \mathbb{N}=\{1,2,3, \ldots\})$ is still an open problem.

In this paper, by using the method [21] different from that used by other authors, we obtain bounds for the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the subclasses of bi-univalent functions considered by Magesh and Yamini [16] and obtain a better estimate.

2. Coefficient Estimates

Definition 2.1. Let the functions $h, p: U \rightarrow \mathbb{C}$ be so constrained that

$$
\min \{\Re(h(z)), \mathfrak{R}(p(z))\}>0
$$

and

$$
h(0)=p(0)=1
$$

Definition 2.2. A function $f \in \Sigma$ is said to be in the class $S_{\Sigma}(\lambda, h), 0 \leq \lambda \leq 1$, if the following conditions are satisfied:

$$
\begin{equation*}
\frac{z f^{\prime}(z)+\left(2 \lambda^{2}-\lambda\right) z^{2} f^{\prime \prime}(z)}{4\left(\lambda-\lambda^{2}\right) z+\left(2 \lambda^{2}-\lambda\right) z f^{\prime}(z)+\left(2 \lambda^{2}-3 \lambda+1\right) f(z)} \in h(U) \quad(z \in U) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w g^{\prime}(w)+\left(2 \lambda^{2}-\lambda\right) w^{2} g^{\prime \prime}(w)}{4\left(\lambda-\lambda^{2}\right) w+\left(2 \lambda^{2}-\lambda\right) w g^{\prime}(w)+\left(2 \lambda^{2}-3 \lambda+1\right) g(w)} \in p(U) \quad(w \in U) \tag{3}
\end{equation*}
$$

where $g(w)=f^{-1}(w)$.
Theorem 2.3. Let f given by (1) be in the class $\mathrm{S}_{\Sigma}(\lambda, h)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2\left(1+3 \lambda-2 \lambda^{2}\right)^{2}}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4\left(12 \lambda^{4}-28 \lambda^{3}+15 \lambda^{2}+2 \lambda+1\right)}}\right\} \tag{4}
\end{equation*}
$$

and

$$
\begin{align*}
\left|a_{3}\right| \leq \min \{ & \frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2\left(1+3 \lambda-2 \lambda^{2}\right)^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8\left(1+2 \lambda^{2}\right)}, \\
& \left.\frac{\left(12 \lambda^{4}-28 \lambda^{3}+19 \lambda^{2}+2 \lambda+3\right)\left|h^{\prime \prime}(0)\right|+\left|12 \lambda^{4}-28 \lambda^{3}+11 \lambda^{2}+2 \lambda-1\right|\left|p^{\prime \prime}(0)\right|}{8\left(1+2 \lambda^{2}\right)\left(12 \lambda^{4}-28 \lambda^{3}+15 \lambda^{2}+2 \lambda+1\right)}\right\} . \tag{5}
\end{align*}
$$

Proof. Let $f \in S_{\Sigma}(\lambda, h), 0 \leq \lambda \leq 1$. It follows from (2) and (3) that

$$
\begin{equation*}
\frac{z f^{\prime}(z)+\left(2 \lambda^{2}-\lambda\right) z^{2} f^{\prime \prime}(z)}{4\left(\lambda-\lambda^{2}\right) z+\left(2 \lambda^{2}-\lambda\right) z f^{\prime}(z)+\left(2 \lambda^{2}-3 \lambda+1\right) f(z)}=h(z) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w g^{\prime}(w)+\left(2 \lambda^{2}-\lambda\right) w^{2} g^{\prime \prime}(w)}{4\left(\lambda-\lambda^{2}\right) w+\left(2 \lambda^{2}-\lambda\right) w g^{\prime}(w)+\left(2 \lambda^{2}-3 \lambda+1\right) g(w)}=p(w) \tag{7}
\end{equation*}
$$

where $h(z)$ and $p(w)$ satisfy the conditions of Definiton 2.1. Furthermore, the functions $h(z)$ and $p(w)$ have the following Taylor-Maclaurin series expansions:

$$
h(z)=1+h_{1} z+h_{2} z^{2}+\cdots
$$

and

$$
p(w)=1+p_{1} w+p_{2} w^{2}+\cdots
$$

respectively. Since

$$
\begin{align*}
& \frac{z f^{\prime}(z)+\left(2 \lambda^{2}-\lambda\right) z^{2} f^{\prime \prime}(z)}{4\left(\lambda-\lambda^{2}\right) z+\left(2 \lambda^{2}-\lambda\right) z f^{\prime}(z)+\left(2 \lambda^{2}-3 \lambda+1\right) f(z)} \\
& =1+\left(1+3 \lambda-2 \lambda^{2}\right) a_{2} z+\left[\left(12 \lambda^{4}-28 \lambda^{3}+11 \lambda^{2}+2 \lambda-1\right) a_{2}^{2}+\left(4 \lambda^{2}+2\right) a_{3}\right] z^{2}+\cdots \tag{8}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{w g^{\prime}(w)+\left(2 \lambda^{2}-\lambda\right) w^{2} g^{\prime \prime}(w)}{4\left(\lambda-\lambda^{2}\right) w+\left(2 \lambda^{2}-\lambda\right) w g^{\prime}(w)+\left(2 \lambda^{2}-3 \lambda+1\right) g(w)} \\
= & 1-\left(1+3 \lambda-2 \lambda^{2}\right) a_{2} w+\left[\left(12 \lambda^{4}-28 \lambda^{3}+19 \lambda^{2}+2 \lambda+3\right) a_{2}^{2}-\left(4 \lambda^{2}+2\right) a_{3}\right] w^{2}+\cdots, \tag{9}
\end{align*}
$$

it follows from (6), (7), (8) and (9) that

$$
\begin{gather*}
\left(1+3 \lambda-2 \lambda^{2}\right) a_{2}=h_{1} \tag{10}\\
\left(12 \lambda^{4}-28 \lambda^{3}+11 \lambda^{2}+2 \lambda-1\right) a_{2}^{2}+\left(4 \lambda^{2}+2\right) a_{3}=h_{2} \tag{11}
\end{gather*}
$$

and

$$
\begin{equation*}
-\left(1+3 \lambda-2 \lambda^{2}\right) a_{2}=p_{1} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\left(12 \lambda^{4}-28 \lambda^{3}+19 \lambda^{2}+2 \lambda+3\right) a_{2}^{2}-\left(4 \lambda^{2}+2\right) a_{3}=p_{2} \tag{13}
\end{equation*}
$$

From (10) and (12) we obtain

$$
h_{1}=-p_{1}
$$

and

$$
\begin{equation*}
2\left(1+3 \lambda-2 \lambda^{2}\right)^{2} a_{2}^{2}=h_{1}^{2}+p_{1}^{2} \tag{14}
\end{equation*}
$$

By adding (13) to (11), we find that

$$
\begin{equation*}
2\left(12 \lambda^{4}-28 \lambda^{3}+15 \lambda^{2}+2 \lambda+1\right) a_{2}^{2}=h_{2}+p_{2} \tag{15}
\end{equation*}
$$

Therefore, we find from (14) and (15) that

$$
\left|a_{2}\right|^{2} \leq \frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2\left(1+3 \lambda-2 \lambda^{2}\right)^{2}}
$$

and

$$
\left|a_{2}\right|^{2} \leq \frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4\left(12 \lambda^{4}-28 \lambda^{3}+15 \lambda^{2}+2 \lambda+1\right)}
$$

So we get the desired estimate on the coefficient $\left|a_{2}\right|$ as claimed in (4).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (13) from (11), we obtain

$$
2\left(2+4 \lambda^{2}\right) a_{3}-2\left(2+4 \lambda^{2}\right) a_{2}^{2}=h_{2}-p_{2}
$$

Then, in view of (14) and (15), it follows that

$$
a_{3}=\frac{h_{1}^{2}+p_{1}^{2}}{2\left(1+3 \lambda-2 \lambda^{2}\right)^{2}}+\frac{h_{2}-p_{2}}{2\left(2+4 \lambda^{2}\right)}
$$

and

$$
a_{3}=\frac{h_{2}+p_{2}}{2\left(12 \lambda^{4}-28 \lambda^{3}+15 \lambda^{2}+2 \lambda+1\right)}+\frac{h_{2}-p_{2}}{2\left(2+4 \lambda^{2}\right)}
$$

as claimed. This completes the proof of Theorem 2.3.
Remark 2.4. We note that for $\lambda=\frac{1}{2}$, the class $S_{\Sigma}(\lambda, h)$ reduces to the class $H_{\Sigma}(h)$ studied by Srivastava et al. [21].
Corollary 2.5 (see [21]). When $\lambda=\frac{1}{2}$ the results discussed in this article reduce to results in ([21], Corollary 3). If $f \in H_{\Sigma}(h)$ then

$$
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{8}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{12}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{8}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{12}, \frac{\left|h^{\prime \prime}(0)\right|}{6}\right\}
$$

Corollary 2.6. If

$$
\phi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z^{2}+\ldots \quad(0<\alpha \leq 1)
$$

then inequalities (4) and (5) become

$$
\left|a_{2}\right| \leq \min \left\{\frac{2 \alpha}{1+3 \lambda-2 \lambda^{2}}, \sqrt{\frac{2}{12 \lambda^{4}-28 \lambda^{3}+15 \lambda^{2}+2 \lambda+1}} \alpha\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{4 \alpha^{2}}{\left(1+3 \lambda-2 \lambda^{2}\right)^{2}}+\frac{\alpha^{2}}{1+2 \lambda^{2}}, \frac{2 \alpha^{2}}{1+2 \lambda^{2}}\right\}
$$

Remark 2.7. The estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of Corollary 2.6 are improvement of the estimates obtained in (Theorem 2.1, [16] and Corollary 2.3, [15]).

Remark 2.8. By setting $\lambda=0$ in Corollary 2.6 we get the following consequence.

Corollary 2.9. Let the functions $f(z)$ given by Taylor-Maclaurin series expansion (1) be in the bi-univalent function class $S_{\Sigma}^{\star}(\alpha)(0<\alpha \leq 1)$. Then

$$
\left|a_{2}\right| \leq \sqrt{2} \alpha
$$

and

$$
\left|a_{3}\right| \leq 2 \alpha^{2}
$$

Corollary 2.10. If

$$
\phi(z)=\frac{1+(1-2 \alpha) z}{1-z}=1+2(1-\alpha) z+2(1-\alpha) z^{2}+\cdots \quad(0<\alpha \leq 1)
$$

then inequalities (4) and (5) become

$$
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\alpha)}{1+3 \lambda-2 \lambda^{2}}, \sqrt{\frac{2(1-\alpha)}{12 \lambda^{4}-28 \lambda^{3}+15 \lambda^{2}+2 \lambda+1}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{4(1-\alpha)^{2}}{\left(1+3 \lambda-2 \lambda^{2}\right)^{2}}+\frac{1-\alpha}{1+2 \lambda^{2}}, \frac{(1-\alpha)}{1+2 \lambda^{2}}\right\}
$$

Remark 2.11. The estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of Corollary 2.10 are improvement of the estimates obtained in (Theorem 3.1, [16] and Corollary 3.3, [15]).

Remark 2.12. By setting $\lambda=0$ in Corollary 2.10 we get the following consequence.

Corollary 2.13 (see [21]). Let the functions $f(z)$ given by Taylor-Maclaurin series expansion (1) be in the bi-univalent function class $S_{\Sigma}^{\star}(\alpha)(0<\alpha \leq 1)$. Then

$$
\left|a_{2}\right| \leq \sqrt{2(1-\alpha)}
$$

and

$$
\left|a_{3}\right| \leq 1-\alpha .
$$

REFERENCES

[1] Ş. Altınkaya - S. Yalçın, Initial coefficient bounds for a general class of biunivalent functions, International Journal of Analysis, Article ID 867871, (2014), 4 pp .
[2] Ş. Altınkaya - S. Yalçın, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Acta Universitatis Apulensis 40 (2014), 347-354.
[3] Ş. Altınkaya - S. Yalçın, Coefficient Estimates for Two New Subclasses of Biunivalent Functions with respect to Symmetric Points, Journal of Function Spaces, Article ID 145242, (2015), 5 pp.
[4] D. A. Brannan - T. S. Taha, On some classes of bi-univalent functions, Studia Universitatis Babeş-Bolyai, Mathematica 31 (2) (1986), 70-77.
[5] D. A. Brannan - J. G. Clunie, Aspects of comtemporary complex analysis, (Proceedings of the NATO Advanced Study Institute held at University of Durham: July 1-20, 1979). New York, Academic Press, 1980.
[6] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I 352 (6) (2014), 479484.
[7] M. Caglar - H. Orhan - N. Yagmur, Coefficient bounds for new subclasses of biunivalent functions, Filomat 27 (2013), 1165-1171.
[8] O. Crişan, Coefficient estimates for certain subclasses of bi-univalent functions, Gen. Math. Notes, 16 (2) (2013), 93-102.
[9] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer, New York, USA, , 1983.
[10] B. A. Frasin - M. K. Aouf, New subclasses of bi-univalent functions, Applied Mathematics Letters 24 (2011), 1569-1573.
[11] S. G. Hamidi - J. M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser.I 352 (1) (2014), 17-20.
[12] J. M. Jahangiri - S. G. Hamidi, Coefficient estimates for certain classes of biunivalent functions, Int. J. Math. Math. Sci., ArticleID 190560, (2013), 4 pp.
[13] B. Srutha Keerthi - B. Raja, Coefficient inequality for certain new subclasses of analytic bi-univalent functions, Theoretical Mathematics and Applications 3 (1) (2013), 1-10.
[14] M. Lewin, On a coefficient problem for bi-univalent functions, Proceeding of the American Mathematical Society 18 (1967), 63-68.
[15] X. F. Li - A. P. Wang, Two new subclasses of bi-univalent functions, Internat. Math. Forum 7 (2012), 1495-1504.
[16] N. Magesh - J. Yamini, Coefficient bounds for a certain subclass of bi-univalent functions, International Mathematical Forum 8 (27) (2013), 1337-1344.
[17] G. Murugunsundaramoorthy - N. Magesh - V. Prameela, Coefficient bounds for certain subclasses of bi-univalent functions, Abstr. Appl. Anal., Article ID 573017, (2013), 1-3.
[18] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$,, Archive for Rational Mechanics and Analysis 32 (2) (1969), 100-112.
[19] S. Porwal - M. Darus, On a new subclass of bi-univalent functions, J. Egypt. Math. Soc. 21 (3) (2013), 190-193.
[20] H. M. Srivastava - A. K. Mishra - P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters 23 (10) (2010), 1188-1192.
[21] H. M. Srivastava - S. Bulut - M. Çağlar - N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (5) (2013), 831-842.
[22] Q. H. Xu - Y. C. Gui - H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Applied Mathematics Letters 25 (2012), 990-994.
[23] Q. H. Xu - H. G. Xiao - H. M. Srivastava A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), 11461-11465.

ŞAHSENE ALTINKAYA
Department of Mathematics, Faculty of Arts and Science
Uludag University
e-mail: sahsene@uludag.edu.tr
SIBEL YALÇIN
Department of Mathematics, Faculty of Arts and Science
Uludag University
e-mail: syalcin@uludag.edu.tr

