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COEFFICIENT ESTIMATES FOR A CERTAIN SUBCLASS
OF BI-UNIVALENT FUNCTIONS

ŞAHSENE ALTINKAYA - SIBEL YALÇIN

In the present investigation, we find estimates on the coefficients |a2|
and |a3| for functions in the function class SΣ (λ ,h). The results pre-
sented in this paper improve or generalize the recent work of Magesh and
Yamini.

1. Introduction and Definitions

Let A denote the class of analytic functions in the unit disk

U = {z ∈ C : |z|< 1}

that have the form

f (z) = z+
∞

∑
n=2

anzn. (1)

Further, by S we shall denote the class of all functions in A which are univalent
in U.

The Koebe one-quarter theorem [9] states that the image of U under every
function f from S contains a disk of radius 1

4 . Thus every such univalent function
has an inverse f−1 which satisfies

f−1 ( f (z)) = z , (z ∈U)
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and

f
(

f−1 (w)
)
= w ,

(
|w|< r0 ( f ) , r0 ( f )≥ 1

4

)
,

where

f−1 (w) = w −a2w2 +
(
2a2

2−a3
)

w3−
(
5a3

2−5a2a3 +a4
)

w4 + · · · .

A function f (z) ∈ A is said to be bi-univalent in U if both f (z) and f−1 (z)
are univalent in U.

Let Σ denote the class of bi-univalent functions defined in the unit disk U.
For a brief history and interesting examples in the class Σ, (see [20]).

Lewin [14] studied the class of bi-univalent functions, obtaining the bound
1.51 for modulus of the second coefficient |a2|. Subsequently, Brannan and
Clunie [5] conjectured that |a2| ≤

√
2 for f ∈ Σ. Netanyahu [18] showed that

max |a2|= 4
3 if f (z) ∈ Σ.

Brannan and Taha [4] introduced certain subclasses of the bi-univalent func-
tion class Σ similar to the familiar subclasses S? (α) and K (α) of starlike and
convex function of order α (0 < α ≤ 1) respectively (see [18]). Thus, following
Brannan and Taha [4], a function f (z) ∈ A is said to be in the class S?

Σ
(α) of

strongly bi-starlike functions of order α (0 < α ≤ 1) if each of the following
conditions is satisfied:

f ∈ Σ,

∣∣∣∣∣arg

(
z f
′
(z)

f (z)

)∣∣∣∣∣< απ

2
(0 < α ≤ 1, z ∈U)

and ∣∣∣∣∣arg

(
wg

′
(w)

g(w)

)∣∣∣∣∣< απ

2
(0 < α ≤ 1, w ∈U)

and is said to be in the class KΣ (α) of strongly bi-convex functions of order α

(0 < α < 1) if each of the following conditions is satisfied:

f ∈ Σ,

∣∣∣∣∣arg

(
1+

z f
′
(z)

f (z)

)∣∣∣∣∣< απ

2
(0 < α ≤ 1, z ∈U)

and ∣∣∣∣∣arg

(
1+

wg
′
(w)

g(w)

)∣∣∣∣∣< απ

2
(0 < α ≤ 1, w ∈U)

where g is the extension of f−1 to U. The classes S?
Σ
(α) and KΣ (α) of bi-

starlike functions of order α and bi-convex functions of order α, corresponding
to the function classes S? (α) and K (α) , were also introduced analogously. For
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each of the function classes S?
Σ
(α) and KΣ (α) , they found non-sharp estimates

on the initial coefficients. In fact, the aforecited work of Srivastava et al. [20]
essentially revived the investigation of various subclasses of the bi-univalent
function class Σ in recent years. Recently, many authors investigated bounds for
various subclasses of bi-univalent functions ([1–3, 7, 8, 10, 13, 15–17, 19, 20,
22, 23]). Not much is known about the bounds on the general coefficient |an|
for n ≥ 4. In the literature, there are only a few works determining the general
coefficient bounds |an| for the analytic bi-univalent functions ([6, 11, 12]). The
coefficient estimate problem for each of |an| ( n ∈ N\{1,2} ; N= {1,2,3, . . .})
is still an open problem.

In this paper, by using the method [21] different from that used by other
authors, we obtain bounds for the coefficients |a2| and |a3| for the subclasses
of bi-univalent functions considered by Magesh and Yamini [16] and obtain a
better estimate.

2. Coefficient Estimates

Definition 2.1. Let the functions h, p : U → C be so constrained that

min{ℜ(h(z)) ,ℜ(p(z))}> 0

and
h(0) = p(0) = 1.

Definition 2.2. A function f ∈ Σ is said to be in the class SΣ (λ ,h) , 0≤ λ ≤ 1,
if the following conditions are satisfied:

z f ′ (z)+
(
2λ 2−λ

)
z2 f ′′ (z)

4(λ −λ 2)z+(2λ 2−λ )z f ′ (z)+(2λ 2−3λ +1) f (z)
∈ h(U) (z ∈U) (2)

and

wg′ (w)+
(
2λ 2−λ

)
w2g′′ (w)

4(λ −λ 2)w+(2λ 2−λ )wg′ (w)+(2λ 2−3λ +1)g(w)
∈ p(U) (w ∈U)

(3)
where g(w) = f−1 (w) .

Theorem 2.3. Let f given by (1) be in the class SΣ (λ ,h) . Then

|a2| ≤min

{√
|h′ (0)|2 + |p′ (0)|2

2(1+3λ −2λ 2)2 ,

√
|h′′ (0)|+ |p′′ (0)|

4(12λ 4−28λ 3 +15λ 2 +2λ +1)

}
(4)
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and

|a3| ≤min
{
|h′(0)|2+|p′(0)|2

2(1+3λ−2λ 2)
2 + |h

′′(0)|+|p′′(0)|
8(1+2λ 2)

,

(12λ 4−28λ 3+19λ 2+2λ+3)|h′′(0)|+|12λ 4−28λ 3+11λ 2+2λ−1||p′′(0)|
8(1+2λ 2)(12λ 4−28λ 3+15λ 2+2λ+1)

}
. (5)

Proof. Let f ∈ SΣ (λ ,h) , 0≤ λ ≤ 1. It follows from (2) and (3) that

z f ′ (z)+
(
2λ 2−λ

)
z2 f ′′ (z)

4(λ −λ 2)z+(2λ 2−λ )z f ′ (z)+(2λ 2−3λ +1) f (z)
= h(z) (6)

and

wg′ (w)+
(
2λ 2−λ

)
w2g′′ (w)

4(λ −λ 2)w+(2λ 2−λ )wg′ (w)+(2λ 2−3λ +1)g(w)
= p(w) (7)

where h(z) and p(w) satisfy the conditions of Definiton 2.1. Furthermore, the
functions h(z) and p(w) have the following Taylor-Maclaurin series expan-
sions:

h(z) = 1+h1z+h2z2 + · · ·

and
p(w) = 1+ p1w+ p2w2 + · · · ,

respectively. Since

z f ′ (z)+
(
2λ 2−λ

)
z2 f ′′ (z)

4
(
λ −λ 2

)
z+
(
2λ 2−λ

)
z f ′ (z)+

(
2λ 2−3λ +1

)
f (z)

= 1+
(

1+3λ −2λ
2
)

a2z+
[(

12λ
4−28λ

3 +11λ
2 +2λ −1

)
a2

2 +
(

4λ
2 +2

)
a3

]
z2 + · · ·

(8)

and

wg′ (w)+
(
2λ 2−λ

)
w2g′′ (w)

4
(
λ −λ 2

)
w+

(
2λ 2−λ

)
wg′ (w)+

(
2λ 2−3λ +1

)
g(w)

= 1−
(

1+3λ −2λ
2
)

a2w+
[(

12λ
4−28λ

3 +19λ
2 +2λ +3

)
a2

2−
(

4λ
2 +2

)
a3

]
w2+ · · · ,

(9)

it follows from (6), (7), (8) and (9) that(
1+3λ −2λ

2)a2 = h1, (10)(
12λ

4−28λ
3 +11λ

2 +2λ −1
)

a2
2 +
(
4λ

2 +2
)

a3 = h2, (11)

and
−
(
1+3λ −2λ

2)a2 = p1, (12)
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12λ

4−28λ
3 +19λ

2 +2λ +3
)

a2
2−
(
4λ

2 +2
)

a3 = p2. (13)

From (10) and (12) we obtain

h1 =−p1,

and
2
(
1+3λ −2λ

2)2
a2

2 = h2
1 + p2

1. (14)

By adding (13) to (11), we find that

2
(
12λ

4−28λ
3 +15λ

2 +2λ +1
)

a2
2 = h2 + p2. (15)

Therefore, we find from (14) and (15) that

|a2|2 ≤
|h′ (0)|2 + |p′ (0)|2

2(1+3λ −2λ 2)2 .

and

|a2|2 ≤
|h′′ (0)|+ |p′′ (0)|

4(12λ 4−28λ 3 +15λ 2 +2λ +1)
.

So we get the desired estimate on the coefficient |a2| as claimed in (4).
Next, in order to find the bound on |a3| , by subtracting (13) from (11), we

obtain
2
(
2+4λ

2)a3−2
(
2+4λ

2)a2
2 = h2− p2.

Then, in view of (14) and (15), it follows that

a3 =
h2

1 + p2
1

2(1+3λ −2λ 2)2 +
h2− p2

2(2+4λ 2)

and
a3 =

h2 + p2

2(12λ 4−28λ 3 +15λ 2 +2λ +1)
+

h2− p2

2(2+4λ 2)

as claimed. This completes the proof of Theorem 2.3.

Remark 2.4. We note that for λ = 1
2 , the class SΣ (λ ,h) reduces to the class

HΣ (h) studied by Srivastava et al. [21].

Corollary 2.5 (see [21]). When λ = 1
2 the results discussed in this article reduce

to results in ([21], Corollary 3). If f ∈ HΣ (h) then

|a2| ≤min


√
|h′ (0)|2 + |p′ (0)|2

8
,

√
|h′′ (0)|+ |p′′ (0)|

12


and

|a3| ≤min

{
|h′ (0)|2 + |p′ (0)|2

8
+
|h′′ (0)|+ |p′′ (0)|

12
,
|h′′ (0)|

6

}
.
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Corollary 2.6. If

φ (z) =
(

1+ z
1− z

)α

= 1+2αz+2α
2z2 + . . . (0 < α ≤ 1) ,

then inequalities (4) and (5) become

|a2| ≤min

{
2α

1+3λ −2λ 2 ,

√
2

12λ 4−28λ 3 +15λ 2 +2λ +1
α

}
and

|a3| ≤min

{
4α2

(1+3λ −2λ 2)2 +
α2

1+2λ 2 ,
2α2

1+2λ 2

}
.

Remark 2.7. The estimates on the coefficients |a2| and |a3| of Corollary 2.6
are improvement of the estimates obtained in (Theorem 2.1, [16] and Corollary
2.3, [15]).

Remark 2.8. By setting λ = 0 in Corollary 2.6 we get the following conse-
quence.

Corollary 2.9. Let the functions f (z) given by Taylor-Maclaurin series expan-
sion (1) be in the bi-univalent function class S?

Σ
(α) (0 < α ≤ 1). Then

|a2| ≤
√

2α

and
|a3| ≤ 2α

2.

Corollary 2.10. If

φ (z) =
1+(1−2α)z

1− z
= 1+2(1−α)z+2(1−α)z2 + · · · (0 < α ≤ 1) ,

then inequalities (4) and (5) become

|a2| ≤min

{
2(1−α)

1+3λ −2λ 2 ,

√
2(1−α)

12λ 4−28λ 3 +15λ 2 +2λ +1

}
and

|a3| ≤min

{
4(1−α)2

(1+3λ −2λ 2)2 +
1−α

1+2λ 2 ,
(1−α)

1+2λ 2

}
.

Remark 2.11. The estimates on the coefficients |a2| and |a3| of Corollary 2.10
are improvement of the estimates obtained in (Theorem 3.1, [16] and Corollary
3.3, [15]).
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Remark 2.12. By setting λ = 0 in Corollary 2.10 we get the following conse-
quence.

Corollary 2.13 (see [21]). Let the functions f (z) given by Taylor-Maclaurin
series expansion (1) be in the bi-univalent function class S?

Σ
(α) (0 < α ≤ 1).

Then
|a2| ≤

√
2(1−α)

and
|a3| ≤ 1−α.

REFERENCES
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[2] Ş. Altınkaya - S. Yalçın, Coefficient estimates for a certain subclass of analytic
and bi-univalent functions, Acta Universitatis Apulensis 40 (2014), 347–354.
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