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COEFFICIENT ESTIMATES FOR A CERTAIN SUBCLASS
OF BI-UNIVALENT FUNCTIONS

SAHSENE ALTINKAYA - SIBEL YALCIN

In the present investigation, we find estimates on the coefficients |a;|
and |az| for functions in the function class Sy (A,4). The results pre-
sented in this paper improve or generalize the recent work of Magesh and
Yamini.

1. Introduction and Definitions

Let A denote the class of analytic functions in the unit disk
U={zeC:lz|< 1}

that have the form N
f@) =2+ Y and" (1)
n=2

Further, by S we shall denote the class of all functions in A which are univalent
inU.

The Koebe one-quarter theorem [9] states that the image of U under every
function f from § contains a disk of radius %. Thus every such univalent function
has an inverse f~! which satisfies

FfR) =z, (zeU)
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and 1
) = (Wl<n() n)=g).
where
Frw) =w —aaw? + (23 —as) w® — (5a3 — Sazas +ag) w* + -+ -

A function f (z) € A is said to be bi-univalent in U if both f(z) and f~! (z)
are univalent in U.

Let X denote the class of bi-univalent functions defined in the unit disk U.
For a brief history and interesting examples in the class X, (see [20]).

Lewin [14] studied the class of bi-univalent functions, obtaining the bound
1.51 for modulus of the second coefficient |ay|. Subsequently, Brannan and
Clunie [5] conjectured that |a;| < v/2 for f € X. Netanyahu [18] showed that
max |ay| = if f(z) € .

Brannan and Taha [4] introduced certain subclasses of the bi-univalent func-
tion class X similar to the familiar subclasses S$* (o) and K (@) of starlike and
convex function of order & (0 < o < 1) respectively (see [18]). Thus, following
Brannan and Taha [4], a function f(z) € A is said to be in the class S5 (o) of
strongly bi-starlike functions of order a (0 < o < 1) if each of the following
conditions is satisfied:

fex,

f @) 2

arg(zf (Z)>‘<m O<a<l,zel)

and

arg(wggéy(:;))ko;n O<a<l,wel)

and is said to be in the class Ky (&) of strongly bi-convex functions of order a
(0 < a < 1) if each of the following conditions is satisfied:

fex, arg<1+z;(iz))>‘<azn 0<a<l,z€U)
and
wg' (w) orn
arg<1+ g(w)) <5 O0<a<l,wel)

where g is the extension of f~! to U. The classes S; (&) and Kz () of bi-
starlike functions of order & and bi-convex functions of order &, corresponding
to the function classes $* (o) and K (), were also introduced analogously. For
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each of the function classes S5 (o) and Ky (), they found non-sharp estimates
on the initial coefficients. In fact, the aforecited work of Srivastava et al. [20]
essentially revived the investigation of various subclasses of the bi-univalent
function class ¥ in recent years. Recently, many authors investigated bounds for
various subclasses of bi-univalent functions ([1-3, 7, 8, 10, 13, 15-17, 19, 20,
22, 23]). Not much is known about the bounds on the general coefficient |ay|
for n > 4. In the literature, there are only a few works determining the general
coefficient bounds |a,| for the analytic bi-univalent functions ([6, 11, 12]). The
coefficient estimate problem for each of |a,| (n € N\ {1,2}; N={1,2,3,...})
is still an open problem.

In this paper, by using the method [21] different from that used by other
authors, we obtain bounds for the coefficients |ay| and |az| for the subclasses
of bi-univalent functions considered by Magesh and Yamini [16] and obtain a
better estimate.

2. Coefficient Estimates

Definition 2.1. Let the functions 4, p : U — C be so constrained that
min{R (2(z)),R(p(z))} >0

and
h(0)=p(0)=1.

Definition 2.2. A function f € X is said to be in the class Sy (1,4),0 <A <1,
if the following conditions are satisfied:

2f (2)+ (247 =) 221" (2)
A4A =A%) z+ A2 =A)zf" (2) + (A2 =31+ 1) f(2)

ceh(U) (zeU) ()

and

wg' (w)+ (242 = 1) w?g” (w)
4A=A2)w+ (242 = A)wg' (W) + (242 =341 +1)g(w)

ep(U) (wel)

3
where g(w) = f~ 1 (w).

Theorem 2.3. Let f given by (1) be in the class Sy (A,h). Then

: 7 (0)+ |p' (0) [ (0)[ +[p" (0)]
‘“ﬂgmm{\/z(lﬁl_mz)r 4(122% =283+ 15A2 124 + 1) @)




56 SAHSENE ALTINKAYA - SIBEL YALCIN

and

WO +P ) | [(0)+p"(0)]
2(1434-222)° 8(1+242)

(121428l3+19lz+27t+3)h”(0)+|12/l428)»3+117Lz+2).lp”(0)|} 5)

laz| < min{

8(1+2A2) (1245 —28 A3+ 15A2+ 24 +1)
Proof. Let f € Sy (A,h), 0 < A < 1. It follows from (2) and (3) that

o' (2)+ (242 = 2) 2f" (2)
AA—=A2)z+ A2 —A)zf" (z) + (A2 =31+ 1) f (2)

=h(z) (6

and

wg’(w)—f—(Z?Lz—?L)wzg”(w) (W)
A4 2w+ (A2 —A)wg W)+ 222 —3A+ D)gw) V"

)

where h (z) and p (w) satisfy the conditions of Definiton 2.1. Furthermore, the
functions h(z) and p(w) have the following Taylor-Maclaurin series expan-
sions:
h(z) =1+hz+md+- -
and
p(w) =1+ piw+paw’ +---,
respectively. Since
of (2) + (242 = 4) 221" (2)
4(A=2%)z4 (242 =A)2f' (2) + (2A2 =34 +1) f (2)
— 14 (1-0—3)1, —2/12) arz+ [(12&4—28/134— 112 +22 — 1) B+ (4AZ+2) a3] Pt

®
and
wg' (W) + (242 —A)w?g" (w)
4(A =A%) w+ (222 = L) wg' (W) + (2A2 =31 +1) g(w)
:17(1+3/17212> ayw+ [(12&472813+1912+2x+3) B - (4&%2) a3] Wl
©
it follows from (6), (7), (8) and (9) that
(1431 —22%) ar = hy, (10)
(1224 —28A° + 1A% +24 — 1) a3 + (4A% +2) a3 = ha, (11)

and
— (1431 —24%) a» = py, (12)
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(124% = 28A° + 1947 + 24 + 3) a5 — (4A% +2) a3 = pa. (13)
From (10) and (12) we obtain
hy = —pu,
and
2(1432 - 2202 a3 = I+ p. (14)
By adding (13) to (11), we find that
2(124% = 282° + 15A% + 24 + 1) a5 = hy + pa. (15)

Therefore, we find from (14) and (15) that

W (0)* +p' (0)\2‘
2(1+34 —2A2)°

laa|* <

and " "
| 7" (0)[ + [p" (0)]
T 4(124% —28A3 + 1542 +24 +1)°
So we get the desired estimate on the coefficient |as| as claimed in (4).
Next, in order to find the bound on |a3|, by subtracting (13) from (11), we
obtain

2(2+42%) a3 —2(2+4A%) a3 = hy — ps.
Then, in view of (14) and (15), it follows that
_ h? + p? hy —p2
2(1434—2A2)%  2(2+442)

and
an — hy + p2 I hy — p2
ST 2(12AF —28A3 F 152424+ 1) | 2(2+442)
as claimed. This completes the proof of Theorem 2.3. O

Remark 2.4. We note that for 2 = 1, the class Sy (A,%) reduces to the class
Hy (h) studied by Srivastava et al. [21].

Corollary 2.5 (see [21]). When A = 5 the results discussed in this article reduce
to results in ([21], Corollary 3). If f € Hy (h) then

/ h// //
- ¢r OF 17 OF  [FOLFO]

,Mgmm?W@F+www+mww+mwmywmﬂ}

and

8 12 6
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Corollary 2.6. If

1 o
¢&)=<1j§) =1+2az+2a°2+... (0<a<l),

then inequalities (4) and (5) become

20 2
o
2| < mm{ 113 —27L2’\/12),4—28),3+157L2+27L+1a}

and
2

a3 < min 40 L@ 20
a i , )
3= (1431 —2A2)  1+24271+2A2

Remark 2.7. The estimates on the coefficients |ay| and |as| of Corollary 2.6
are improvement of the estimates obtained in (Theorem 2.1, [16] and Corollary
2.3, [15]).

Remark 2.8. By setting A = 0 in Corollary 2.6 we get the following conse-
quence.

Corollary 2.9. Let the functions f (z) given by Taylor-Maclaurin series expan-
sion (1) be in the bi-univalent function class S (&) (0 < a < 1). Then

as| < V2a

and
|a3| < 2062.

Corollary 2.10. If

1+ (1-20)z

; —142(1-a)z4+2(1-a)?+--- (0<a<l),
—Z

¢ (2)

then inequalities (4) and (5) become

s < min 2(1-a) \/ 2(1-a)
2 = 1434 —2A2°V 1244 —28A3 1 1542124 + 1

and

45| < min 4(1—a)? L l-a (-0
3= (14312 —-242)7 14242714242 [~

Remark 2.11. The estimates on the coefficients |a;| and |a3| of Corollary 2.10
are improvement of the estimates obtained in (Theorem 3.1, [16] and Corollary
3.3, [15]).
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Remark 2.12. By setting A = 0 in Corollary 2.10 we get the following conse-
quence.

Corollary 2.13 (see [21]). Let the functions f(z) given by Taylor-Maclaurin
series expansion (1) be in the bi-univalent function class S5 (&) (0 < a <1).

Then
laz] < /2(1— )
and
|a3| <l—a.
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