doi: 10.4418/2017.72.1.1

REMARKS ON HYPONORMAL OPERATORS AND ALMOST NORMAL OPERATORS

VASILE LAURIC

In 1984 M. Putinar proved that hyponormal operators are subscalar operators of order two. The proof provided a concrete structure of such operators. We will use this structure to give a sufficient condition for hyponormal operators T with trace-class commutator to admit a direct summand S so that $T \oplus S$ is the sum of a normal operator and a Hilbert-Schmidt operator. We investigate what this sufficient condition amounts to in the case of a weighted shift operator.

1. Introduction.

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space, and denote by $L(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H} and by $\mathcal{C}_1(\mathcal{H})$ and $\mathcal{C}_2(\mathcal{H})$ (or simply \mathcal{C}_1 and \mathcal{C}_2) the trace class and the Hilbert-Schmidt class, respectively. For arbitrary operators $S, T \in L(\mathcal{H}), [S,T]$ will denote the commutator ST - TS and D_S will denote self-commutator of S, that is $[S^*,S]$. An operator $S \in L(\mathcal{H})$ for which $D_S \in \mathcal{C}_1(\mathcal{H})$ ($D_S \geq 0$) is called *almost normal* (hyponormal), respectively. The class of operators defined on \mathcal{H} which are almost normal will be denoted by $AN(\mathcal{H})$ and that of hyponormal operators by $H_0^1(\mathcal{H})$.

Entrato in redazione: 20 luglio 2015 AMS 2010 Subject Classification: 47B20

Keywords: Hilbert-Schmidt and trace-class operators, hyponormal operators, almost normal operators

To the memory of my beloved father, Atanasie.

Voiculescu's Conjecture 4 (C₄), (cf. [4] or [3]) states that for $T \in AN(\mathcal{H})$, there exists $S \in AN(\mathcal{H})$ such that $T \oplus S = N + K$, where N is a normal operator and K is a Hilbert-Schmidt operator. This statement is equivalent to the existence of a normal operator $N \in L(\mathcal{K})$, $\mathcal{H} \subset \mathcal{K}$, so that T is unitarily equivalent modulo \mathcal{C}_2 to PNP and $[P,N] \in \mathcal{C}_2$, where P is the orthogonal projection from K onto \mathcal{H} , and is an analog of the BDF Theorem concerning the part that each element of $Ext(\cdot)$ has an inverse.

Not much progress has been made towards establishing whether conjecture (C_4) holds or not. The facts remain unknown even for arbitrary almost normal weighted shifts. The most significant result in this direction was obtained by Pasnicu [1] (see Remark (c) at the end of this note).

It is a straightforward exercise (left to the reader) to verify that subnormal operators satisfy (C_4) . Since subnormal operators are also hyponormal, it is natural to ask whether the later ones satisfy (C_4) . Putinar [2] proved that hyponormal operators are subscalar of order two, that is, they are restrictions to a closed invariant subspace of scalar operators of order two. Putinar's proof was constructive and provided concrete structure information of hyponormal operators $T \in L(\mathcal{H})$, namely they are compressions of normal operators to a semi-invariant subspace, that is there exists an normal operator $N \in L(\mathcal{K})$ with $\mathcal{H} \subset \mathcal{K}$ so the the matrix representation of N is

$$N = \left(\begin{array}{ccc} * & * & * \\ 0 & T & * \\ 0 & 0 & * \end{array}\right).$$

2. Review of the structure of hyponormal operators.

The purpose of this section is to review Putinar's construction and in section 3 to give a sufficient condition for hyponormal operators to satisfy (C_4) .

Let $\mathbb D$ be an open disc that includes the spectrum $\sigma(T)$ of a hyponormal operator $T \in L(\mathcal H)$. Let

$$L^2(\mathbb{D},\mathcal{H}) = \{ f: \mathbb{D} \to \mathcal{H} | \ ||f||_{2,\mathbb{D}}^2 := \int_{\mathbb{D}} ||f(z)||^2 d\lambda(z) < +\infty \},$$

where $d\lambda$ is the planar Lebesgue measure. Let $W^2(\mathbb{D},\mathcal{H})$ consist of those f in $L^2(\mathbb{D},\mathcal{H})$ so that $\overline{\partial}f$ and $\overline{\partial}^2f$, in the sense of distributions, belong to $L^2(\mathbb{D},\mathcal{H})$, where $\overline{\partial}$ is the operator $\partial/\partial\overline{z}$. Endowed with the norm

$$||f||_{W^2}^2 := \sum_{k=0}^2 ||\overline{\partial}^k f||_{2,\mathbb{D}}^2,$$

 $W^2(\mathbb{D},\mathcal{H})$ becomes a closed subspace of $L^2(\mathbb{D},\mathcal{H})$ in which $C^{\infty}(\overline{\mathbb{D}},\mathcal{H})$ is a dense subspace. Let $N:L^2(\mathbb{D},\mathcal{H})\to L^2(\mathbb{D},\mathcal{H})$ be the normal operator defined by (Nf)(z)=zf(z) and let M be the restriction of N to the invariant subspace $W^2(\mathbb{D},\mathcal{H})$. Let \mathcal{H}_1 be $\overline{(T-z)W^2(\mathbb{D},\mathcal{H})}$, where

$$T-z:W^2(\mathbb{D},\mathcal{H})\to W^2(\mathbb{D},\mathcal{H})$$

is defined by

$$((T-z)f)(z) = T(f(z)) - zf(z)$$

and is a bounded operator whose range is invariant for operator M. Let

$$\tilde{M}: W^2(\mathbb{D},\mathcal{H})/\overline{(T-z)W^2(\mathbb{D},\mathcal{H})} \to W^2(\mathbb{D},\mathcal{H})/\overline{(T-z)W^2(\mathbb{D},\mathcal{H})}$$

be defined by $\widetilde{M}\widetilde{f}=\widetilde{Mf}$, where $\widetilde{f}\in W^2(\mathbb{D},\mathcal{H})/\overline{(T-z)W^2(\mathbb{D},\mathcal{H})}$ is the equivalence class of an f in $W^2(\mathbb{D},\mathcal{H})$. Relative to the orthogonal decomposition of $L^2(\mathbb{D},\mathcal{H})=\mathcal{H}_1\oplus\mathcal{H}(\mathbb{D})\oplus\mathcal{H}'$, where $\mathcal{H}(\mathbb{D})=W^2(\mathbb{D},\mathcal{H})/\overline{(T-z)W^2(\mathbb{D},\mathcal{H})}$, and $\mathcal{H}'=L^2(\mathbb{D},\mathcal{H})\ominus W^2(\mathbb{D},\mathcal{H})$, the matrix representation of N is

$$N = \left(\begin{array}{ccc} A & * & * \\ 0 & \tilde{M} & * \\ 0 & 0 & * \end{array}\right).$$

The high point of Putinar's paper is that the initial space \mathcal{H} and the operator T can be recuperated from \tilde{M} . More precisely, $\mathcal{H}(\mathbb{D})=\mathcal{H}\oplus\mathcal{H}''$ and relative to this decomposition, the operator \tilde{M} has representation $\tilde{M}=\begin{pmatrix} T & * \\ 0 & * \end{pmatrix}$. Denoting $\mathcal{H}_2=\mathcal{H}'\oplus\mathcal{H}''$, then relative to decomposition of $L^2(\mathbb{D},\mathcal{H})=\mathcal{H}_1\oplus\mathcal{H}\oplus\mathcal{H}_2$, the matrix representation of N is

$$N = \begin{pmatrix} A & B & C \\ 0 & T & D \\ 0 & 0 & E \end{pmatrix}. \tag{1}$$

With the notation used above, we conclude this section with the following.

Theorem 2.1. Let T be an operator in $AN(\mathcal{H}) \cap H_0^1(\mathcal{H})$. If the operator A (in equation (1)) belongs to $AN(\mathcal{H}_1)$, then T satisfies (C_4) .

Proof. Since operator N is normal, $[A^*,A] = BB^* + CC^*$, $[T^*,T] = DD^*$, and $[E^*,E] = -(C^*C+D^*D)$. Since T is almost normal, $DD^* \in \mathcal{C}_1$, or equivalently $D \in \mathcal{C}_2$. The hypothesis about A implies $BB^* + CC^* \in \mathcal{C}_1$, and thus BB^* and CC^* are both in \mathcal{C}_1 (since they are both nonnegative), which implies that B and C are both Hilbert-Schmidt operators. Furthermore, the operator E is almost normal since $[E^*,E] = -(C^*C+D^*D)$. Thus $N-A \oplus T \oplus E$ is a Hilbert-Schmidt operator. □

3. Application.

In this section we find the matrix representation of the operator A when the operator T is a weighted shift. Let $\{e_n\}_{n\geq 0}$ be an orthonormal basis of $\mathcal H$ and so that $Te_n=w_{n+1}e_{n+1},\ n\geq 0$. A weighted shift operator is hyponormal if and only if the sequence $\{|w_n|\}_{n\geq 1}$ is nondecreasing. We can further assume that $w_n\geq 0$ since such weighted shifts are unitarily equivalent, and that $w_n\uparrow w$. We further assume that $\mathbb D$ is a disc centered at the origin. Let $E_{ijk}(z,\overline z)=z^i\overline z^je_k,\ i,j,k\geq 0$, and let $F_{i,j,k}=(T-z)E_{ijk}=w_{k+1}E_{i,j,k+1}-E_{i+1,j,k}$. With the disc $\mathbb D$ centered at the origin, we have $E_{ijk}\perp E_{rst}$ when $(i,j,k)\neq (r,s,t)$, (recall that the scalar product in $L^2(\mathbb D,\mathcal H)$ is defined by $\langle f,g\rangle_{L^2(\mathbb D,\mathcal H)}=\int_{\mathbb D}\langle f(z),g(z)\rangle_{\mathcal H}d\lambda(z)$). Let $G_n=\{F_{i,j,k}|\ i+j+k=n\}$ listed in the following order

$$F_{n,0,0}, F_{n-1,1,0}, \dots, F_{0,n,0}; F_{n-1,0,1}, F_{n-2,1,1}, F_{n-3,2,1}, \dots, F_{0,n-1,1}; \dots; F_{0,0,n}.$$

Lemma 3.1. Any vector of G_m is orthogonal on any vector of G_n when $m \neq n$.

Proof. Assume that m > n. Let $F_{i,j,k} ∈ G_m$ and $F_{r,s,t} ∈ G_n$. If |k-t| ≥ 2, then regardless of m, n, we have $F_{i,j,k} \bot F_{r,s,t}$. If k = t, then $F_{i,j,k} = w_{k+1} z^i \overline{z}^j e_{k+1} - z^{i+1} \overline{z}^j e_k$ and $F_{r,s,k} = w_{k+1} z^r \overline{z}^s e_{k+1} - z^{r+1} \overline{z}^s e_k$ and since i + j ≠ r + s, one obtains $F_{i,j,k} \bot F_{r,s,k}$. If k = t + 1, then $F_{r,s,k-1} = w_k z^r \overline{z}^s e_k - z^{r+1} \overline{z}^s e_{k-1}$ and r + s = n - k + 1 < m - k + 1 = i + j + 1 and thus $F_{i,j,k} \bot F_{r,s,k-1}$. Similarly, if k = t - 1, then $F_{r,s,k+1} = w_{k+2} z^r \overline{z}^s e_{k+2} - z^{r+1} \overline{z}^s e_{k+1}$ and r + s + 1 = n - k < m - k = i + j and thus $F_{i,j,k} \bot F_{r,s,k+1}$.

According to the above lemma, the space \mathcal{H}_1 can be decomposed as

$$\bigoplus_{n>0} span(G_n),$$

where $span(G_n)$ denotes the linear span of all vectors in G_n .

Recall that operator A in matrix (1) is a compression of the normal operator N which is the operator of multiplication by variable z. Therefore

$$AF_{i,j,k} = zF_{i,j,k} = z(w_{k+1}E_{i,j,k+1} - E_{i+1,j,k}) = F_{i+1,j,k},$$

and consequently $A(span(G_n)) \subseteq span(G_{n+1})$. Relative to decomposition (2) of \mathcal{H}_1 , the operator A can be written

$$A = \begin{pmatrix} 0 & 0 & 0 & \dots \\ A_{10} & 0 & 0 & \dots \\ 0 & A_{21} & 0 & \dots \\ \vdots & \vdots & \ddots & \ddots \end{pmatrix},$$

with each $A_{n+1,n}$: $span(G_n) \rightarrow span(G_{n+1})$.

After orthonormalization of each subspace $span(G_n)$ and redenoting its new vectors by

$$G_{n,0,0}, G_{n-1,1,0}, \ldots, G_{0,n,0}; G_{n-1,0,1}, G_{n-2,1,1}, G_{n-3,2,1}, \ldots, G_{0,n-1,1}; \ldots; G_{0,0,n},$$

each operator $A_{n+1,n}$ has a matrix representation $\tilde{A}_{n+1,n}$.

Theorem 3.2. The operator A is almost normal if and only if

$$\operatorname{tr}(\tilde{A}_{n+1,n}^*\tilde{A}_{n+1,n}) \le m < +\infty, \ n \ge 0.$$

Proof. The matrix representation of $[A^*,A]$ relative to the orthonormalized basis of $\bigoplus_{n>0} span(G_n)$ is

$$\begin{pmatrix} \tilde{A}_{10}^* \tilde{A}_{10} & 0 & 0 & \dots \\ 0 & \tilde{A}_{21}^* \tilde{A}_{21} - \tilde{A}_{10} \tilde{A}_{10}^* & 0 & \dots \\ 0 & 0 & \tilde{A}_{32}^* \tilde{A}_{32} - \tilde{A}_{21} \tilde{A}_{21}^* & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Furthermore, operator A is subnormal, thus it is hyponormal and therefore

$$\tilde{A}_{n+1,n}^* \tilde{A}_{n+1,n} - \tilde{A}_{n,n-1} \tilde{A}_{n,n-1}^* \ge 0, \ n \ge 1.$$

This, if *A* is almost normal, $\operatorname{tr}(P_n[A^*,A]P_n) \uparrow \operatorname{tr}[A^*,A]$, where P_n is the orthogonal projection onto $\bigoplus_{k=0}^{n+1} \operatorname{span}(G_k)$. On other hand,

$$\operatorname{tr}(P_n[A^*,A]P_n) = \operatorname{tr}(\tilde{A}_{n+1,n}^*\tilde{A}_{n+1,n}),$$

and thus

$$\operatorname{tr}(\tilde{A}_{n+1,n}^*\tilde{A}_{n+1,n}) \le \operatorname{tr}[A^*,A].$$

The converse results in a similar way.

Remark 3.3. (a) Relative to conjecture (C_4) , one can assume that the operator T has norm less than 1 since multiplication by a constant preserves both hyponormality and (C_4) , and thus one can choose the disc \mathbb{D} to have radius less than 1.

(b) A calculation of matrix $\tilde{A}_{n+1,n}$ is useful in order to determine (sufficient and/or necessary) conditions to satisfy the hypothesis of Theorem 3.2.

Let the orthonormalized vectors of G_n be split in subgroups $L_0^n, L_1^n, \dots, L_n^n$, with each L_k consisting of

$$G_{n-k,0,k}, G_{n-k-1,1,k}, \ldots, G_{0,n-k,k}.$$

Since all initial vectors $F_{n-k,k,0}$ are orthogonal on each other,

$$G_{n-k,k,0} = \frac{F_{n-k,k,0}}{||F_{n-k,k,0}||_2}, k = 0, 1, \dots, n.$$

Thus, for k = 0, 1, ..., n,

$$AG_{n-k,k,0} = z \frac{F_{n-k,k,0}}{||F_{n-k,k,0}||_2} = \frac{F_{n-k+1,k,0}}{||F_{n-k,k,0}||_2} = \frac{||F_{n-k+1,k,0}||_2}{||F_{n-k,k,0}||_2} G_{n-k+1,k,0},$$

that is the k^{th} vector of subgroup L_0^n is mapped into k^{th} vector of subgroup L_0^{n+1} . Finally, the last vector of each group $L_0^{n+1}, L_1^{n+1}, \ldots, L_{n+1}^{n+1}$, is not in the range of $A_{n+1,n}$ and thus is not in the range of A.

(c) Pasnicu [1] proved that a weighted shift satisfies conjecture (C₄) if $w_n \uparrow w$, w > 0 and there exists p > 0 so that the series $\sum_n (w - w_n)^p$ is convergent.

We conclude the note with the following.

Problem 3.4. Can theorem 3 be used to prove that (C_4) holds for arbitrary hyponormal weighted shifts, or at least for some weight-sequence $w_n \uparrow w$, w > 0 for which the series $\sum_n (w - w_n)^p$ is divergent of any p > 0?

REFERENCES

- [1] Cornel Pasnicu Weighted shifts as direct summands mod C_2 of normal operators, Theory: Advances and Applications, Birkhauser Verlag, Basel 11 (1983), 275–281.
- [2] Mihai Putinar *Hyponormal operators are subscalar*, J. Operator Theory 12 (1984), 385–395.
- [3] Dan V. Voiculescu *Hilbert space operators modulo normed ideals*, Proceedings of the International Congress of Mathematicians, August 16-24, Warszawa, 1983, 1041–1047.
- [4] Dan V. Voiculescu *Almost Normal Operators mod Hilbert-Schmidt and the K-theory of the Algebras* $E\Lambda(\Omega)$, J. Noncommut. Geom. 8 (2014), 11231–1145.

VASILE LAURIC
Department of Mathematics
Florida A&M University
Tallahassee, FL 32307
e-mail: vasile.lauric@famu.edu