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REMARKS ON HYPONORMAL OPERATORS AND ALMOST
NORMAL OPERATORS

VASILE LAURIC

In 1984 M. Putinar proved that hyponormal operators are subscalar
operators of order two. The proof provided a concrete structure of such
operators. We will use this structure to give a sufficient condition for
hyponormal operators T with trace-class commutator to admit a direct
summand S so that T ⊕ S is the sum of a normal operator and a Hilbert-
Schmidt operator. We investigate what this sufficient condition amounts
to in the case of a weighted shift operator.

1. Introduction.

Let H be a separable, infinite dimensional, complex Hilbert space, and denote
by L(H) the algebra of all bounded linear operators on H and by C1(H) and
C2(H) (or simply C1 and C2) the trace class and the Hilbert-Schmidt class,
respectively. For arbitrary operators S, T ∈ L(H), [S,T ] will denote the com-
mutator ST − T S and DS will denote self-commutator of S, that is [S∗,S]. An
operator S ∈ L(H) for which DS ∈ C1(H) (DS ≥ 0) is called almost normal (hy-
ponormal), respectively. The class of operators defined on H which are almost
normal will be denoted by AN(H) and that of hyponormal operators by H1

0 (H).
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Voiculescu’s Conjecture 4 (C4), (cf. [4] or [3]) states that for T ∈ AN(H),
there exists S ∈ AN(H) such that T ⊕S = N +K, where N is a normal operator
and K is a Hilbert-Schmidt operator. This statement is equivalent to the exis-
tence of a normal operator N ∈ L(K), H ⊂ K, so that T is unitarily equivalent
modulo C2 to PNP and [P,N] ∈ C2, where P is the orthogonal projection from
K onto H, and is an analog of the BDF Theorem concerning the part that each
element of Ext(·) has an inverse.

Not much progress has been made towards establishing whether conjecture
(C4) holds or not. The facts remain unknown even for arbitrary almost normal
weighted shifts. The most significant result in this direction was obtained by
Pasnicu [1] (see Remark (c) at the end of this note).

It is a straightforward exercise (left to the reader) to verify that subnormal
operators satisfy (C4). Since subnormal operators are also hyponormal, it is
natural to ask whether the later ones satisfy (C4). Putinar [2] proved that hy-
ponormal operators are subscalar of order two, that is, they are restrictions to
a closed invariant subspace of scalar operators of order two. Putinar’s proof
was constructive and provided concrete structure information of hyponormal
operators T ∈ L(H), namely they are compressions of normal operators to a
semi-invariant subspace, that is there exists an normal operator N ∈ L(K) with
H⊂K so the the matrix representation of N is

N =

 ∗ ∗ ∗
0 T ∗
0 0 ∗

 .

2. Review of the structure of hyponormal operators.

The purpose of this section is to review Putinar’s construction and in section 3
to give a sufficient condition for hyponormal operators to satisfy (C4).

Let D be an open disc that includes the spectrum σ(T ) of a hyponormal
operator T ∈ L(H). Let

L2(D,H) = { f : D→H| || f ||22,D :=
∫
D
|| f (z)||2 dλ (z)<+∞},

where dλ is the planar Lebesgue measure. Let W 2(D,H) consist of those f in
L2(D,H) so that ∂ f and ∂

2
f , in the sense of distributions, belong to L2(D,H),

where ∂ is the operator ∂/∂ z. Endowed with the norm

|| f ||2W 2 :=
2

∑
k=0
||∂ k

f ||22,D,
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W 2(D,H) becomes a closed subspace of L2(D,H) in which C∞(D,H) is a dense
subspace. Let N : L2(D,H) → L2(D,H) be the normal operator defined by
(N f )(z) = z f (z) and let M be the restriction of N to the invariant subspace
W 2(D,H). LetH1 be (T − z)W 2(D,H), where

T − z : W 2(D,H)→W 2(D,H)

is defined by
((T − z) f )(z) = T ( f (z))− z f (z)

and is a bounded operator whose range is invariant for operator M. Let

M̃ : W 2(D,H)/(T − z)W 2(D,H)→W 2(D,H)/(T − z)W 2(D,H)

be defined by M̃ f̃ = M̃ f , where f̃ ∈W 2(D,H)/(T − z)W 2(D,H) is the equiv-
alence class of an f in W 2(D,H). Relative to the orthogonal decomposition of
L2(D,H) =H1⊕H(D)⊕H′, whereH(D) =W 2(D,H)/(T − z)W 2(D,H), and
H′ = L2(D,H)	W 2(D,H), the matrix representation of N is

N =

 A ∗ ∗
0 M̃ ∗
0 0 ∗

 .

The high point of Putinar’s paper is that the initial space H and the operator T
can be recuperated from M̃. More precisely,H(D) =H⊕H′′ and relative to this

decomposition, the operator M̃ has representation M̃ =

(
T ∗
0 ∗

)
. Denoting

H2 =H′⊕H′′, then relative to decomposition of L2(D,H) =H1⊕H⊕H2, the
matrix representation of N is

N =

 A B C
0 T D
0 0 E

 . (1)

With the notation used above, we conclude this section with the following.

Theorem 2.1. Let T be an operator in AN(H)∩H1
0 (H). If the operator A (in

equation (1)) belongs to AN(H1), then T satisfies (C4).

Proof. Since operator N is normal, [A∗,A] = BB∗+CC∗, [T ∗,T ] = DD∗, and
[E∗,E] =−(C∗C+D∗D). Since T is almost normal, DD∗ ∈ C1, or equivalently
D ∈ C2. The hypothesis about A implies BB∗+CC∗ ∈ C1, and thus BB∗ and
CC∗ are both in C1 (since they are both nonnegative), which implies that B and
C are both Hilbert-Schmidt operators. Furthermore, the operator E is almost
normal since [E∗,E] =−(C∗C+D∗D). Thus N−A⊕T⊕E is a Hilbert-Schmidt
operator.
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3. Application.

In this section we find the matrix representation of the operator A when the
operator T is a weighted shift. Let {en}n≥0 be an orthonormal basis ofH and so
that Ten =wn+1en+1, n≥ 0. A weighted shift operator is hyponormal if and only
if the sequence {|wn|}n≥1 is nondecreasing. We can further assume that wn ≥ 0
since such weighted shifts are unitarily equivalent, and that wn ↑ w. We further
assume that D is a disc centered at the origin. Let Ei jk(z,z) = ziz jek, i, j,k ≥ 0,
and let Fi, j,k = (T − z)Ei jk = wk+1Ei, j,k+1−Ei+1, j,k. With the disc D centered
at the origin, we have Ei jk ⊥ Erst when (i, j,k) 6= (r,s, t), (recall that the scalar
product in L2(D,H) is defined by 〈 f ,g〉L2(D,H) =

∫
D 〈 f (z),g(z)〉Hdλ (z) ). Let

Gn = {Fi, j,k| i+ j+ k = n} listed in the following order

Fn,0,0,Fn−1,1,0, . . . ,F0,n,0;Fn−1,0,1,Fn−2,1,1,Fn−3,2,1, . . . ,F0,n−1,1; . . . ;F0,0,n.

Lemma 3.1. Any vector of Gm is orthogonal on any vector of Gn when m 6= n.

Proof. Assume that m > n. Let Fi, j,k ∈ Gm and Fr,s,t ∈ Gn. If |k− t| ≥ 2, then
regardless of m,n, we have Fi, j,k ⊥ Fr,s,t . If k = t, then Fi, j,k = wk+1ziz jek+1−
zi+1z jek and Fr,s,k = wk+1zrzsek+1− zr+1zsek and since i+ j 6= r+ s, one obtains
Fi, j,k ⊥ Fr,s,k. If k = t +1, then Fr,s,k−1 = wkzrzsek− zr+1zsek−1 and r+ s = n−
k+ 1 < m− k+ 1 = i+ j + 1 and thus Fi, j,k ⊥ Fr,s,k−1. Similarly, if k = t− 1,
then Fr,s,k+1 = wk+2zrzsek+2− zr+1zsek+1 and r+ s+1 = n− k < m− k = i+ j
and thus Fi, j,k ⊥ Fr,s,k+1.

According to the above lemma, the spaceH1 can be decomposed as⊕
n≥0

span(Gn),

where span(Gn) denotes the linear span of all vectors in Gn.

Recall that operator A in matrix (1) is a compression of the normal operator
N which is the operator of multiplication by variable z. Therefore

AFi, j,k = zFi, j,k = z(wk+1Ei, j,k+1−Ei+1, j,k) = Fi+1, j,k,

and consequently A(span(Gn))⊆ span(Gn+1). Relative to decomposition (2) of
H1, the operator A can be written

A =


0 0 0 . . .

A10 0 0 . . .
0 A21 0 . . .
...

...
. . . . . .

 ,
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with each An+1,n : span(Gn)→ span(Gn+1).
After orthonormalization of each subspace span(Gn) and redenoting its new

vectors by

Gn,0,0,Gn−1,1,0, . . . ,G0,n,0;Gn−1,0,1,Gn−2,1,1,Gn−3,2,1, . . . ,G0,n−1,1; . . . ;G0,0,n,

each operator An+1,n has a matrix representation Ãn+1,n.

Theorem 3.2. The operator A is almost normal if and only if

tr(Ã∗n+1,nÃn+1,n)≤ m <+∞, n≥ 0.

Proof. The matrix representation of [A∗,A] relative to the orthonormalized basis
of ⊕n≥0span(Gn) is

Ã∗10Ã10 0 0 . . .
0 Ã∗21Ã21− Ã10Ã∗10 0 . . .
0 0 Ã∗32Ã32− Ã21Ã∗21 . . .
...

...
...

. . .

 .

Furthermore, operator A is subnormal, thus it is hyponormal and therefore

Ã∗n+1,nÃn+1,n− Ãn,n−1Ã∗n,n−1 ≥ 0, n≥ 1.

This, if A is almost normal, tr(Pn[A∗,A]Pn) ↑ tr[A∗,A], where Pn is the orthogonal
projection onto ⊕n+1

k=0span(Gk). On other hand,

tr(Pn[A∗,A]Pn) = tr(Ã∗n+1,nÃn+1,n),

and thus
tr(Ã∗n+1,nÃn+1,n)≤ tr[A∗,A].

The converse results in a similar way.

Remark 3.3. (a) Relative to conjecture (C4), one can assume that the operator
T has norm less than 1 since multiplication by a constant preserves both hy-
ponormality and (C4), and thus one can choose the disc D to have radius less
than 1.

(b) A calculation of matrix Ãn+1,n is useful in order to determine (sufficient
and/or necessary) conditions to satisfy the hypothesis of Theorem 3.2.

Let the orthonormalized vectors of Gn be split in subgroups Ln
0, Ln

1, . . . ,L
n
n,

with each Lk consisting of

Gn−k,0,k, Gn−k−1,1,k, . . . ,G0,n−k,k.
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Since all initial vectors Fn−k,k,0 are orthogonal on each other,

Gn−k,k,0 =
Fn−k,k,0

||Fn−k,k,0||2
, k = 0,1, . . . ,n.

Thus, for k = 0,1, . . . ,n,

AGn−k,k,0 = z
Fn−k,k,0

||Fn−k,k,0||2
=

Fn−k+1,k,0

||Fn−k,k,0||2
=
||Fn−k+1,k,0||2
||Fn−k,k,0||2

Gn−k+1,k,0,

that is the kth vector of subgroup Ln
0 is mapped into kth vector of subgroup Ln+1

0 .
Finally, the last vector of each group Ln+1

0 ,Ln+1
1 , . . . ,Ln+1

n+1, is not in the range of
An+1,n and thus is not in the range of A.

(c) Pasnicu [1] proved that a weighted shift satisfies conjecture (C4) if wn ↑
w, w > 0 and there exists p > 0 so that the series ∑n(w−wn)

p is convergent.

We conclude the note with the following.

Problem 3.4. Can theorem 3 be used to prove that (C4) holds for arbitrary
hyponormal weighted shifts, or at least for some weight-sequence wn ↑w, w > 0
for which the series ∑n(w−wn)

p is divergent of any p > 0?
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