REMARKS ON HYPONORMAL OPERATORS AND ALMOST NORMAL OPERATORS

VASILE LAURIC

Abstract

In 1984 M. Putinar proved that hyponormal operators are subscalar operators of order two. The proof provided a concrete structure of such operators. We will use this structure to give a sufficient condition for hyponormal operators T with trace-class commutator to admit a direct summand S so that $T \oplus S$ is the sum of a normal operator and a HilbertSchmidt operator. We investigate what this sufficient condition amounts to in the case of a weighted shift operator.

1. Introduction.

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space, and denote by $L(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H} and by $\mathcal{C}_{1}(\mathcal{H})$ and $\mathcal{C}_{2}(\mathcal{H})$ (or simply \mathcal{C}_{1} and \mathcal{C}_{2}) the trace class and the Hilbert-Schmidt class, respectively. For arbitrary operators $S, T \in L(\mathcal{H}),[S, T]$ will denote the commutator $S T-T S$ and D_{S} will denote self-commutator of S, that is $\left[S^{*}, S\right]$. An operator $S \in L(\mathcal{H})$ for which $D_{S} \in \mathcal{C}_{1}(\mathcal{H})\left(D_{S} \geq 0\right)$ is called almost normal (hyponormal), respectively. The class of operators defined on \mathcal{H} which are almost normal will be denoted by $A N(\mathcal{H})$ and that of hyponormal operators by $H_{0}^{1}(\mathcal{H})$.

Entrato in redazione: 20 luglio 2015
AMS 2010 Subject Classification: 47B20
Keywords: Hilbert-Schmidt and trace-class operators, hyponormal operators, almost normal operators
To the memory of my beloved father, Atanasie.

Voiculescu's Conjecture $4\left(\mathrm{C}_{4}\right)$, (cf. [4] or [3]) states that for $T \in A N(\mathcal{H})$, there exists $S \in A N(\mathcal{H})$ such that $T \oplus S=N+K$, where N is a normal operator and K is a Hilbert-Schmidt operator. This statement is equivalent to the existence of a normal operator $N \in L(\mathcal{K}), \mathcal{H} \subset \mathcal{K}$, so that T is unitarily equivalent modulo \mathcal{C}_{2} to $P N P$ and $[P, N] \in \mathcal{C}_{2}$, where P is the orthogonal projection from \mathcal{K} onto \mathcal{H}, and is an analog of the BDF Theorem concerning the part that each element of $\operatorname{Ext}(\cdot)$ has an inverse.

Not much progress has been made towards establishing whether conjecture $\left(C_{4}\right)$ holds or not. The facts remain unknown even for arbitrary almost normal weighted shifts. The most significant result in this direction was obtained by Pasnicu [1] (see Remark (c) at the end of this note).

It is a straightforward exercise (left to the reader) to verify that subnormal operators satisfy $\left(\mathrm{C}_{4}\right)$. Since subnormal operators are also hyponormal, it is natural to ask whether the later ones satisfy $\left(\mathrm{C}_{4}\right)$. Putinar [2] proved that hyponormal operators are subscalar of order two, that is, they are restrictions to a closed invariant subspace of scalar operators of order two. Putinar's proof was constructive and provided concrete structure information of hyponormal operators $T \in L(\mathcal{H})$, namely they are compressions of normal operators to a semi-invariant subspace, that is there exists an normal operator $N \in L(\mathcal{K})$ with $\mathcal{H} \subset \mathcal{K}$ so the the matrix representation of N is

$$
N=\left(\begin{array}{ccc}
* & * & * \\
0 & T & * \\
0 & 0 & *
\end{array}\right)
$$

2. Review of the structure of hyponormal operators.

The purpose of this section is to review Putinar's construction and in section 3 to give a sufficient condition for hyponormal operators to satisfy $\left(\mathrm{C}_{4}\right)$.

Let \mathbb{D} be an open disc that includes the spectrum $\sigma(T)$ of a hyponormal operator $T \in L(\mathcal{H})$. Let

$$
L^{2}(\mathbb{D}, \mathcal{H})=\left\{f: \mathbb{D} \rightarrow \mathcal{H} \mid\|f\|_{2, \mathbb{D}}^{2}:=\int_{\mathbb{D}}\|f(z)\|^{2} d \lambda(z)<+\infty\right\},
$$

where $d \lambda$ is the planar Lebesgue measure. Let $W^{2}(\mathbb{D}, \mathcal{H})$ consist of those f in $L^{2}(\mathbb{D}, \mathcal{H})$ so that $\bar{\partial} f$ and $\bar{\partial}^{2} f$, in the sense of distributions, belong to $L^{2}(\mathbb{D}, \mathcal{H})$, where $\bar{\partial}$ is the operator $\partial / \partial \bar{z}$. Endowed with the norm

$$
\|f\|_{W^{2}}^{2}:=\sum_{k=0}^{2}\left\|\bar{\partial}^{k} f\right\|_{2, \mathbb{D}}^{2}
$$

$W^{2}(\mathbb{D}, \mathcal{H})$ becomes a closed subspace of $L^{2}(\mathbb{D}, \mathcal{H})$ in which $C^{\infty}(\overline{\mathbb{D}}, \mathcal{H})$ is a dense subspace. Let $N: L^{2}(\mathbb{D}, \mathcal{H}) \rightarrow L^{2}(\mathbb{D}, \mathcal{H})$ be the normal operator defined by $(N f)(z)=z f(z)$ and let M be the restriction of N to the invariant subspace $W^{2}(\mathbb{D}, \mathcal{H})$. Let \mathcal{H}_{1} be $\overline{(T-z) W^{2}(\mathbb{D}, \mathcal{H})}$, where

$$
T-z: W^{2}(\mathbb{D}, \mathcal{H}) \rightarrow W^{2}(\mathbb{D}, \mathcal{H})
$$

is defined by

$$
((T-z) f)(z)=T(f(z))-z f(z)
$$

and is a bounded operator whose range is invariant for operator M. Let

$$
\tilde{M}: W^{2}(\mathbb{D}, \mathcal{H}) / \overline{(T-z) W^{2}(\mathbb{D}, \mathcal{H})} \rightarrow W^{2}(\mathbb{D}, \mathcal{H}) / \overline{(T-z) W^{2}(\mathbb{D}, \mathcal{H})}
$$

be defined by $\tilde{M} \tilde{f}=\widetilde{M f}$, where $\tilde{f} \in W^{2}(\mathbb{D}, \mathcal{H}) / \overline{(T-z) W^{2}(\mathbb{D}, \mathcal{H})}$ is the equivalence class of an f in $W^{2}(\mathbb{D}, \mathcal{H})$. Relative to the orthogonal decomposition of $L^{2}(\mathbb{D}, \mathcal{H})=\mathcal{H}_{1} \oplus \mathcal{H}(\mathbb{D}) \oplus \mathcal{H}^{\prime}$, where $\mathcal{H}(\mathbb{D})=W^{2}(\mathbb{D}, \mathcal{H}) / \overline{(T-z) W^{2}(\mathbb{D}, \mathcal{H})}$, and $\mathcal{H}^{\prime}=L^{2}(\mathbb{D}, \mathcal{H}) \ominus W^{2}(\mathbb{D}, \mathcal{H})$, the matrix representation of N is

$$
N=\left(\begin{array}{ccc}
A & * & * \\
0 & \tilde{M} & * \\
0 & 0 & *
\end{array}\right)
$$

The high point of Putinar's paper is that the initial space \mathcal{H} and the operator T can be recuperated from \tilde{M}. More precisely, $\mathcal{H}(\mathbb{D})=\mathcal{H} \oplus \mathcal{H}^{\prime \prime}$ and relative to this decomposition, the operator \tilde{M} has representation $\tilde{M}=\left(\begin{array}{cc}T & * \\ 0 & *\end{array}\right)$. Denoting $\mathcal{H}_{2}=\mathcal{H}^{\prime} \oplus \mathcal{H}^{\prime \prime}$, then relative to decomposition of $L^{2}(\mathbb{D}, \mathcal{H})=\mathcal{H}_{1} \oplus \mathcal{H} \oplus \mathcal{H}_{2}$, the matrix representation of N is

$$
N=\left(\begin{array}{ccc}
A & B & C \tag{1}\\
0 & T & D \\
0 & 0 & E
\end{array}\right)
$$

With the notation used above, we conclude this section with the following.
Theorem 2.1. Let T be an operator in $A N(\mathcal{H}) \cap H_{0}^{1}(\mathcal{H})$. If the operator A (in equation (1)) belongs to $A N\left(\mathcal{H}_{1}\right)$, then T satisfies $\left(C_{4}\right)$.

Proof. Since operator N is normal, $\left[A^{*}, A\right]=B B^{*}+C C^{*},\left[T^{*}, T\right]=D D^{*}$, and $\left[E^{*}, E\right]=-\left(C^{*} C+D^{*} D\right)$. Since T is almost normal, $D D^{*} \in \mathcal{C}_{1}$, or equivalently $D \in \mathcal{C}_{2}$. The hypothesis about A implies $B B^{*}+C C^{*} \in \mathcal{C}_{1}$, and thus $B B^{*}$ and $C C^{*}$ are both in \mathcal{C}_{1} (since they are both nonnegative), which implies that B and C are both Hilbert-Schmidt operators. Furthermore, the operator E is almost normal since $\left[E^{*}, E\right]=-\left(C^{*} C+D^{*} D\right)$. Thus $N-A \oplus T \oplus E$ is a Hilbert-Schmidt operator.

3. Application.

In this section we find the matrix representation of the operator A when the operator T is a weighted shift. Let $\left\{e_{n}\right\}_{n \geq 0}$ be an orthonormal basis of \mathcal{H} and so that $T e_{n}=w_{n+1} e_{n+1}, n \geq 0$. A weighted shift operator is hyponormal if and only if the sequence $\left\{\left|w_{n}\right|\right\}_{n \geq 1}$ is nondecreasing. We can further assume that $w_{n} \geq 0$ since such weighted shifts are unitarily equivalent, and that $w_{n} \uparrow w$. We further assume that \mathbb{D} is a disc centered at the origin. Let $E_{i j k}(z, \bar{z})=z^{i} \bar{z}^{j} e_{k}, i, j, k \geq 0$, and let $F_{i, j, k}=(T-z) E_{i j k}=w_{k+1} E_{i, j, k+1}-E_{i+1, j, k}$. With the disc \mathbb{D} centered at the origin, we have $E_{i j k} \perp E_{r s t}$ when $(i, j, k) \neq(r, s, t)$, (recall that the scalar product in $L^{2}(\mathbb{D}, \mathcal{H})$ is defined by $\langle f, g\rangle_{L^{2}(\mathbb{D}, \mathcal{H})}=\int_{\mathbb{D}}\langle f(z), g(z)\rangle_{\mathcal{H}} d \lambda(z)$). Let $G_{n}=\left\{F_{i, j, k} \mid i+j+k=n\right\}$ listed in the following order

$$
F_{n, 0,0}, F_{n-1,1,0}, \ldots, F_{0, n, 0} ; F_{n-1,0,1}, F_{n-2,1,1}, F_{n-3,2,1}, \ldots, F_{0, n-1,1} ; \ldots ; F_{0,0, n}
$$

Lemma 3.1. Any vector of G_{m} is orthogonal on any vector of G_{n} when $m \neq n$.
Proof. Assume that $m>n$. Let $F_{i, j, k} \in G_{m}$ and $F_{r, s, t} \in G_{n}$. If $|k-t| \geq 2$, then regardless of m, n, we have $F_{i, j, k} \perp F_{r, s, t}$. If $k=t$, then $F_{i, j, k}=w_{k+1} z^{i} \bar{z}^{j} e_{k+1}-$ $z^{i+1} \bar{z}^{j} e_{k}$ and $F_{r, s, k}=w_{k+1} z^{r} \bar{z}^{s} e_{k+1}-z^{r+1} \bar{z}^{s} e_{k}$ and since $i+j \neq r+s$, one obtains $F_{i, j, k} \perp F_{r, s, k}$. If $k=t+1$, then $F_{r, s, k-1}=w_{k} z^{r} \bar{z}^{s} e_{k}-z^{r+1} \bar{z}^{s} e_{k-1}$ and $r+s=n-$ $k+1<m-k+1=i+j+1$ and thus $F_{i, j, k} \perp F_{r, s, k-1}$. Similarly, if $k=t-1$, then $F_{r, s, k+1}=w_{k+2} z^{r} \bar{z}^{s} e_{k+2}-z^{r+1} \bar{z}^{s} e_{k+1}$ and $r+s+1=n-k<m-k=i+j$ and thus $F_{i, j, k} \perp F_{r, s, k+1}$.

According to the above lemma, the space \mathcal{H}_{1} can be decomposed as

$$
\bigoplus_{n \geq 0} \operatorname{span}\left(G_{n}\right)
$$

where $\operatorname{span}\left(G_{n}\right)$ denotes the linear span of all vectors in G_{n}.
Recall that operator A in matrix (1) is a compression of the normal operator N which is the operator of multiplication by variable z. Therefore

$$
A F_{i, j, k}=z F_{i, j, k}=z\left(w_{k+1} E_{i, j, k+1}-E_{i+1, j, k}\right)=F_{i+1, j, k},
$$

and consequently $A\left(\operatorname{span}\left(G_{n}\right)\right) \subseteq \operatorname{span}\left(G_{n+1}\right)$. Relative to decomposition (2) of \mathcal{H}_{1}, the operator A can be written

$$
A=\left(\begin{array}{cccc}
0 & 0 & 0 & \ldots \\
A_{10} & 0 & 0 & \ldots \\
0 & A_{21} & 0 & \ldots \\
\vdots & \vdots & \ddots & \ddots
\end{array}\right)
$$

with each $A_{n+1, n}: \operatorname{span}\left(G_{n}\right) \rightarrow \operatorname{span}\left(G_{n+1}\right)$.
After orthonormalization of each subspace $\operatorname{span}\left(G_{n}\right)$ and redenoting its new vectors by

$$
G_{n, 0,0}, G_{n-1,1,0}, \ldots, G_{0, n, 0} ; G_{n-1,0,1}, G_{n-2,1,1}, G_{n-3,2,1}, \ldots, G_{0, n-1,1} ; \ldots ; G_{0,0, n}
$$

each operator $A_{n+1, n}$ has a matrix representation $\tilde{A}_{n+1, n}$.
Theorem 3.2. The operator A is almost normal if and only if

$$
\operatorname{tr}\left(\tilde{A}_{n+1, n}^{*} \tilde{A}_{n+1, n}\right) \leq m<+\infty, n \geq 0
$$

Proof. The matrix representation of $\left[A^{*}, A\right]$ relative to the orthonormalized basis of $\oplus_{n \geq 0} \operatorname{span}\left(G_{n}\right)$ is

$$
\left(\begin{array}{cccc}
\tilde{A}_{10}^{*} \tilde{A}_{10} & 0 & 0 & \cdots \\
0 & \tilde{A}_{21}^{*} \tilde{A}_{21}-\tilde{A}_{10} \tilde{A}_{10}^{*} & 0 & \cdots \\
0 & 0 & \tilde{A}_{32}^{*} \tilde{A}_{32}-\tilde{A}_{21} \tilde{A}_{21}^{*} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Furthermore, operator A is subnormal, thus it is hyponormal and therefore

$$
\tilde{A}_{n+1, n}^{*} \tilde{A}_{n+1, n}-\tilde{A}_{n, n-1} \tilde{A}_{n, n-1}^{*} \geq 0, n \geq 1
$$

This, if A is almost normal, $\operatorname{tr}\left(P_{n}\left[A^{*}, A\right] P_{n}\right) \uparrow \operatorname{tr}\left[A^{*}, A\right]$, where P_{n} is the orthogonal projection onto $\oplus_{k=0}^{n+1} \operatorname{span}\left(G_{k}\right)$. On other hand,

$$
\operatorname{tr}\left(P_{n}\left[A^{*}, A\right] P_{n}\right)=\operatorname{tr}\left(\tilde{A}_{n+1, n}^{*} \tilde{A}_{n+1, n}\right)
$$

and thus

$$
\operatorname{tr}\left(\tilde{A}_{n+1, n}^{*} \tilde{A}_{n+1, n}\right) \leq \operatorname{tr}\left[A^{*}, A\right] .
$$

The converse results in a similar way.
Remark 3.3. (a) Relative to conjecture $\left(\mathrm{C}_{4}\right)$, one can assume that the operator T has norm less than 1 since multiplication by a constant preserves both hyponormality and $\left(\mathrm{C}_{4}\right)$, and thus one can choose the disc \mathbb{D} to have radius less than 1.
(b) A calculation of matrix $\tilde{A}_{n+1, n}$ is useful in order to determine (sufficient and/or necessary) conditions to satisfy the hypothesis of Theorem 3.2.

Let the orthonormalized vectors of G_{n} be split in subgroups $L_{0}^{n}, L_{1}^{n}, \ldots, L_{n}^{n}$, with each L_{k} consisting of

$$
G_{n-k, 0, k}, G_{n-k-1,1, k}, \ldots, G_{0, n-k, k}
$$

Since all initial vectors $F_{n-k, k, 0}$ are orthogonal on each other,

$$
G_{n-k, k, 0}=\frac{F_{n-k, k, 0}}{\left\|F_{n-k, k, 0}\right\|_{2}}, k=0,1, \ldots, n
$$

Thus, for $k=0,1, \ldots, n$,

$$
A G_{n-k, k, 0}=z \frac{F_{n-k, k, 0}}{\left\|F_{n-k, k, 0}\right\|_{2}}=\frac{F_{n-k+1, k, 0}}{\left\|F_{n-k, k, 0}\right\|_{2}}=\frac{\left\|F_{n-k+1, k, 0}\right\|_{2}}{\left\|F_{n-k, k, 0}\right\|_{2}} G_{n-k+1, k, 0}
$$

that is the $k^{t h}$ vector of subgroup L_{0}^{n} is mapped into $k^{t h}$ vector of subgroup L_{0}^{n+1}. Finally, the last vector of each group $L_{0}^{n+1}, L_{1}^{n+1}, \ldots, L_{n+1}^{n+1}$, is not in the range of $A_{n+1, n}$ and thus is not in the range of A.
(c) Pasnicu [1] proved that a weighted shift satisfies conjecture $\left(\mathrm{C}_{4}\right)$ if $w_{n} \uparrow$ $w, w>0$ and there exists $p>0$ so that the series $\sum_{n}\left(w-w_{n}\right)^{p}$ is convergent.

We conclude the note with the following.
Problem 3.4. Can theorem 3 be used to prove that $\left(\mathrm{C}_{4}\right)$ holds for arbitrary hyponormal weighted shifts, or at least for some weight-sequence $w_{n} \uparrow w, w>0$ for which the series $\sum_{n}\left(w-w_{n}\right)^{p}$ is divergent of any $p>0$?

REFERENCES

[1] Cornel Pasnicu Weighted shifts as direct summands mod \mathcal{C}_{2} of normal operators, Theory: Advances and Applications, Birkhauser Verlag, Basel 11 (1983), 275281.
[2] Mihai Putinar Hyponormal operators are subscalar, J. Operator Theory 12 (1984), 385-395.
[3] Dan V. Voiculescu Hilbert space operators modulo normed ideals, Proceedings of the International Congress of Mathematicians, August 16-24, Warszawa, 1983, 1041-1047.
[4] Dan V. Voiculescu Almost Normal Operators mod Hilbert-Schmidt and the Ktheory of the Algebras $E \Lambda(\Omega)$, J. Noncommut. Geom. 8 (2014), 11231-1145.

VASILE LAURIC
Department of Mathematics
Florida A\&M University
Tallahassee, FL 32307
e-mail: vasile.lauric@famu.edu

