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ATOMIC AND NONATOMIC OPERATOR-VALUED
MEASURES IN LOCALLY CONVEX CONES

DAVOOD AYASEH - ASGHAR RANJBARI

The operator valued measures and integrals for cone-valued functions
have been investigated in [W. Roth, Operator-valued measures and inte-
grals for cone-valued functions, Lecture Notes in Mathematics, vol. 1964,
2009, Springer Verlag, Heidelberg-Berlin-New York]. In this paper, we
define atomic and nonatomic operator valued measures in locally con-
vex cones and investigate their properties. We prove that every operator
valued measure can be written as the sum of an atomic and a nonatomic
measures.

1. Introduction

A cone is a set P endowed with an addition and a scalar multiplication for
nonnegative real numbers. The addition is assumed to be associative and com-
mutative, and there is a neutral element 0 ∈ P . For the scalar multiplication
the usual associative and distributive properties hold, that is α(βa) = (αβ )a,
(α +β )a = αa+βa, α(a+b) = αa+αb, 1a = a and 0a = 0 for all a,b ∈ P
and α,β ≥ 0.

The theory of locally convex cones as developed in [5] and [8] uses an order
theoretical concept to introduce a topological structure on a cone. For recent
researches see [1–4, 7].
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An ordered cone P carries a reflexive transitive relation ≤ such that a ≤ b
implies a+ c≤ b+ c and αa≤ αb for all a,b,c ∈ P and α ≥ 0. The extended
real numbers R = R∪{+∞} is a natural example of an ordered cone with the
usual order and algebraic operations in R, in particular 0 · (+∞) = 0.

A subset V of the ordered coneP is called an abstract neighborhood system,
if the following properties hold:
(1) 0 < v for all v ∈ V;
(2) for all u,v ∈ V there is a w ∈ V with w≤ u and w≤ v;
(3) u+ v ∈ V and αv ∈ V whenever u,v ∈ V and α > 0.

For every a ∈ P and v ∈ V we define

v(a) = {b ∈ P|b≤ a+ v} resp. (a)v = {b ∈ P|a≤ b+ v},

to be a neighborhood of a in the upper, resp. lower topologies on P . Their
common refinement is called the symmetric topology generated by the neigh-
borhoods vs(a) = v(a)∩ (a)v. If we suppose that all elements of P are bounded
below, that is for every a ∈ P and v ∈ V , 0 ≤ a+λv for some λ > 0, then the
pair (P,V) is called a full locally convex cone. A locally convex cone (P,V)
is a subcone of a full locally convex cone, not necessarily containing the ab-
stract neighborhood system V . For example, the extended real number system
R = R∪{+∞} endowed with the usual order and algebraic operations and the
neighborhood system V = {ε ∈ R|ε > 0} is a full locally convex cone.

The locally convex cone (P,V) is called a uc-cone whenever there is v ∈ V
such that V = {αv : α > 0} (see [2]).

A subset B of the locally convex cone (P,V) is called bounded below when-
ever for every v ∈ V there is λ > 0, such that 0≤ b+λv for all b ∈ B.

For cones P and Q a mapping T : P → Q is called a linear operator if
T (a+b) = T (a)+T (b) and T (αa) = αT (a) hold for all a,b ∈ P and α ≥ 0. If
both P and Q are ordered, then T is called monotone, if a ≤ b implies T (a) ≤
T (b). If both (P,V) and (Q,W) are locally convex cones, the operator T is
called (uniformly) continuous if for every w ∈W one can find v ∈ V such that
T (a)≤ T (b)+w whenever a≤ b+ v for a,b ∈ P .

A linear functional on P is a linear operator µ : P → R = R∪{+∞}. The
dual cone P∗ of a locally convex cone (P,V) consists of all continuous linear
functionals on P and is the union of all polars v◦ of neighborhoods v∈ V , where
µ ∈ v◦ means that µ(a)≤ µ(b)+1, whenever a≤ b+v for a,b∈P . In addition,
to the given order ≤ on the locally convex cone (P,V), the weak pereorder 4
is defined for a,b ∈ P by

a 4 b if a≤ γb+ εv

for all v ∈ V and ε > 0 with some 1 ≤ γ ≤ 1+ ε (for details, see [8], I.3). It is
obviously coarser than the given order, that is a≤ b implies a 4 b for a,b ∈ P .
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Given a neighborhood v ∈ V and ε > 0, the corresponding upper and lower
relative neighborhoods vε(a) and (a)vε for an element a ∈ P are defined by

vε(a) = {b ∈ P |b≤ γa+ εv for some 1≤ γ ≤ 1+ ε},

(a)vε = {b ∈ P |a≤ γb+ εv for some 1≤ γ ≤ 1+ ε}.

Their intersection vs
ε(a) = vε(a)∩(a)vε is the corresponding symmetric relative

neighborhood.
We shall say that a locally convex cone (P,V) is a locally convex ∨-semilattice
cone if its order is antisymmetric and if for any two elements a,b ∈ P their
supremum a∨b exists in P and if
(∨1) (a+ c)∨ (b+ c) = a∨b+ c holds for all a,b,c ∈ P ,
(∨2) a ≤ c+ v and b ≤ c+w for a,b,c ∈ P and v,w ∈ V imply that a∨ b ≤
c+(v+w).
Likewise, (P,V) is a locally convex ∧-semilattice cone if its order is antisym-
metric and if for any two elements a,b ∈ P their infimum a∧b exists in P and
if
(∧1) (a+ c)∧ (b+ c) = a∧b+ c holds for all a,b,c ∈ P ,
(∧2) c ≤ a + v and c ≤ b + w for a,b,c ∈ P and v,w ∈ V imply that c ≤
a∧b+(v+w).
If both sets of the above conditions hold, then (P,V) is called a locally convex
lattice cone (cf. [8]).

We shall say that a locally convex cone (P,V) is a locally convex ∨c- semi-
lattice cone if P carries the weak preorder (that is the given order coincides with
the weak preorder for the elements and the neighborhoods in P), this order is
antisymmetric and if
(∨c

1) every non-empty subset A⊆P has a supremum supA∈P and sup(A+b)=
supA+b holds for all b ∈ P ,
(∨c

2) let /0 6=A⊆P , b∈P and v∈V . If a≤ b+v for all a∈A, then supA≤ b+v.
Likewise, (P,V) is said to be a locally convex ∧c-semilattice cone if P

carries the weak preorder, this order is antisymmetric and if
(∧c

1) every bounded below subset A⊂ P has an infimum infA ∈ P and inf(A+
b) = infA+b holds for all b ∈ P ,
(∧c

2) let A ⊂ P be bounded below, b ∈ P and v ∈ V . If b ≤ a+ v for all a ∈ A,
then b≤ in f A+ v.
Combining both of the above notions, we shall say that a locally convex cone
(P,V) is a locally convex complete lattice cone if P is both a ∨c-semilattice
cone and a ∧c-semilattice cone.

As a simple example the locally convex cone (R,V), where R = R∪{∞}
and V = {ε ∈ R : ε > 0}, is a locally convex lattice cone and a locally convex
complete lattice cone.



26 DAVOOD AYASEH - ASGHAR RANJBARI

Suppose (P,V) is a locally convex complete lattice cone. A net (ai)i∈I in
P is called bounded below if there is i0 ∈ I such that the set {ai | i ≥ i0} is
bounded below. We define the superior and the inferior limits of a bounded
below net (ai)i∈I in P by

liminf
i∈I

ai = sup
i∈I

(inf
k≥i

ak) and limsup
i∈I

ai = inf
i∈I

(sup
k≥i

ak).

If liminfi∈I ai and limsupi∈I ai coincide, then we denote their common value
by limi∈I ai and say that the net (ai)i∈I is order convergent. A series ∑

∞
i=1 ai in

(P,V) is said to be order convergent to s ∈ P if the sequence sn = ∑
n
i=1 ai is

order convergent to s.

2. Atomic and nonatomic operator-valued measures

We shall say that a locally convex cone (P,V) is quasi-full if
(QF1) a≤ b+ v for a,b ∈ P and v ∈ V if and only if a≤ b+ s for some s ∈ P
such that s≤ v, and
(QF2) a≤ u+v for a ∈ P and u,v ∈ V if and only if a≤ s+ t for some s, t ∈ P
such that s≤ u and t ≤ v.

The collection R of subsets of X is called a (weak) σ -ring whenever:
(R1) /0 ∈R,
(R2) If E1,E2 ∈R, then E1∪E2 ∈R and E1\E2 ∈R,
(R3) If En ∈R for n ∈ N and En ⊆ E for some E ∈R, then

⋃
n∈N En ∈R.

Every σ -algebra is a σ -ring in this sense and a σ -ring is a σ -algebra if and
only if X ∈R. By any σ -ring R, we can associate the σ -algebra

UR = {A⊂ X : ∀E ∈R,A∩E ∈R}.

The subset A of X is called measurable if A∈UR. The operator–valued measures
in locally convex cones have been defined in [8]. Let (P,V) be a quasi-full
locally convex cone and let (Q,W) be a locally convex complete lattice cone
(see Sections 5 and 6 in Chapter I from [8]). Let L(P,Q) denote the cone of
all (uniformly) continuous linear operators from P to Q. Recall from Section 3
in Chapter I from [8] that a continuous linear operator between locally convex
cones is monotone with respect to the respective weak preorders. Because Q
carries its weak preorder, this implies monotonicity with respect to the given
orders of P and Q as well. Let X be a set, R a (weak) σ -ring of subsets of X .
An L(P,Q)-valued measure θ on R is a set function

E→ θE : R→L(P,Q)
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such that θ( /0) = θ /0 = 0 and

θ(
⋃
i∈N

Ei) = θ(
⋃

i∈N Ei) = ∑
i∈N

θEi

holds whenever the sets Ei ∈ R are disjoint and
⋃

∞
i=1 Ei ∈ R. Convergence

for the series on the right-hand side is meant in the following way: for every
a ∈ P the series ∑i∈N θEi(a) is order convergent in Q. We note that the order
convergence is implied by convergence in the symmetric relative topology.

Let (P,V) be a quasi-full locally convex cone, (Q,W) be locally convex
complete lattice cone and θ be a fixed L(P,Q)-valued measure on R. For a
neighborhood v ∈ V and a set E ∈R, semivariation of θ is defined as follows:

|θ |(E,v) = sup
{

∑
i∈N

θEi(si) : si ∈ P,si ≤ v,Ei ∈Rdisjoint subsets of E
}
.

It is proved in ([8], II, Lemma 3.3), that if v ∈ P , then |θ |(E,v) = θE(v).

Proposition 2.1. Let (P,V) be a quasi-full locally convex cone, (Q,W) be a
locally convex complete lattice cone and θ be a fixed L(P,Q)-valued measure
on R.
(a) If for E ∈R, θE = 0, then for every v ∈ V , |θ |(E,v) = 0,
(b) If for every v ∈ V , |θ |(E,v) = 0, then θE(a) = 0 for every bounded element
a of P .

Proof. For (a), let θE = 0 and F1, · · · ,Fn, n ∈ N be a partition of E. Then for
0≤ si≤ v, i= 1, · · · ,n, we have 0≤ θFi(si)≤ θE(si) = 0. Since the order ofQ is
antisymmetric, for every i∈ {1, · · · ,n}, we have θFi(si) = 0. Then |θ |(E,v) = 0.

For (b), let a ∈ P and for every v ∈ V , |θ |(E,v) = 0. Since a is bounded,
for v ∈ V , there is λ > 0 such that 0 ≤ a + λv and a ≤ λv. Now we have
0 ≤ θE(a)+ |θ |(E,λv) and θE(a) ≤ |θ |(E,λv) by Lemma II,3.4 of [8]. This
shows that 0≤ θE(a) and θE(a)≤ 0. Since the order ofQ is antisymmetric, we
have θE(a) = 0.

Corollary 2.2. Let (P,V) be a quasi-full locally convex cone, (Q,W) be a
locally convex complete lattice cone and θ be a fixed L(P,Q)-valued measure
on R. If all elements of P are bounded, then for E ∈R, θE = 0 if and only if
|θ |(E,v) = 0 for all v ∈ V .

In the following we shall define atomic and nonatomic operator valued mea-
sures. By considering the Corollary 2.2, we use the semivariation of θ for this
aim.
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Definition 2.3. Let R be a σ -ring of subsets of X and v ∈ V . For v ∈ V , the set
E ∈R is said to be of positive v-semivariation of the measure θ if |θ |(E,v)> 0.
Also, we say that the set E is of bounded v-semivariation of the measure θ , if
|θ |(E,v) is bounded in (Q,W).

Definition 2.4. Let R be a σ -ring of subsets of X . We say that a set E ∈R of
positive v-semivariation of the measure θ is a θv-atom if (1) |θ |(E,v) > 0 and
(2) for given A ∈R either |θ |(A∩E,v) = 0 or |θ |(E \A,v) = 0.

We note that if E is a θv-atom and |θ |(A∩E,v)> 0, then E∩A is a θv-atom
for θ .

Definition 2.5. We say that the measure θ is purely v-atomic if each E ∈ R
of positive v-semivariation contains a θv-atom. We say that θ is v-nonatomic
if there are no θv-atoms for θ . This means that every E ∈ R of positive v-
semivariation can be split into two disjoint elements of R, each having positive
v-semivariation. The measure θ is called purely atomic (or nonatomic) if for
every v ∈ V , it is v-atomic (or v-nonatomic).

Clearly the zero measure is the only measure which is both purely atomic
and nonatomic.

Lemma 2.6. If (P,V) is a uc-cone, then θ is purely atomic (or nonatomic)if
and only if it is purely v-atomic (or v-nonatomic) for some v ∈ V .

Proof. Let u ∈ V be arbitrary. There is α > 0 such that u = αv. This shows that
every θu-atom is a θv-atom and every set of positive u-semivariation has positive
v-semivariation. Therefore the assertion holds.

Example 2.7. Let X = N∪{+∞} and P = Q = R. We consider on R the ab-
stract neighborhood system V = {ε ∈ R : ε > 0}. Then L(P,Q) contains all
nonnegative reals and the linear functional 0̄ acting as

0̄(x) =
{+∞ x=+∞

0 else.

We set R = {E ⊂ X : E is finite}. Then R is a σ -ring on X . We define the set
function θ on R as following: for x ∈ P , θ /0(x) = 0, θ{n}(x) = nx for n ∈ N
and θ{+∞}(x) = 0̄(x). For E = {a1, · · · ,an} ∈ R, n ∈ N, we define θE(x) =
∑

n
i=1 θ{ai}(x) for x ∈ P . Then θ is clearly an operator valued measure on R.

For n ∈ N and ε > 0, we have |θ |({n},ε) = θ{n}(ε) = nε and |θ |({+∞},ε) =
θ{∞}(ε) = 0(ε) = 0. It is easy to see that for every n ∈ N, {n} is a θε -atom
but {+∞} is not. Now since every set in R which has positive ε-semivariation
contains a θε -atom, θ is purely ε-atomic. Also since (R,V) is a uc-cone, then
θ is purely atomic by Lemma 2.6.
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Example 2.8. Let X be an uncountable set and P =Q= {0,+∞}. We consider
the cones P andQ endowed with the abstract neighborhood system U= {+∞}.
Then we have L(P,Q) = {0,+∞}. We set R= P(X). Then R is a σ -ring. We
define the operator valued measures θ as follows

θ(E) = θE =

{0 if E is finite or countable

+∞ else.

We have |θ |(E,+∞) = 0 if E is finite or countable and |θ |(E,+∞) = +∞ else.
Then every uncountable set has positive ∞-semivariation but they do not contain
any θ+∞-atom. Therefore θ is a +∞-nonatomic operator valued measure. Since
(P,U) is a uc-cone, then θ is nonatomic.

Proposition 2.9. Suppose θ and ϑ are purely atomic L(P,Q)-valued measures
on R. Then so are θ +ϑ and αθ for α ≥ 0

Proof. Let ϕ = θ +ϑ and for E ∈ R, |ϕ|(E,v) > 0. Then |θ |(E,v) > 0 or
|ϑ |(E,v) > 0. Suppose |θ |(E,v) > 0. Since θ is purely v-atomic, there is a
θv-atom F such that F ⊂ E. If |ϑ |(F,v) = 0, then F is clearly a ϕv-atom. On the
other hand, if |ϑ |(F,v)> 0, then there is a ϑv-atom H such that H ⊂ F . Clearly
we have |ϕ|(H,v)> 0. If H is a ϕv-atom, then the proof is complete. Otherwise,
there is G ∈R such that |ϕ|(H ∩G,v)> 0 and |ϕ|(H \G,v)> 0. We claim that
H ∩G is a ϕv-atom. Since |ϕ|(H ∩G,v) > 0, we have |ϑ |(H ∩G,v) > 0 or
|θ |(H ∩G,v) > 0. If |ϑ |(H ∩G,v) > 0, then H ∩G is ϑv-atom, since H is ϑv-
atom. Also, if |θ |(H∩G,v)> 0, then H∩G is θv-atom, since H∩G⊆ F and F
is a θv-atom. Therefore H ∩G is a ϕv-atom.

It is obvious that if θ is purely v-atomic, then αθ so is for α ≥ 0.

Corollary 2.10. LetM be the cone of all L(P,Q)-valued measures on R. The
collection of all v-atomic L(P,Q)-valued measures on R forms a subcone of
M.

We can prove that the collection of all v-nonatomic operator valued mea-
sures forms a subcone of M. We shall denote the cones of v-atomic and v-
nonatomic operator valued measures on R byMv

A andMv
NA, respectively.

Definition 2.11. Let θ and ϑ be operator valued measures on R. We shall say
that θ is absolutely v-continuous with respect to ϑ , denoted θ�v ϑ , if for every
E ∈R, |ϑ |(E,v) = 0 implies that |θ |(E,v) = 0.

Proposition 2.12. If E is a ϑv-atom, and θ �v ϑ , then either |θ |(E,v) = 0 or
E is a θv-atom.
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Proof. Let E be a ϑv-atom. Then for F ∈R, either |ϑ |(E ∩F,v) = 0 or |ϑ |(E \
F,v) = 0. Since θ �v ϑ , we conclude that |θ |(E∩F,v) = 0 or |θ |(E \F,v) = 0.
Therefore |θ |(E,v) = 0 or E is a θv-atom.

Suppose θ and ϑ are two operator measures on R. We shall say that θ is
Rv-singular with respect to ϑ , denoted θRvϑ , if for every E ∈R there is F ∈R,
F ⊂ E such that |θ |(E,v) = |θ |(F,v) and |ϑ |(F,v) = 0.

Theorem 2.13. Let θ , ϑ and ϕ be operator valued measures on R such that
ϕ = θ +ϑ . If θRvϑ , then θ is v-atomic or v-nonatomic if ϕ has that property.

Proof. Let for E ∈R, |θ |(E,v) > 0. Since θRvϑ , there is F ∈R, F ⊂ E such
that |θ |(F,v) > 0 and |ϑ |(F,v) = 0. Obviously |ϕ|(F,v) > 0. Now, if ϕ is v-
atomic, then there is a ϕv-atom G such that G⊂ F . Since θ �v ϕ , we conclude
that either |θ |(G,v) = 0 or G is a θv-atom. Since |θ |(G,v) = 0 is impossible,
then G is a θv-atom. On the other hand, if ϕ is v-nonatomic, then there is G ∈R
such that |ϕ|(F ∩G,v) > 0 and |ϕ|(F \G,v) > 0. Since |ϑ |(F,v) = 0, thus
|θ |(F ∩G,v)> 0 and |θ |(F \G,v)> 0. Therefore θ is v-nonatomic.

Suppose that θ is an operator valued measure on R and A is a subfamily of
R which contains /0 and it is closed under countable unions. For every E ∈ R
and a ∈P we define θ 1

E(a) = sup{θE∩A(a) : A ∈A} and θ 2
E(a) = sup{θE∩B(a) :

θ 1
B = 0}. The mappings θ 1

E and θ 2
E are linear operators from P into Q by the

Proposition 5.5, I from [8].

Lemma 2.14. The linear operators θ 1
E and θ 2

E are continuous.

Proof. Let a,b ∈ P and w ∈W . Since for A ∈ A and E ∈R, θE∩A is continu-
ous, there is v ∈ V such that a ≤ b+ v implies θE∩A(a) ≤ θE∩A(b)+w. Then,
we have θE∩A(a) ≤ θE∩A(b)+w ≤ supA∈A θE∩A(b)+w. Now (∨c

2) shows that
supA∈A θE∩A(a)≤ supA∈A θE∩A(b)+w. Therefore θ 1

E(a)≤ θ 1
E(b)+w. Thus θ 1

E
is continuous. Similarly, θ 2

E is continuous.

We define the set functions θ 1 and θ 2 as follows:

E→ θ 1
E : R→L(P,Q) and E→ θ 2

E : R→L(P,Q).

Then θ 1 and θ 2 are L(P,Q)-valued measures on R. Obviously, we have θ =
θ 1 +θ 2.

Theorem 2.15. Let θ be aL(P,Q)-valued measure on R and v∈V . Then there
are v-atomic measure θ 1 and v-nonatomic measure θ 2 such that θ = θ 1 +θ 2.
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Proof. Let A be the collection of all countable unions of θv-atoms and θ 1 and
θ 2 be as the above. Then we have θ = θ 1 +θ 2. We show that θ 1 is a v-atomic
measure and θ 2 is a v-nonatomic measure. Let E ∈R and |θ 1|(E,v)> 0. Then
there is A ∈ A such that |θ 1|(E ∩A) > 0. There are θv-atoms A1,A2, · · · , such
that A = ∪∞

n=1An. This implies that |θ 1|(E ∩An) > 0 for some n ∈ N. Since
E ∩An is a θv-atom and θ 1�v θ , then E ∩An is a θ 1

v -atom by Proposition 2.12
which is contained in E.

Now we show that θ 2 is v-nonatomic. Suppose |θ 2|(E,v) > 0. Then there
is B ∈ R such that θ 1

B = 0 and |θ 2|(E ∩B,v) > 0. The set E ∩B is not a θv-
atom, since otherwise |θ 1|(E ∩B,v) > 0, which is a contradiction. Now since
|θ |(E ∩B,v) > 0 and E ∩B is not a θv-atom, there is F ∈R such that |θ |(E ∩
B∩F,v) > 0 and |θ |(E ∩B \F,v) > 0. This shows that |θ 2|(E ∩F,v) > 0 and
|θ 2|(E \F,v)> 0. Then θ 2 is v-nonatomic.

Corollary 2.16. Every operator valued measure can be written as the sum of
an atomic and a nonatomic operator valued measures.

Proof. Since in the proof of Theorem 2.15, v ∈ V is arbitrary, we conclude that
θ 1 is an atomic measure and θ 2 is a nonatomic measure.

Theorem 2.17. Let θ be an v-atomic operator valued measure on R and E ∈
R. If |θ |(E,v) > 0, then there are a countable disjoint collection of θv-atoms
Ak ⊂ E, k ∈ N such that

|θ |(E,v) = |θ |(
∞⋃

k=1

Ak,v) =
∞

∑
k=1
|θ |(Ak,v).

Proof. The proof of Theorem 2.15 shows that there are θv-atoms Ek, k ∈N such
that

|θ |(E,v) = |θ |
(
E ∩

( ∞⋃
k=1

Ek
)
,v
)
.

By setting Ak = [Ek− (E1 ∪ ·· · ∪Ek−1)]∩E and disregarding those Ak, which
have zero v-semivariations, we have

|θ |(E,v) = |θ |(
∞⋃

k=1

Ak,v) =
∞

∑
k=1
|θ |(Ak,v).

Obviously, if |θ |(Ak,v)> 0 for k ∈ N, then Ak is an θv-atom.
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