LE MATEMATICHE
Vol. LXXII (2017) — Fasc. I, pp. 23-32
doi: 10.4418/2017.72.1.3

ATOMIC AND NONATOMIC OPERATOR-VALUED
MEASURES IN LOCALLY CONVEX CONES

DAVOOD AYASEH - ASGHAR RANJBARI

The operator valued measures and integrals for cone-valued functions
have been investigated in [W. Roth, Operator-valued measures and inte-
grals for cone-valued functions, Lecture Notes in Mathematics, vol. 1964,
2009, Springer Verlag, Heidelberg-Berlin-New York]. In this paper, we
define atomic and nonatomic operator valued measures in locally con-
vex cones and investigate their properties. We prove that every operator
valued measure can be written as the sum of an atomic and a nonatomic
measures.

1. Introduction

A cone is a set P endowed with an addition and a scalar multiplication for
nonnegative real numbers. The addition is assumed to be associative and com-
mutative, and there is a neutral element O € P. For the scalar multiplication
the usual associative and distributive properties hold, that is o(Ba) = (af3)a,
(a+B)a=oa+Pa, a(a+b) = aa+ ab, la=a and 0a = 0 for all a,b € P
and o, B > 0.

The theory of locally convex cones as developed in [5] and [8] uses an order
theoretical concept to introduce a topological structure on a cone. For recent
researches see [1-4, 7].
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An ordered cone P carries a reflexive transitive relation < such that a < b
implies a+c¢ < b+ c and aa < ab for all a,b,c € P and o > 0. The extended
real numbers R = RU {+} is a natural example of an ordered cone with the
usual order and algebraic operations in R, in particular 0 - (4-c0) = 0.

A subset V of the ordered cone P is called an abstract neighborhood system,
if the following properties hold:

(I)0<vforallveV;

(2) forall u,v € Vthereisaw € V withw <wuand w < v;

(3) u+veVand v € V whenever u,v € V and o > 0.
For every a € P and v € VV we define

via)={bePlb<a+v} resp. (a)v={bePla<b+v},

to be a neighborhood of a in the upper, resp. lower topologies on P. Their
common refinement is called the symmetric topology generated by the neigh-
borhoods v*(a) = v(a) N (a)v. If we suppose that all elements of P are bounded
below, that is for every a € P and v € V, 0 < a+ Av for some A > 0, then the
pair (P,V) is called a full locally convex cone. A locally convex cone (P,V)
is a subcone of a full locally convex cone, not necessarily containing the ab-
stract neighborhood system V. For example, the extended real number system
R =RU{+} endowed with the usual order and algebraic operations and the
neighborhood system V = {€ € R|e > 0} is a full locally convex cone.

The locally convex cone (P, V) is called a uc-cone whenever there is v € V
such that V = {av: a > 0} (see [2]).

A subset B of the locally convex cone (P, V) is called bounded below when-
ever for every v € V there is A > 0, such that 0 < b+ Av for all b € B.

For cones P and Q a mapping 7 : P — Q is called a linear operator if
T(a+b)=T(a)+T(b)and T (ota) = aT (a) hold for all a,b € P and o > 0. If
both P and Q are ordered, then T is called monotone, if a < b implies T (a) <
T(b). If both (P,V) and (Q,W) are locally convex cones, the operator T is
called (uniformly) continuous if for every w € WV one can find v € V such that
T(a) <T(b)+w whenevera < b+v fora,b € P.

A linear functional on P is a linear operator t : P — R = RU {+oo}. The
dual cone P* of a locally convex cone (P,V) consists of all continuous linear
functionals on P and is the union of all polars v° of neighborhoods v € V, where
U €v° means that p(a) < pu(b)+ 1, whenever a < b+v for a,b € P. In addition,
to the given order < on the locally convex cone (P,)), the weak pereorder <
is defined for a,b € P by

ab if a<yb+ev

for all ve V and € > 0 with some 1 <y <1+ € (for details, see [8], 1.3). It is
obviously coarser than the given order, that is a < b implies a < b for a,b € P.
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Given a neighborhood v € V and € > 0, the corresponding upper and lower
relative neighborhoods v, (a) and (a)v, for an element a € P are defined by

ve(a)={beP|b<ya+ev forsome 1<7y<l1+e¢},

(a)ve={bePla<yb+ev forsome 1<y<I1+¢e}.

Their intersection v (a) = ve(a) N (a)ve is the corresponding symmetric relative
neighborhood.

We shall say that a locally convex cone (P, V) is a locally convex \/-semilattice
cone if its order is antisymmetric and if for any two elements a,b € P their
supremum a V b exists in P and if

(V1) (a+c)V(b+c) =aVb+cholds for all a,b,c € P,

(V2) a<c+vand b <c+w for a,b,c € P and v,w € V imply that aV b <
c+(+w).

Likewise, (P, V) is a locally convex A-semilattice cone if its order is antisym-
metric and if for any two elements a,b € P their infimum a A b exists in P and
if

(A1) (a+c)N(b+c)=aNb+cholds for all a,b,c € P,

(A2) ¢ <a+vand ¢ <b+w for a,b,c € P and v,w € V imply that ¢ <
anNb+(v+w).

If both sets of the above conditions hold, then (P, V) is called a locally convex
lattice cone (cf. [8]).

We shall say that a locally convex cone (P,V) is a locally convex \V¢- semi-
lattice cone if P carries the weak preorder (that is the given order coincides with
the weak preorder for the elements and the neighborhoods in P), this order is
antisymmetric and if
(V{) every non-empty subset A C P has a supremum supA € P and sup(A+Db) =
supA + b holds for all b € P,

(V5 1letd AACP,bcPandve V. Ifa<b+vforallac A, thensupA <b+v.

Likewise, (P,)) is said to be a locally convex A¢-semilattice cone if P
carries the weak preorder, this order is antisymmetric and if
(A)) every bounded below subset A C P has an infimum infA € P and inf(A +
b) =infA+ b holds for all b € P,

(A5) let A C P be bounded below, b€ Pandve V. If b<a+vforalla €A,
then b < infA+v.

Combining both of the above notions, we shall say that a locally convex cone
(P,V) is a locally convex complete lattice cone if P is both a V¢-semilattice
cone and a A“-semilattice cone.

As a simple example the locally convex cone (R,V), where R = RU {oo}
and V = {e € R: € > 0}, is a locally convex lattice cone and a locally convex
complete lattice cone.
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Suppose (P,V) is a locally convex complete lattice cone. A net (a;)iez in
P is called bounded below if there is ip € Z such that the set {a; |i > ip} is
bounded below. We define the superior and the inferior limits of a bounded
below net (a;);ez in P by

liminfa; = sup(infay) and limsupa; = inf(supay).
i€ ieT k=i i€ €1 k>

If liminf;cza; and limsup,.7a; coincide, then we denote their common value
by lim;c7 a; and say that the net (a;);c7 is order convergent. A series Y7 | a; in
(P,V) is said to be order convergent to s € P if the sequence s, = Y7 a; is
order convergent to s.

2. Atomic and nonatomic operator-valued measures

We shall say that a locally convex cone (P,V) is quasi-full if
(QF1)a<b+vfora,b e Pandv eV if and only if a < b+ s for some s € P
such that s < v, and
(QF2)a<u+vforac P andu,v €V if and only if a < s+ for some s, € P
such that s <wuandr <wv.
The collection R of subsets of X is called a (weak) o-ring whenever:
(R1) 0 € R,
(RZ) IfE\,E, € R, then E{UE; € R and E| \Ez € R,
(R3)IfE, € R forn e Nand E, C E for some E € R, then .y En € R.
Every o-algebra is a o-ring in this sense and a ¢-ring is a o-algebra if and
only if X € fR. By any o-ring R, we can associate the c-algebra

Up ={A CX:VE € RANE € R}.

The subset A of X is called measurable if A € {ly. The operator—valued measures
in locally convex cones have been defined in [8]. Let (P,)) be a quasi-full
locally convex cone and let (Q,)V) be a locally convex complete lattice cone
(see Sections 5 and 6 in Chapter I from [8]). Let £(P, Q) denote the cone of
all (uniformly) continuous linear operators from P to Q. Recall from Section 3
in Chapter I from [8] that a continuous linear operator between locally convex
cones is monotone with respect to the respective weak preorders. Because Q
carries its weak preorder, this implies monotonicity with respect to the given
orders of P and Q as well. Let X be a set, R a (weak) o-ring of subsets of X.
An L(P, Q)-valued measure 0 on R is a set function

E—6g:R— L(P,Q)
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such that 6(0) = 6p = 0 and

G(U Ei) = G(UiENEi) = Z Ok,
ieN ieN

holds whenever the sets E; € R are disjoint and |~ E; € R. Convergence
for the series on the right-hand side is meant in the following way: for every
a € P the series Y ;cy g (a) is order convergent in Q. We note that the order
convergence is implied by convergence in the symmetric relative topology.

Let (P,V) be a quasi-full locally convex cone, (Q,W) be locally convex
complete lattice cone and 6 be a fixed £L(P, Q)-valued measure on R. For a
neighborhood v € V and a set E € R, semivariation of 0 is defined as follows:

|6|(E,v) = sup{ Z Ok, (si) : si € P,si <v,E; € Rdisjoint subsets ofE}.
ieN

It is proved in ([8], I, Lemma 3.3), that if v € P, then |0|(E,v) = 6g(v).

Proposition 2.1. Let (P,V) be a quasi-full locally convex cone, (Q,W) be a
locally convex complete lattice cone and 0 be a fixed L(P, Q)-valued measure
on fRA.

(a) If for E € R, O =0, then for everyv €V, |0|(E,v) =0,

(b) If for every v €V, |B|(E,v) =0, then Og(a) = 0 for every bounded element
aofP.

Proof. For (a), let 6g =0 and Fy,---,F,, n € N be a partition of E. Then for
0<s;<v,i=1,---,n, wehave 0 < Or(s;) < Og(s;) = 0. Since the order of Q is
antisymmetric, for every i € {1,---,n}, we have 6 (s;) =0. Then |0|(E,v) =0.

For (b), let a € P and for every v € V, |6|(E,v) = 0. Since a is bounded,
for v € V, there is A > 0 such that 0 < a+ Av and a < Av. Now we have
0 < 6g(a)+|6|(E,Av) and Og(a) < |6|(E,Av) by Lemma II,3.4 of [8]. This
shows that 0 < 6z (a) and 6z (a) < 0. Since the order of Q is antisymmetric, we
have g (a) = 0. O

Corollary 2.2. Let (P,V) be a quasi-full locally convex cone, (Q,W) be a
locally convex complete lattice cone and 0 be a fixed L(P, Q)-valued measure
on $R. If all elements of ‘P are bounded, then for E € SR, O = 0 if and only if
|0|(E,v) =0forallveV.

In the following we shall define atomic and nonatomic operator valued mea-
sures. By considering the Corollary 2.2, we use the semivariation of 8 for this
aim.
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Definition 2.3. Let R be a o-ring of subsets of X and v € V. For v € V, the set
E € MR s said to be of positive v-semivariation of the measure 6 if |0|(E,v) > 0.
Also, we say that the set E is of bounded v-semivariation of the measure 0, if
|6|(E,v) is bounded in (Q,W).

Definition 2.4. Let R be a o-ring of subsets of X. We say that a set E € R of
positive v-semivariation of the measure 0 is a 6,-atom if (1) |0|(E,v) > 0 and
(2) for given A € R either |6|(ANE,v) =0or |6|(E\A,v) =0.

We note that if E is a 6,-atom and |0|(ANE,v) > 0, then ENA is a 6,-atom
for 6.

Definition 2.5. We say that the measure 0 is purely v-atomic if each E € R
of positive v-semivariation contains a 6,-atom. We say that 0 is v-nonatomic
if there are no 6,-atoms for 0. This means that every E € R of positive v-
semivariation can be split into two disjoint elements of R, each having positive
v-semivariation. The measure 0 is called purely atomic (or nonatomic) if for
every v € V, it is v-atomic (or v-nonatomic).

Clearly the zero measure is the only measure which is both purely atomic
and nonatomic.

Lemma 2.6. If (P,V) is a uc-cone, then 6 is purely atomic (or nonatomic)if
and only if it is purely v-atomic (or v-nonatomic) for some v € V.

Proof. Letu €V be arbitrary. There is & > 0 such that u = av. This shows that
every 6,-atom is a 6,-atom and every set of positive u-semivariation has positive
v-semivariation. Therefore the assertion holds. O

Example 2.7. Let X = NU{+c0} and P = Q = R. We consider on R the ab-
stract neighborhood system )V = {€ € R: & > 0}. Then L(P, Q) contains all
nonnegative reals and the linear functional 0 acting as

. {

0 else.

We set R = {E C X : E is finite}. Then R is a o-ring on X. We define the set
function 6 on R as following: for x € P, 6y(x) =0, 6y, (x) = nx forn € N
and 0. (x) = 0(x). For E = {ay,---,a,} € R, n € N, we define Og(x) =
Y1 014,y (x) for x € P. Then 6 is clearly an operator valued measure on 3.
For n € N and € > 0, we have |0|({n},€) = 0;,;(€) = ne and |0|({+o0},€) =
61} (€) = 0(g) = 0. It is easy to see that for every n € N, {n} is a 6¢-atom
but {40} is not. Now since every set in 98 which has positive €-semivariation
contains a @g-atom,  is purely €-atomic. Also since (R, V) is a uc-cone, then
0 is purely atomic by Lemma 2.6.
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Example 2.8. Let X be an uncountable set and P = Q = {0, +eo}. We consider
the cones P and Q endowed with the abstract neighborhood system £l = {+oco}.
Then we have L(P, Q) = {0,+oo}. We set R = P(X). Then R is a o-ring. We
define the operator valued measures 6 as follows

0 if E is finite or countable

O(E) =06 = {
+oo else.

We have |0|(E,+) = 0 if E is finite or countable and |0|(E, +) = +oo else.

Then every uncountable set has positive co-semivariation but they do not contain

any 0, .-atom. Therefore 0 is a +co-nonatomic operator valued measure. Since

(P,4) is a uc-cone, then 6 is nonatomic.

Proposition 2.9. Suppose 0 and ¥ are purely atomic L(P, Q)-valued measures
on K. Then so are 8 + ¥ and a0 for o >0

Proof. Let ¢ = 6 + O and for E € R, |@|(E,v) > 0. Then |8|(E,v) >0 or
|$|(E,v) > 0. Suppose |8|(E,v) > 0. Since 6 is purely v-atomic, there is a
0,-atom F such that F C E. If |}|(F,v) =0, then F is clearly a ¢,-atom. On the
other hand, if | |(F,v) > 0, then there is a ¥,-atom H such that H C F. Clearly
we have |@|(H,v) > 0. If H is a ¢,-atom, then the proof is complete. Otherwise,
there is G € R such that |@|(HNG,v) > 0 and |@|(H \ G,v) > 0. We claim that
HNG is a g,-atom. Since |@|(H NG,v) > 0, we have ||(HNG,v) >0 or
|60|(HNG,v) > 0. If || (HNG,v) >0, then HNG is ¥,-atom, since H is -
atom. Also, if |0|(HNG,v) > 0, then HNG is 6,-atom, since HNG C F and F
is a 6,-atom. Therefore H N G is a ¢,-atom.

It is obvious that if 0 is purely v-atomic, then @8 so is for o¢ > 0. O

Corollary 2.10. Let M be the cone of all L(P, Q)-valued measures on R. The
collection of all v-atomic L(P,Q)-valued measures on R forms a subcone of

M.

We can prove that the collection of all v-nonatomic operator valued mea-
sures forms a subcone of M. We shall denote the cones of v-atomic and v-
nonatomic operator valued measures on R by M), and My,, respectively.

Definition 2.11. Let 6 and ¥ be operator valued measures on SR. We shall say
that 6 is absolutely v-continuous with respect to ¥, denoted 6 <, ¥, if for every
E € R, |9|(E,v) = 0 implies that |6|(E,v) = 0.

Proposition 2.12. If E is a ¥,-atom, and 6 <, ¥, then either |0|(E,v) =0 or
E is a 6,-atom.
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Proof. Let E be a ¥y-atom. Then for F € %R, either |3|(ENF,v) =0or |3|(E\
F,v) = 0. Since 6 <, ¥, we conclude that |0|(ENF,v)=0or |0|(E\F,v)=0.
Therefore |0|(E,v) =0 or E is a 6,-atom. O

Suppose 6 and ¥ are two operator measures on R. We shall say that 0 is
R, -singular with respect to 1%, denoted R, ¥, if for every E € R there is F € R,
F C E such that |0|(E,v) = |6|(F,v) and |¥|(F,v) = 0.

Theorem 2.13. Let 0, ¥ and @ be operator valued measures on R such that
¢© =0+ 9. If OR,V, then 0O is v-atomic or v-nonatomic if ¢ has that property.

Proof. Let for E € R, |0|(E,v) > 0. Since R, 9, there is F € R, F C E such
that |0|(F,v) > 0 and |%|(F,v) = 0. Obviously |@|(F,v) > 0. Now, if ¢ is v-
atomic, then there is a ¢,-atom G such that G C F. Since 0 <, ¢, we conclude
that either |0|(G,v) =0 or G is a 6,-atom. Since |6|(G,v) = 0 is impossible,
then G is a O,-atom. On the other hand, if ¢ is v-nonatomic, then there is G € ‘R
such that |@|(F N G,v) > 0 and |@|(F \ G,v) > 0. Since |¥|(F,v) = 0, thus
|6|(FNG,v) >0and |6](F\G,v) > 0. Therefore 6 is v-nonatomic. O

Suppose that 6 is an operator valued measure on R and A is a subfamily of
R which contains @ and it is closed under countable unions. For every E € R
and a € P we define 0} (a) = sup{0gra(a) : A € A} and 62 (a) = sup{Orp(a):
64 = 0}. The mappings 8, and 6} are linear operators from P into Q by the
Proposition 5.5, I from [8].

Lemma 2.14. The linear operators 6 and 2 are continuous.

Proof. Leta,b € P and w € W. Since for A € A and E € R, Ogny is continu-
ous, there is v € V such that a < b+ v implies Ogna(a) < Ogna(b) +w. Then,
we have Ogra(a) < Opra (D) +w < supye 4 Opna(b) +w. Now (V§) shows that
supse. Ona(a) < supye 4 Opna(b) +w. Therefore 61 (a) < 64 (b) +w. Thus 6}
is continuous. Similarly, 82 is continuous. O

We define the set functions 8! and 62 as follows:
E—0L:R—L(P,Q)and E — 6% : R — L(P,Q).

Then 0! and 6 are £(P, Q)-valued measures on 9. Obviously, we have 8 =
6'+6°.

Theorem 2.15. Let 6 be a L(P, Q)-valued measure on R and v € V. Then there
are v-atomic measure 01 and v-nonatomic measure 6% such that 6 = 6! + 62.
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Proof. Let A be the collection of all countable unions of 6,-atoms and 6' and
67 be as the above. Then we have 8 = 6! +- 62, We show that 8! is a v-atomic
measure and 6 is a v-nonatomic measure. Let E € R and |0'|(E,v) > 0. Then
there is A € A such that |@'|(ENA) > 0. There are 6,-atoms Aj,A,,--, such
that A = U A,. This implies that |8'|(ENA,) > 0 for some n € N. Since
ENA,isa 9 -atom and 8! <, 0, then ENA, is a ' -atom by Proposition 2.12
which is contained in E.

Now we show that 62 is v-nonatomic. Suppose |62|(E,v) > 0. Then there
is B € MR such that 8} = 0 and |8%|(ENB,v) > 0. The set ENB is not a 6,-
atom, since otherwise |8'|(E N B,v) > 0, which is a contradiction. Now since
|0|(ENB,v) >0 and ENB is not a 6,-atom, there is F € R such that |0|(E N
BNF,v) >0and |8|(ENB\F,v) > 0. This shows that |8%|(ENF,v) > 0 and
|6%|(E \ F,v) > 0. Then 62 is v-nonatomic. O

Corollary 2.16. Every operator valued measure can be written as the sum of
an atomic and a nonatomic operator valued measures.

Proof. Since in the proof of Theorem 2.15, v € V is arbitrary, we conclude that
6! is an atomic measure and 67 is a nonatomic measure. O

Theorem 2.17. Let 0 be an v-atomic operator valued measure on ‘R and E €
R. If |8|(E,v) > 0, then there are a countable disjoint collection of 6,-atoms
Ay CE, k € N such that

16|(E,v) = 16]( UAk, Z|9[(Ak,v)
k=1

Proof. The proof of Theorem 2.15 shows that there are 6,-atoms Ej, k € N such
that

0/(E.) = 0](En (U £).v)
k=1

By setting Ay = [Ex — (E1 U---UE_1)]NE and disregarding those Ay, which
have zero v-semivariations, we have

|6](E,v) =10|( UAk, Z|9[(Ak,v)
k=1

Obviously, if |0|(Ax,v) > 0 for k € N, then Ay is an 6,-atom. O
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