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THE RUBIN’S Q-WAVELET PACKETS

SLIM BOUAZIZ - KAMEL MEZLINI - NÉJI BETTAIBI

Using the q-harmonic analysis associated with the q-Rubin opera-
tor, we study three types of q-wavelet packets and their corresponding
q-wavelet transforms. We give for these wavelet transforms the related
Plancherel and inversion formulas as well as their q-scale discrete scaling
functions.

1. Introduction

In seismology by reflection, Morlet knew that the pulse-modulated high fre-
quency that we send in the ground are too long to distinguish the very close
strata. He, then, introduced a new tool, called nowadays wavelets, to study the
analysis of seismic data. While working in theoretical physics, Grossman found
in the Morlet’s approach some ideas close to his work on quantum coherent
states. Then the two men have reactivated a collaboration between fundamen-
tal physics and theoretical signal processing, which led to the formalization of
the continuous wavelet transforms, using the classical harmonic analysis. Since
then, their results were generalized to many fields and many generalized Fourier
analysis. The wavelet theory is motivated by the fact that certain algorithms that
decompose a signal on the whole family of scales, can be utilized as an effective
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tool for multiscale analysis. In practical applications involving fast numerical
algorithms, the continuous wavelet can be computed at discrete grid points. This
theory involves breaking up a complicated function into many simple pieces at
different scales and positions. It allows a greatly flexibility with more desirable
features such as discrimination by wavelet packets, and readiness for better im-
plementation [4, 16, 20]. In general, wavelet packet decomposition divides the
frequency space into various parts and allows better frequency localization of
the signal.

The theory of q-deformation, called in some literature ”quantum calculus”
provides a natural discretization in which the classical derivative is replaced by
a q-difference operator, the classical integral is replaced by a discreet sum and
the set of real numbers is replaced by a geometric progression.
Interest in this theory is grown at an explosive rate by both physicists and mathe-
maticians due to the large number of its applications domain and the role played
by this discretization in algorithmic field. For instance, a lot of work has been
carried out while developing some q-analogues of Fourier analysis using ele-
ments of quantum calculus (see [5, 9, 10, 17–19] and references therein). Fur-
thermore, applications of these new q-harmonic analysis in sampling theory and
wavelet theory have been shown (see [1, 6]). In [8], the authors introduced and
studied the q-wavelets and the q-wavelet transforms associated with the q-Rubin
operator, using elements of the q-harmonic analysis, associated with this oper-
ator, developed in [18] and in [19]. In particular they provided for these trans-
forms a Plancherel and an inversion formulas.

In this paper, we present a general construction, allowing the development
of three types of q-wavelet packets starting from the so-mentioned q-continuous
wavelet analysis. For each type, we study its corresponding q-wavelet packet
transform and we prove for this transform a Plancherel formula and an inversion
theorem. We claim out that all our results are q-analogues of the classical picture
given in [20]. The methods used here are direct and constructive, and have a
good resemblance with the picture developed in [20].

This paper is organized as follows: in Section 2, we present some notations
and notions needed in the sequel. Section 3 is devoted to present some elements
of the Rubin’s q-harmonic analysis. We define and study in Sections 4, 5, 6
and 7 three types of q-wavelet packets and the corresponding q-wavelet packets
transforms as well as their q-scale discrete scaling functions.
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2. Notations and preliminaries

We recall some usual notions and notations used in the q-theory (see [11] and
[13]). We refer to the book by G. Gasper and M. Rahman [11] for the definitions,
notations and properties of the q-shifted factorials and the q-hypergeometric
functions. Throughout this paper, we assume q ∈]0,1[ and we denote

Rq = {±qn : n ∈ Z}, Rq,+ = {qn : n ∈ Z} and R̃q = Rq∪{0}.

For complex number a, the q-shifted factorials are defined by:

(a;q)0 = 1; (a;q)n =
n−1

∏
k=0

(1−aqk),n = 1,2, ...; (a;q)∞ =
∞

∏
k=0

(1−aqk).

[x]q =
1−qx

1−q
, x ∈ C and n!q =

(q;q)n

(1−q)n , n ∈ N.

The Rubin’s q-differential operator is defined in [18, 19] by

∂q( f )(z) =


f (q−1z)+ f (−q−1z)− f (qz)+ f (−qz)−2 f (−z)

2(1−q)z
i f z 6= 0

lim
x→0

∂q( f )(x) i f z = 0.

(1)
Note that if f is differentiable at z, then ∂q( f )(z) tend to f ′(z) as q tends to 1.

The q-Jackson integrals from 0 to a, from 0 to +∞ and from −∞ to +∞ are
defined by (see [12]) ∫ a

0
f (x)dqx = (1−q)a

∞

∑
n=0

f (aqn)qn, (2)

∫
∞

0
f (x)dqx = (1−q)

∞

∑
n=−∞

f (qn)qn,

∫
∞

−∞

f (x)dqx = (1−q)
∞

∑
n=−∞

qn f (qn)+(1−q)
∞

∑
n=−∞

qn f (−qn),

(3)

provided the sums converge absolutely.
The q-Jackson integral in a generic interval [a,b] is given by∫ b

a
f (x)dqx =

∫ b

0
f (x)dqx−

∫ a

0
f (x)dqx. (4)

In the particular case a = bqn, n ∈ N, the relation (4) becomes∫ b

a
f (x)dqx = (1−q)b

n−1

∑
k=0

f (qkb)qk. (5)
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For x ∈ Rq, we denote by δx the function defined by

δx(t) =
{

1 i f t = x
0 i f t 6= x.

(6)

We remark that for a function f on Rq, we have∫
∞

−∞

f (t)δx(t)dqt = (1−q)|x| f (x).

The q-trigonometric functions (see[18, 19]) are defined on C by

cos(x;q2) :=
∞

∑
n=0

(−1)nb2n(x;q2) (7)

and

sin(x;q2) :=
∞

∑
n=0

(−1)nb2n+1(x;q2), (8)

where

bn(x;q2) =
q[

n
2 ]([

n
2 ]+1)

n!q
xn (9)

and [x] is the integer part of x ∈ R.
These two functions induce a ∂q-adapted q-analogue exponential function:

e(z;q2) := cos(−iz;q2)+ isin(−iz;q2) =
∞

∑
n=0

bn(z;q2). (10)

e(z;q2) is absolutely convergent for all z in the plane, and we have

lim
q→1−

e(z;q2) = ez

point-wise and uniformly on compacta. Note that we have

Lemma 2.1. (see [18])

For all λ ∈ C, ∂qe(λ z;q2) = λe(λ z;q2). (11)

For all x ∈ Rq, |e(ix;q2)| ≤ 2
(q;q)∞

. (12)

In the sequel, we will need the following sets and spaces.
• Cq,0(Rq) the space of bounded functions on Rq, continued at 0 and vanishing
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at ∞.
• Sq(Rq) the space of functions on Rq such that

∀n,m ∈ N, sup
x∈R;0≤k≤n

| (1+ x2)m
∂

k
q f (x) |<+∞.

• For p ∈ [1,+∞], and we denote by Lp
q(Rq), the set of all functions defined on

Rq such that
‖ f‖q,p < ∞,

where

‖ f‖q,p =


(∫

∞

−∞

| f (x) |p dqx
) 1

p

i f p≥ 1

sup
x∈Rq

| f (x)| i f p =+∞

3. Elements of Rubin’s q-harmonic analysis

In [18, 19], R. L. Rubin defined the q2-analogue Fourier transform as

Fq( f )(x) = K
∫

∞

−∞

f (t)e(−itx;q2)dqt, x ∈ R̃q,

where

K =
(q;q2)∞

2(q2;q2)∞(1−q)1/2 .

Letting q ↑ 1 subject to the condition

Log(1−q)
Log(q)

∈ 2Z, (13)

gives, at least formally, the classical Fourier transform. In the remainder of this
paper, we assume that the condition (13) holds.

It was shown in [2, 18, 19] that the q2-analogue Fourier transform Fq veri-
fies the following properties:

Theorem 3.1.

1. If f ∈ L1
q(Rq), then

Fq( f ) ∈ Cq,0(Rq) and ‖Fq( f )‖q,∞ ≤
2K

(q;q)∞

‖ f‖q,1.

2. If f , ∂q f ∈ L1
q(Rq), then Fq(∂q f )(λ ) = iλFq( f )(λ ), λ ∈ R̃q.



38 SLIM BOUAZIZ - KAMEL MEZLINI - NÉJI BETTAIBI

Theorem 3.2.
1) Fq is an isomorphism of L2

q(Rq) into itself, satisfying for f ∈ L2
q(Rq)

‖Fq( f )‖q,2 = ‖ f‖q,2

and
∀t ∈ Rq, f (t) = K

∫
∞

−∞

Fq( f )(x)e(itx;q2)dqx.

2) For f ,g ∈ L2
q(Rq), we have∫

∞

−∞

f (x)g(x)dqx =
∫

∞

−∞

Fq( f )(λ )Fq(g)(λ )dqλ .

The q-translation operator Tq,x, x ∈ R̃q is defined (see [2, 19]) by

Tq,x( f )(y) = K
∫

∞

−∞

Fq( f )(t)e(itx;q2)e(ity;q2)dqt, y ∈ Rq, (14)

Tq,0( f )(y) = f (y). (15)

It verifies the following properties (see [2, 19]), for f ,g ∈ L2
q(Rq),

Tq,x( f )(y) = Tq,y( f )(x), x,y ∈ Rq,∫
∞

−∞

Tq,x( f )(y)dqy =
∫

∞

−∞

f (y)dqy, x ∈ Rq,∫
∞

−∞

Tq,x( f )(y)g(y)dqy =
∫

∞

−∞

f (y)Tq,−x(g)(y)dqy, x ∈ Rq,

Tq,xe(ity;q2) = e(itx;q2)e(ity;q2), x,y, t ∈ Rq.

It was shown in [2, 19] that for f ∈ L2
q(Rq), we have for all x ∈ R̃q, Tq,x f ∈

L2
q(Rq) and

‖Tq,x f‖q,2 ≤
2

(q;q)∞

‖ f‖q,2. (16)

The q-convolution product is defined (see [2, 19]), by:

f ∗q g(x) = K
∫

∞

−∞

Tq,−y f (x)g(y)dqy. (17)

Theorem 3.3. For f ,g ∈ L1
q(Rq)∩L2

q(Rq), we have

Fq( f ∗q g) = Fq( f )Fq(g). (18)

For f ∈ L2
q(Rq), we have

Fq(Tq,x f )(λ ) = e(iλx;q2)Fq( f )(λ ), x ∈ R̃q, λ ∈ Rq. (19)
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Moreover, the following result was shown in [19].

Proposition 3.4. Let f and g be in L2
q(Rq). Then

1. f ∗q g ∈ L2
q(Rq) iff Fq( f )Fq(g) ∈ L2

q(Rq),

2. ∫
∞

−∞

| f ∗q g(x) |2 dqx =
∫

∞

−∞

| Fq( f )(x) |2| Fq(g)(x) |2 dqx, (20)

where both sides are finite or infinite.

The dilatation operators are defined by

Ha( f )(x) =
1
a

f
( x

a

)
, a ∈ Rq,+. (21)

They satisfy the following properties.

Proposition 3.5.

1. H1 = id; HaoHb = Hab; H−1
a = Ha−1 , a,b ∈ Rq,+.

2. For all a ∈ Rq,+, the operator Ha is an automorphism of L1
q(Rq) (resp.

L2
q(Rq)) onto itself and for all f ∈ L1

q(Rq) (resp. f ∈ L2
q(Rq)), we have

‖Ha f‖1 = ‖ f‖1 (resp. ‖Ha f‖2 =
1√
a
‖ f‖2)

and
Fq [Ha( f )] (x) = Fq( f )(ax). (22)

Proof. (1) follows from the definition of the dilatation operator.

(2) The change of variables u =
t
a

gives the result.

4. q-Wavelet Packets

We recall that a Rubin’s q-wavelet is a square q-integrable function g on Rq

satisfying the following admissibility condition:

0 <Cg =
∫

∞

0
| Fq(g)(a) |2

dqa
a

=
∫

∞

0
| Fq(g)(−a) |2

dqa
a

< ∞. (23)

We consider a Rubin’s q-wavelet g and a strictly decreasing scale sequence
(r j) j∈Z of Rq,+ satisfying lim

j→−∞
r j =+∞, lim

j→+∞
r j = 0. We state the following

introductory result.
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Proposition 4.1. For all j ∈ Z, we have :

1. the function λ 7−→
(

1
Cg

∫ r j

r j+1

|Fq(Ha(g))(λ )|2
dqa
a

) 1
2

belongs to L2
q(Rq),

2. there exists a function gP
j ∈ L2

q(Rq) such that for all λ ∈ Rq,

Fq(gP
j )(λ ) =

(
1

Cg

∫ r j

r j+1

|Fq(Ha(g))(λ )|2
dqa
a

) 1
2

.

Proof. Fix j ∈ Z.
(1) On the one hand, r j and r j+1 are two elements of Rq,+ satisfying r j+1 < r j,
then there exists a positive integer n such that r j+1 = qnr j. So, using the relation
(5) and Proposition 3.5, we obtain

∫
∞

−∞

(
1

Cg

∫ r j

r j+1

|Fq(Ha(g))(λ )|2
dqa
a

)
dqλ =

1−q
Cg

∫
∞

−∞

n−1

∑
k=0
|Fq(g)(λqkr j)|2dqλ

=
1−q
Cg

n−1

∑
k=0

∫
∞

−∞

|Fq(g)(λqkr j)|2dqλ .

On the other hand, the change of variable u = λqkr j, ( 0≤ k ≤ n−1), together
with Theorem 3.2 lead to

∫
∞

−∞

(
1

Cg

∫ r j

r j+1

|Fq(Ha(g))(λ )|2
dqa
a

)
dqλ =

1−q
Cg

n−1

∑
k=0

∫
∞

−∞

|Fq(g)(u)|2

r jqk dqu

=
q

Cg

(
1

r j+1
− 1

r j

)
‖g‖2

q,2.

(2) The result follows from Theorem 3.2.

Definition 4.2. i) The sequence (gP
j ) j∈Z is called Rubin’s q-wavelet packet.

ii) The function gP
j , j ∈ Z, is called Rubin’s q-wavelet packet’s member of step

j.

We have the following immediate properties.

Proposition 4.3. For all λ ∈ Rq, we have

0≤Fq(gP
k )(λ )≤ 1, k ∈ Z and

+∞

∑
j=−∞

[Fq(gP
j )(λ )]

2 = 1.
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Example
Using the Euler q-analogue of the exponential function ( see [11], and [13])

expq2(x) =
1

((1−q2)x;q2)∞

,

consider the function

G(x) = cqexpq2

(
− qx2

(1+q)2

)
,

where

cq =

(
−q(1−q)

1+q ,−q(1+q)
1−q ;q2

)
∞

(1−q)
1
2

(
−q2(1−q)

1+q ,−1+q
1−q ;q2

)
∞

It was shown in [8] that the function

g(x) = ∂
2
q G(x) =

cq

q(1+q)

(
1− x2

1+q

)
expq2

(
− x2

q(1+q)2

)
is a Rubin’s q-wavelet in Sq(Rq) satisfying

Fq(g)(x) =−x2Fq(G)(x) =−x2expq2(−x2), x ∈ Rq.

Now, for j ∈ Z, put r j = q j. It is clear that (r j) j∈Z is a strictly decreasing
sequence of Rq,+, lim

j→−∞
r j =+∞ and lim

j→+∞
r j = 0. The Rubin’s q-wavelet packet

(gP
j ) j∈Z is given by :

gP
j =−

√
1−q
Cg

Hq j g, j ∈ Z.

Indeed, for all x ∈ Rq, we have

Fq(gP
j )(x) =

√
1−q
Cg
Fq(−g)(q jx)

=

(
1−q
Cg

∣∣Fq(g)(q jx)
∣∣2) 1

2

=

(
1

Cg

∫ r j+1

r j

∣∣Fq(g)(ax)
∣∣2 dqa

a

) 1
2

H
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Let (gP
j ) j∈Z be a Rubin’s q-wavelet packet. We introduce for all j ∈ Z and

x ∈ Rq, the function gP
j,x as

gP
j,x(y) = Tq,y(gP

j )(x), y ∈ R̃q. (24)

Some properties of these functions are summarized in the following result that
its proof follows easily from the properties of the q- translation operator and the
definition of the Rubin’s q-wavelet packets.

Proposition 4.4. For all j ∈ Z and x ∈ Rq, the function gP
j,x belongs to L2

q(Rq)

and we have for all λ ∈ R̃q,

• Fq(gP
j,x)(λ ) = e(iλx;q2)Fq(gP

j )(λ ).

• ‖gP
j,x‖q,2 ≤

2‖gP
j ‖q,2

(q;q)∞

.

Definition 4.5. Let (gP
j ) j∈Z be a Rubin’s q-wavelet packet. We define the Ru-

bin’s q-wavelet packet transform ΨP
q,g by

Ψ
P
q,g( f )( j,y) =K

∫
∞

−∞

f (x)gP
j,y(x)dqx, j ∈Z, y∈ R̃q and f ∈ L2

q(Rq). (25)

Remark 4.6. The equality (25) is equivalent to

Ψ
P
q,g( f )( j,y) = f̌ ∗q gP

j (y) = Fq(Fq( f̌ ∗q gP
j ))(−y) = Fq[Fq( f̌ ).Fq(gP

j )](−y),
(26)

where f̌ (x) = f (−x).

The following proposition provides some useful properties of ΨP
q,g.

Proposition 4.7. Let (gP
j ) j∈Z be a Rubin’s q-wavelet packet and f ∈ L2

q(Rq).
Then,

1. for all j ∈ Z, b ∈ R̃q, we have

|ΨP
q,g( f )( j,b)| ≤ 2K

(q;q)∞

‖ f‖q,2

∥∥gP
j

∥∥
q,2 ;

2. for all j ∈ Z, the mapping b 7→ΨP
q,g( f )( j,b) is continuous on R̃q and we

have lim
b→∞

Ψ
P
q,g( f )( j,b) = 0.
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Proof. (1) From the relation (25), Proposition 4.4 and the Cauchy-Schwarz in-
equality, we have for j ∈ Z and b ∈ Rq

|ΨP
q,g( f )( j,b)|= K

∣∣∣∣∫ ∞

−∞

f (x)gP
j,b(x)dqx

∣∣∣∣≤ K|| f ||q,2||gP
j,b||q,2

≤ 2K
(q;q)∞

|| f ||q,2||gP
j ||q,2.

(2) Let j ∈ Z and f ∈ L2
q(Rq). From Theorem 3.2, we have Fq( f̌ ) and Fq(gP

j )

are in L2
q(Rq) and the product Fq( f̌ )Fq(gP

j ) is in L1
q(Rq). So, the relation (26)

together with Theorem 3.1 achieve the proof.

The following result shows Plancherel and Parseval formulas for the Rubin’s
q-wavelet packet transform ΨP

q,g.

Theorem 4.8. Let (gP
j ) j∈Z be a Rubin’s q-wavelet packet.

(1) Plancherel formula for ΨP
q,g

For f ∈ L2
q(Rq), we have

+∞

∑
j=−∞

∫
∞

−∞

|ΨP
q,g( f )( j,b) |2 dqb = ‖ f‖2

q,2. (27)

(2) Parseval formula for ΨP
q,g

For f1, f2 ∈ L2
q(Rq), we have∫

∞

−∞

f1(x) f2(x)dqx =
+∞

∑
j=−∞

∫
∞

−∞

Ψ
P
q,g( f1)( j,b)ΨP

q,g( f2)( j,b)dqb. (28)

Proof. (1) From the relations (20) and (26), we obtain∫
∞

−∞

|ΨP
q,g( f )( j,b)|2dqb =

∫
∞

−∞

|Fq( f̌ )(a)|2[Fq(gP
j (a)]

2dqa.

So, the use of the Fubini’s theorem gives

+∞

∑
j=−∞

∫
∞

−∞

|ΨP
q,g( f )( j,b)|2dqb =

∫
∞

−∞

|Fq( f̌ )(a)|2
+∞

∑
j=−∞

[Fq(gP
j (a))]

2dqa.

Since
+∞

∑
j=−∞

[Fq(gP
j )(λ )]

2 = 1,

then,
+∞

∑
j=−∞

∫
∞

−∞

|ΨP
q,g( f )( j,b)|2dqb =

∫
∞

−∞

|Fq( f̌ )(a)|2dqa.
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Thus, (27) follows from Theorem 3.2.
(2) The result is a direct consequence of assertion (1).

Theorem 4.9. Let (gP
j ) j∈Z be a Rubin’s q-wavelet packet. For f ∈ L2

q(Rq), one
has the following reconstruction formula :

f (x) = K
+∞

∑
j=−∞

∫
∞

−∞

Ψ
P
q,g( f )( j,b)gP

j,b(x)dqb, x ∈ Rq.

Proof. For x ∈ Rq, we have h = δx belongs to L2
q(Rq). Then, according to the

relation (28), the definition of ΨP
q,g and the definition of the q-Jackson’s integral,

we have

(1−q)|x| f (x) =
∞

∑
j=−∞

∫
∞

−∞

Ψ
P
q,g( f )( j,b)ΨP

q,g(h)( j,b)dqb

= K
∞

∑
j=−∞

∫
∞

−∞

Ψ
P
q,g( f )( j,b)

(∫
∞

−∞

h(t)gP
j,b(t)dqt

)
dqb

= (1−q)|x|K
∞

∑
j=−∞

∫
∞

−∞

Ψ
P
q,g( f )( j,b)gP

j,b(x)dqb,

which is equivalent to

f (x) = K
∞

∑
j=−∞

∫
∞

−∞

Ψ
P
q,g( f )( j,b)gP

j,b(x)dqb.

5. Rubin’s q-Scale discrete scaling function

In this section, we consider a Rubin’s q-wavelet packet (gP
j ) j∈Z.

Proposition 5.1. 1. For all m ∈ Z and x ∈ Rq, we have

m−1

∑
j=−∞

[Fq(gP
j )(x)]

2 =
1

Cg

∫
∞

rm

|Fq(Ha(g))(x)|2
dqa
a

. (29)

2. For all m∈Z, the function x 7→

(
m−1

∑
j=−∞

[Fq(gP
j )(x)]

2

) 1
2

belongs to L2
q(Rq).

3. For all m∈Z there exists a function GP
m in L2

q(Rq) such that for all x∈Rq,

Fq(GP
m)(x) =

(
m−1

∑
j=−∞

[Fq(gP
j )(x)]

2

) 1
2

. (30)



THE RUBIN’S Q-WAVELET PACKETS 45

Proof. (1) follows from the definition of gP
j .

(2) From the Fubini’s theorem, the relation (29) and Proposition 3.5, we have

∫
∞

−∞

m−1

∑
j=−∞

[Fq(gP
j )(x)]

2dqx =
1

Cg

∫
∞

−∞

∫
∞

rm

|Fq(Ha(g))(x)|2
dqa
a

dqx

=
1

Cg

∫
∞

rm

(∫
∞

−∞

|Fq(g)(ax)|2dqx
)

dqa
a

.

By the change of variables u = ax and Theorem 3.2, we obtain∫
∞

−∞

(
1

Cg

∫
∞

rm

|Fq(Ha(g))(x)|2
dqa
a

)
dqx =

1
Cg

∫
∞

rm

(∫
∞

−∞

|Fq(g)(x)|2dqx
)

dqa
a2

=
‖g‖2,q

Cg

∫
∞

rm

dqa
a2

=
q‖g‖q,2

Cgrm
.

This completes the proof of (2).
(3) We deduce the result from the previous assertion and Theorem 3.2.

Definition 5.2. The sequence (GP
m)m∈Z is called Rubin’s q-scale discrete scaling

function.

The sequence (GP
m)m∈Z verifies the following trivial and easily proved prop-

erties.

Proposition 5.3.

(i) For all m ∈ Z and λ ∈ Rq, we have

0≤Fq(GP
m)(λ )≤ 1. (31)

(ii) For all λ ∈ Rq, we have

lim
m→+∞

Fq(GP
m)(λ ) = 1. (32)

Proposition 5.4. For m ∈ Z and x ∈ Rq, the following relations

(i) [
Fq(GP

m)(x)
]2
+

∞

∑
j=m

[Fq(gP
j )(x)]

2 = 1, (33)

(ii) [
Fq(gP

m)(x)
]2

=
[
Fq(GP

m+1)(x)
]2− [Fq(GP

m)(x)
]2
, (34)
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(iii)
∞

∑
m=−∞

([
Fq(GP

m+1)(x)
]2− [Fq(GP

m)(x)
]2)

= 1 (35)

hold.

Proof.

(i) Follows immediately from (30) and Proposition 4.3.

(ii) We deduce the result from the relation (30).

(iii) The relation is a consequence of (34) and Proposition 4.3.

Now, let (GP
m)m∈Z be a Rubin’s q-scale discrete scaling function and con-

sider for all m ∈ Z, x ∈ Rq, the function GP
m,x given by

GP
m,x(y) = Tq,y(GP

m)(x), ∀y ∈ Rq. (36)

From the properties of the q-translation, one can prove easily the following re-
sult giving some properties of the function GP

m,x.

Proposition 5.5. For all m∈Z and x∈Rq, the function GP
m,x belongs to L2

q(Rq)
and we have

• Fq(GP
m,x)(λ ) = e(iλx;q2)Fq(GP

m)(λ ), λ ∈ Rq,

• ‖GP
m,x‖q,2 ≤

2‖GP
m‖q,2

(q;q)∞

.

Definition 5.6. Let (GP
m)m∈Z be a Rubin’s q-scale discrete scaling function. We

define the Rubin’s q-scale discrete scaling transform ΘP
q,G on L2

q(Rq), by

Θ
P
q,G( f )(m,x) = K

∫
∞

−∞

f (b)GP
m,x(b)dqb, m ∈ Z, and x ∈ Rq. (37)

Remark 5.7. The relation (37) is equivalent to

Θ
P
q,G( f )(m,x) = f̌ ∗q GP

m(x). (38)

In the two following results, we will provide a Plancherel and a Parseval
formulas for ΘP

q,G.
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Theorem 5.8. Let (GP
m)m∈Z be a Rubin’s q-scale discrete scaling function.

(1) Plancherel formula for ΘP
q,G

For f ∈ L2
q(Rq), we have

‖ f‖2
q,2 = lim

m→+∞

∫
∞

−∞

|ΘP
q,G( f )(m,b)|2dqb. (39)

(2) Parseval formula for ΘP
q,G

For f1, f2 ∈ L2
q(Rq), we have∫

∞

−∞

f1(x) f 2(x)dqx = lim
m→+∞

∫
∞

−∞

Θ
P
q,G( f1)(m,b)ΘP

q,G( f2)(m,b)dqb. (40)

Proof. (1) Due to the relations (38) and (20), we have for all m ∈ Z,∫
∞

−∞

|ΘP
q,G( f )(m,b)|2dqb =

∫
∞

−∞

|Fq( f̌ )(x)|2[Fq(GP
m)(x)]

2dqx. (41)

The relations (31) and (32), and the Lebesgue’s theorem yield to

lim
m→+∞

∫
∞

−∞

|ΘP
q,G( f )(m,b)|2dqb =

∥∥Fq( f̌ )
∥∥2

q,2 .

Finally, Theorem 3.2 achieves the proof of (1).
(2) The result follows from (39).

Using the q-scale discrete scaling function (GP
m)m∈Z and the Rubin’s q-

wavelet packet transform ΨP
q,g, one can obtain another Plancherel formula for

ΘP
q,G. This is the aim of the following result.

Theorem 5.9. (1) Plancherel formula for ΘP
q,G using ΨP

q,g

For all f ∈ L2
q(Rq), we have for all m ∈ Z,

‖ f‖2
q,2 =

∫
∞

−∞

|ΘP
q,G( f )(m,b)|2dqb+

∞

∑
j=m

∫
∞

−∞

|ΨP
q,g( f )( j,b)|2dqb. (42)

(2) Parseval formula for ΘP
q,G using ΨP

q,g

For f1, f2 ∈ L2
q(Rq), we have for all m ∈ Z,∫

∞

−∞

f1(x) f 2(x)dqx =
∫

∞

−∞

Θ
P
q,G( f1)(m,b)ΘP

q,G( f2)(m,b)dqb +

∞

∑
j=m

∫
∞

−∞

Ψ
P
q,g( f1)( j,b)ΨP

q,g( f2)( j,b)dqb.
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Proof. (1) On the one hand, from the relations (41) and (30), we have for all
m ∈ Z,

∫
∞

−∞

|ΘP
q,G( f )(m,b)|2dqb =

∫
∞

−∞

|Fq( f̌ )(x)|2
(

m−1

∑
j=−∞

[
Fq(gP

j )(x)
]2)

dqx.

On the other hand, using the relations (20) and (26), and the Fubini’s theo-
rem, we obtain

∞

∑
j=m

∫
∞

−∞

|ΨP
q,g( f )( j,b)|2dqb =

∫
∞

−∞

|Fq( f̌ )(x)|2
(

∞

∑
j=m

[
Fq(gP

j )(x)
]2)

dqx.

Hence,∫
∞

−∞

|ΘP
q,G( f )(m,b)|2dqb +

∞

∑
j=m

∫
∞

−∞

|ΨP
q,g( f )( j,b)|2dqb =

∫
∞

−∞

|Fq( f̌ )(x)|2
(

∞

∑
j=−∞

[Fq(gP
j )(x)]

2

)
dqx.

The result follows then from Proposition 4.3 and Theorem 3.2.
(2) The assertion (2) follows from (1).

Theorem 5.10. For f ∈ L2
q(Rq), we have the following reconstruction formulas.

(1) For all x ∈ Rq,

f (x) = K lim
m→+∞

∫
∞

−∞

Θ
P
q,G( f )(m,b)GP

m,b(x)dqb. (43)

(2) For all x ∈ Rq and all m ∈ Z,

f (x) = K
∫

∞

−∞

Θ
P
q,G( f )(m,b)GP

m,b(x)dqb+K
∞

∑
j=m

∫
∞

−∞

Ψ
P
q,g( f )( j,b)gP

j,b(x)dqb.

(44)

Proof. (1) Let f ∈ L2
q(Rq), fix x∈Rq and put h = δx. By using the relation (40),

we get

(1−q)|x| f (x) = lim
m→+∞

∫
∞

−∞

Θ
P
q,G( f )(m,b)ΘP

q,G(h)(m,b)dqb

= lim
m→+∞

K
∫

∞

−∞

Θ
P
q,G( f )(m,b)

(∫
∞

−∞

h(t)GP
m,b(t)dqt

)
dqb

= lim
m→+∞

K(1−q)|x|
∫

∞

−∞

Θ
P
q,G( f )(m,b)GP

m,b(x)dqb.
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Thus,
f (x) = K lim

m→+∞

∫
∞

−∞

Θ
P
q,G( f )(m,b)GP

m,b(x)dqb.

(2) The technique of the proof is similar to (1).

Corollary 1. For f ∈ L2
q(Rq), one has for all m ∈ Z,∫

∞

−∞

Ψ
P
q,g( f )(m,b)gP

m,b(x)dqb =
∫

∞

−∞

Θ
P
q,G( f )(m+1,b)GP

m+1,b(x)dqb −∫
∞

−∞

Θ
P
q,G( f )(m,b)GP

m,b(x)dqb.

Proof. For x ∈ Rq, and m ∈ Z, we have owing to the relation (44),∫
∞

−∞

Θ
P
q,G( f )(m+1,b)GP

m+1,b(x)dqb =
1
K

f (x)−
∞

∑
j=m+1

∫
∞

−∞

Ψ
P
q,g( f )( j,b)gP

j,b(x)dqb

and ∫
∞

−∞

Θ
P
q,G( f )(m,b)GP

m,b(x)dqb =
1
K

f (x)−
∞

∑
j=m

∫
∞

−∞

Ψ
P
q,g( f )( j,b)gP

j,b(x)dqb.

Then, the difference of the two previous equations finishes the proof.

6. Modified Rubin’s q-wavelet packets

Let (GP
m)m∈Z be a q-scale discret scaling function. For j ∈ Z, we define the

functions gM
j and g̃M

j by
gM

j = GP
j+1−GP

j ,

and
g̃M

j = GP
j+1 +GP

j .

Let us give some properties of these functions, which follow immediately from
Proposition 5.3, Proposition 5.4 and Theorem 3.2.

Proposition 6.1.

(i) The functions gM
j and g̃M

j belong to L2
q(Rq).

(ii) The functions Fq(gM
j ) and Fq(g̃M

j ) are in L2
q(Rq)∩L∞

q (Rq) and for all λ ∈
Rq, we have

|Fq(gM
j )(λ )| ≤ 2, and |Fq(g̃M

j )(λ )| ≤ 2 (45)

and
∞

∑
j=−∞

Fq(gM
j )Fq(g̃M

j ) = 1. (46)
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Definition 6.2. The sequences (gM
j ) j∈Z and (g̃M

j ) j∈Z are called respectively
modified Rubin’s q-wavelet packet and the corresponding dual modified Ru-
bin’s q-wavelet packet.

The following proposition gives a relationship between the q-scale discrete
scaling function (GP

m)m∈Z, and the modified Rubin’s q-wavelet packet and its
dual.

Proposition 6.3. For all x ∈ Rq and all m ∈ Z, we have

Fq(GP
m)(x) =

(
m−1

∑
j=−∞

Fq(gM
j )(x)Fq(g̃M

j )(x)

) 1
2

.

Proof. For j ∈ Z, we have

Fq(gM
j )Fq(g̃M

j ) =
(
Fq(GP

j+1)−Fq(GP
j )
)(
Fq(GP

j+1)+Fq(GP
j )
)

=
[
Fq(GP

j+1)
]2− [Fq(GP

j )
]2

=
[
Fq(gP

j )
]2
.

(47)

Then, the relation (30) achieves the proof.

Let (gM
j )m∈Z be a modified Rubin’s q-wavelet packet and (g̃M

j )m∈Z be its
dual. For all j ∈ Z, x ∈ Rq and y ∈ R̃q, we define the functions gM

j,x and g̃M
j,x by

gM
j,x(y) = Tq,y(gM

j )(x) and g̃M
j,x(y) = Tq,y(g̃M

j )(x).

From the properties of the q-translation, one can prove easily the following
proposition, which gives some properties of the functions gM

j,x and g̃M
j,x.

Proposition 6.4. For all j ∈ Z and x ∈ Rq, the functions gM
j,x and g̃M

j,x belong to
L2

q(Rq) and we have

• Fq(gM
j,x)(y) = e(iyx;q2)Fq(gM

j )(y), y ∈ R̃q,

• Fq(g̃M
j,x)(y) = e(iyx;q2)Fq(g̃M

j )(y), y ∈ R̃q,

•
∥∥gM

j,x

∥∥
q,2 ≤

2
∥∥∥gM

j

∥∥∥
q,2

(q;q)∞

,

•
∥∥g̃M

j,x

∥∥
q,2 ≤

2
∥∥∥g̃M

j

∥∥∥
q,2

(q;q)∞

.
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Definition 6.5. We define the modified Rubin’s q-wavelet packet transform ΨM
q,g

(resp. the dual modified Rubin’s q-wavelet packet transform Ψ̃M
q,g ) on L2

q(Rq)
by

Ψ
M
q,g( f )( j,x) = K

∫
∞

−∞

f (b)gM
j,x(b)dqb, j ∈ Z and x ∈ Rq(

resp. Ψ̃
M
q,g( f )( j,x) = K

∫
∞

−∞

f (b)g̃M
j,x(b)dqb, j ∈ Z and x ∈ Rq

)
.

Remark 6.6. The transforms ΨM
q,g and Ψ̃M

q,g can also be written in the form

Ψ
M
q,g( f )( j,x) = f̌ ∗q gM

j (x), j ∈ Z and x ∈ Rq (48)

and
Ψ̃

M
q,g( f )( j,x) = f̌ ∗q g̃M

j (x), j ∈ Z and x ∈ Rq. (49)

Theorem 6.7. (Plancherel formula) For all f ∈ L2
q(Rq), we have

‖ f‖2
q,2 =

∞

∑
j=−∞

∫
∞

−∞

Ψ
M
q,g( f )( j,x)Ψ̃M

q,g( f )( j,x)dqx. (50)

Proof. Due to the relations (48) and (49), and Theorem 3.2, we have for all
j ∈ Z,∫

∞

−∞

Ψ
M
q,g( f )( j,x)Ψ̃M

q,g( f )( j,x)dqx =
∫

∞

−∞

|Fq( f )(b)|2Fq(gM
j )(b)Fq(g̃M

j )(b)dqb.

On the other hand, using the definition of gM
j and g̃M

j and the relation (34), we
deduce that for all b ∈ Rq, Fq(gM

j )(b)Fq(g̃M
j )(b)≥ 0.

So, by the help of the Fubini-Tonelli’s theorem, we obtain the result from
(46) and Theorem 3.2.

In the following theorem, we give a pointwise reconstruction formulas for
the transforms ΨM

q,g and Ψ̃M
q,g.

Theorem 6.8. For all f ∈ L2
q(Rq), we have for all x ∈ Rq,

f (x) = K
∞

∑
j=−∞

∫
∞

−∞

Ψ
M
q,g( f )( j,b)g̃M

j,b(x)dqb (51)

and

f (x) = K
∞

∑
j=−∞

∫
∞

−∞

Ψ̃
M
q,g( f )( j,b)gM

j,b(x)dqb. (52)
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Proof. The result is a consequence of the following lemma and Theorem 4.9.

Lemma 6.9. Let f be in L2
q(Rq). Then for all j ∈ Z and x ∈ Rq, we have the

following equalities∫
∞

−∞

Ψ
M
q,g( f )( j,b)g̃M

j,b(x)dqb =
∫

∞

−∞

Ψ̃
M
q,g( f )( j,b)gM

j,b(x)dqb

=
∫

∞

−∞

Ψ
P
q,g( f )( j,b)gP

j,b(x)dqb.

Proof. Let j ∈ Z and x ∈ Rq. From the relation (48), we have∫
∞

−∞

Ψ
M
q,g( f )( j,b)g̃M

j,b(x)dqb =
∫

∞

−∞

f̌ ∗q gM
j (b)g̃

M
j,b(x)dqb.

On the one hand, by Proposition 6.1, we have Fq

(
gM

j

)
∈ L2

q(Rq)∩L∞
q (Rq).

Then, the fact that Fq
(

f̌
)
∈ L2

q(Rq) leads to Fq
(

f̌
)
Fq

(
gM

j

)
∈ L2

q(Rq), and

Proposition 3.4 leads to f̌ ∗q gM
j ∈ L2

q(Rq) and Fq

(
f̌ ∗q gM

j

)
=Fq

(
f̌
)
Fq

(
gM

j

)
.

So, thanks to Theorem 3.2, we get∫
∞

−∞

Ψ
M
q,g( f )( j,b)g̃M

j,b(x)dqb =
∫

∞

−∞

Fq

(
f̌ ∗q gM

j

)
(b)Fq

(
g̃M

j,b(x)
)

dqb

=
∫

∞

−∞

Fq
(

f̌
)
(b)Fq

(
gM

j

)
(b)Fq

(
g̃M

j,b(x)
)

dqb.

But Fq(gM
j ) and Fq(g̃M

j ) are real functions, then Fq

(
gM

j

)
(b) = Fq

(
gM

j

)
(−b),

g̃M
j,b(x) = Tq,x(g̃M

j )(b) = Tq,−x(g̃M
j )(−b)

and

Fq

(
g̃M

j,b(x)
)

= Fq

(
Tq,−x(g̃M

j )
)
(−b) = Fq(g̃M

j )(−b)e(ibx;q2)

= Fq(g̃M
j )(−b)e(−ibx;q2).

Furthermore, we have Fq
(

f̌
)
(b) = Fq ( f )(−b). Then,∫

∞

−∞

Ψ
M
q,g( f )( j,b)g̃M

j,b(x)dqb =

=
∫

∞

−∞

Fq( f )(−b)Fq(gM
j )(−b)Fq(g̃M

j )(−b)e(−ibx;q2)dqb

=
∫

∞

−∞

Fq( f )(b)Fq(gM
j )(b)Fq(g̃M

j )(b)e(ibx;q2)dqb.
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Hence, from the relation (47), we have∫
∞

−∞

Ψ
M
q,g( f )( j,b)g̃M

j,b(x)dqb =

=
∫

∞

−∞

Fq( f )(b)Fq(gM
j )(b)Fq(g̃M

j )(b)e(ibx;q2)dqb

=
∫

∞

−∞

Fq( f )(b)Fq(gP
j )(b)Fq(gP

j )(b)e(ibx;q2)dqb.

On the other hand, the fact that Fq(gP
j ) is a real function gives Fq

(
gP

j

)
(b) =

Fq(gP
j )(−b), and

gP
j,b(x) = Tq,x(gP

j )(b) = Tq,−x(gP
j )(−b)

and

Fq

(
gP

j,b(x)
)
= Fq

(
Tq,−x(gP

j )
)
(−b) = Fq(gP

j )(−b)e(−ibx;q2).

Thus, a new application of Theorem 3.2 gives∫
∞

−∞

Ψ
M
q,g( f )( j,b)g̃M

j,b(x)dqb =

=
∫

∞

−∞

Fq( f )(b)Fq(gP
j )(b)Fq(gP

j )(b)e(ibx;q2)dqb

=
∫

∞

−∞

Fq( f )(−b)Fq(gP
j )(−b)Fq(gP

j )(−b)e(−ibx;q2)dqb

=
∫

∞

−∞

Fq( f̌ )(b)Fq

(
gP

j

)
(b)Fq

(
gP

j,b(x)
)

dqb

=
∫

∞

−∞

Fq

(
f̌ ∗q gP

j

)
(b)Fq

(
gP

j,b(x)
)

dqb

=
∫

∞

−∞

Ψ
P
q,g( f )( j,b)gP

j,b(x)dqb.

By the same way, we prove that∫
∞

−∞

Ψ̃
M
q,g( f )( j,b)gM

j,b(x)dqb =
∫

∞

−∞

Ψ
P
q,g( f )( j,b)gP

j,b(x)dqb.
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Theorem 6.10. Let f be in L2
q(Rq). Then, we have the following reconstruction

formulas. For all x ∈ Rq and all m ∈ Z,

f (x) = K

[∫
∞

−∞

Θ
P
q,G( f )(m,b)GP

m,b(x)dqb+
∞

∑
j=m

∫
∞

−∞

Ψ
M
q,g( f )( j,b)g̃M

j,b(x)dqb

]
and

f (x) = K

[∫
∞

−∞

Θ
P
q,G( f )(m,b)GP

m,b(x)dqb+
∞

∑
j=m

∫
∞

−∞

Ψ̃
M
q,g( f )( j,b)gM

j,b(x)dqb

]
.

Proof. Theorem 5.10 and Lemma 6.9 yield to the result.

7. Rubin’s S-q-wavelet packet

Definition 7.1. A sequence (gS
j) j∈Z in L2

q(Rq) is called Rubin’s S-q-wavelet
packet if the following assumptions are verified:
i) For all j ∈ Z, Fq(gS

j) is a real valued function.
ii) q-stability conditions: there exist some positive real numbers a and b, such
that for all x ∈ Rq,

a≤
∞

∑
j=−∞

[Fq(gS
j)(x)]

2 ≤ b. (53)

We say that a and b are the q-stability constants.

Definition 7.2. Let (gS
j) j∈Z be a Rubin’s S-q-wavelet packet. We define the

corresponding dual Rubin’s S-q-wavelet packet (g̃S
j) j∈Z by

Fq(g̃S
j)(x) =

Fq(gS
j)(x)

∞

∑
k=−∞

[Fq(gS
k)(x)]

2
, x ∈ Rq. (54)

In the following propositions we give some immediate properties of Rubin’s
S-q-wavelet packet (gS

j) j∈Z and its dual (g̃S
j) j∈Z.

Proposition 7.3. For all x ∈ Rq and all j ∈ Z, we have∣∣Fq(gS
j)(x)

∣∣≤ b
1
2 , (55)

∣∣Fq(g̃S
j)(x)

∣∣≤ b
1
2

a
, (56)

∞

∑
j=−∞

Fq(gS
j)(x)Fq(g̃S

j)(x) = 1 (57)
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and
∞

∑
j=−∞

[
Fq(gS

j)(x)
]2

=

(
∞

∑
j=−∞

[
Fq(g̃S

j)(x)
]2)−1

. (58)

Proposition 7.4. Let m ∈ Z and x ∈ Rq. Then

1.
m−1

∑
j=−∞

[
Fq(g̃S

j)(x)
]2

∞

∑
j=−∞

[
Fq(g̃S

j)(x)
]2 =

m−1

∑
j=−∞

[
Fq(gS

j)(x)
]2

∞

∑
j=−∞

[
Fq(gS

j)(x)
]2 . (59)

2.

m−1

∑
j=−∞

Fq(gS
j)(x)Fq(g̃S

j)(x) =

m−1

∑
j=−∞

[
Fq(gS

j)(x)
]2

∞

∑
j=−∞

[
Fq(gS

j)(x)
]2 . (60)

Proof. The equalities are consequences of the relations (54) and (58).

Proposition 7.5. 1. The dual Rubin’s S-wavelet packet (g̃S
j) j∈Z verifies the

following inequalities:

1
b
≤

∞

∑
j=−∞

[Fq(g̃S
j)(x)]

2 ≤ 1
a
, (61)

where a and b are the q-stability constants.

2. Suppose that for all m ∈ Z, the function x 7→

(
m−1

∑
j=−∞

(Fq(gS
j)(x))

2

) 1
2

is in

L2
q(Rq) then,

x 7→

(
m−1

∑
j=−∞

(Fq(g̃S
j)(x))

2

) 1
2

and x 7→

(
m−1

∑
j=−∞

Fq(gS
j)(x)Fq(g̃S

j)(x)

) 1
2

be-

long to L2
q(Rq).

The previous result allows us to state the following definition.
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Definition 7.6. Let (gS
j) j∈Z be a Rubin’s S-q-wavelet packet and (g̃S

j) j∈Z be its

dual. We suppose that for all m ∈ Z, the function x 7→

(
m−1

∑
j=−∞

(Fq(gS
j)(x))

2

) 1
2

is

in L2
q(Rq). We define the q-scale discrete scaling function (GS

m)m∈Z by

Fq(GS
m)(x) =

(
m−1

∑
j=−∞

Fq(gS
j)(x)Fq(g̃S

j)(x)

) 1
2

. (62)

Some properties of the sequence (GS
m)m∈Z are given in the following propo-

sition.

Proposition 7.7. For m ∈ Z, the function GS
m belongs to L2

q(Rq) and for all
x ∈ Rq, we have

0≤Fq(GS
m)(x)≤ 1 (63)

and
lim

m→+∞
Fq(GS

m)(x) = 1. (64)

Proof. The relation (63) follows from the relations (54) and (57) and (64) can
be easily deduced from (60).

Let (gS
j) j∈Z be a Rubin’s S-q-wavelet packet and (g̃S

j) j∈Z be its dual. For all
j ∈ Z and y ∈ Rq, we define the functions gS

j,y and g̃S
j,y on x ∈ Rq by

gS
j,y(x) = Tq,x(gS

j)(y),

g̃S
j,y(x) = Tq,x(g̃S

j)(y).

The following proposition provides some properties of these functions.

Proposition 7.8. For all j ∈ Z and y ∈ Rq, the functions gS
j,y and g̃S

j,y belong to
L2

q(Rq) and we have for all x ∈ Rq,

• Fq(gS
j,y)(x) = e(ixy;q2)Fq(gS

j)(x).

• ‖gS
j,y‖q,2 ≤

2‖gS
j‖q,2

(q;q)∞

.

• Fq(g̃S
j,y)(x) = e(ixy;q2)Fq(g̃S

j)(x).

• ‖g̃S
j,y‖q,2 ≤

2‖g̃S
j‖q,2

(q;q)∞

.
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Proof. The assertions follow from the relations (16) and (19), and the properties
of the q-translation operator Tq,x.

Definition 7.9. We define the Rubin’s S-q-wavelet transform ΨS
q,g (resp. the

dual Rubin’s S-q-wavelet transform Ψ̃S
q,g) for all f ∈ L2

q(Rq), by

Ψ
S
q,g( f )( j,y) = K

∫
∞

−∞

f (x)gS
j,y(x)dqx, j ∈ Z, y ∈ Rq (65)

(resp. Ψ̃
S
q,g( f )( j,y) = K

∫
∞

−∞

f (x)g̃S
j,y(x)dqx, j ∈ Z, y ∈ Rq) (66)

Remark 7.10. The transform ΨS
q,g (resp. Ψ̃S

q,g) can be written in the form

Ψ
S
q,g( f )( j,y) = f̌ ∗q gS

j(y) (67)

(resp. Ψ̃
S
q,g( f )( j,y) = f̌ ∗q g̃S

j(y)). (68)

Proposition 7.11. For f in L2
q(Rq), one has:

1. for all j ∈ Z, y ∈ Rq,

|ΨS
q,g( f )( j,y)| ≤ 2K

(q;q)∞

‖ f‖q,2

∥∥gS
j

∥∥
q,2

and
|Ψ̃S

q,g( f )( j,y)| ≤ 2K
(q;q)∞

‖ f‖q,2

∥∥g̃S
j

∥∥
q,2 ;

2. for all j ∈ Z, the functions y 7→ ΨS
q,g( f )( j,y) and y 7→ Ψ̃S

q,g( f )( j,y) are
continuous on R̃q and we have lim

y→∞
Ψ

S
q,g( f )( j,y) = 0, as well as

lim
y→∞

Ψ̃
S
q,g( f )( j,y) = 0.

The following proposition is a direct deduction from the relations (55), (56)
and Proposition 15.

Proposition 7.12. Let f be in L2
q(Rq). Then, for all j ∈ Z, the functions y 7→

ΨS
q,g( f )( j,y) and y 7→ Ψ̃S

q,g( f )( j,y) belong to L2
q(Rq) and for all x ∈ Rq, we

have
Fq(Ψ

S
q,g( f )( j, .))(x) = Fq( f )(−x)Fq(gS

j)(−x) (69)

and
Fq(Ψ̃

S
q,g( f )( j, .))(x) = Fq( f )(−x)Fq(g̃S

j)(−x).



58 SLIM BOUAZIZ - KAMEL MEZLINI - NÉJI BETTAIBI

The following theorems provide Plancherel and reconstruction formulas for
the transforms ΨS

q,g and Ψ̃S
q,g. They can be proved by the same ways as in the

precedent section.

Theorem 7.13. (Plancherel formula)
For all f ∈ L2

q(Rq), we have

‖ f‖2
q,2 =

∞

∑
j=−∞

∫
∞

−∞

Ψ
S
q,g( f )( j,y)Ψ̃S

q,g( f )( j,y)dqy. (70)

Theorem 7.14. Let f be in L2
q(Rq). Then, we have the following reconstruction

formulas:

f (x) = K
∞

∑
j=−∞

∫
∞

−∞

Ψ
S
q,g( f )( j,y)g̃S

j,y(x)dqy;

f (x) = K
∞

∑
j=−∞

∫
∞

−∞

Ψ̃
S
q,g( f )( j,y)gS

j,y(x)dqy.

For this end, let us introduce, for all m ∈ Z, the function

GS
m,y(x) = Tq,x(GS

m)(y), ∀y ∈ Rq. (71)

We have the following result.

Theorem 7.15. Let (GS
m)m∈Z be the q-scale discrete scaling function. For all f

in L2
q(Rq), we have the following reconstruction formula

f (x) = K lim
m→+∞

∫
∞

−∞

( f̌ ∗q GS
m)(y)G

S
m,y(x)dqy.

Remark 7.16. In the case a = b, we have g̃s
j =

1
a gs

j, which proves that decom-
position and reconstitution are given by the same formula.
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