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A FRACTIONAL LANDESMAN-LAZER TYPE PROBLEM
SET ON RN

VINCENZO AMBROSIO

By using the abstract version of Struwe’s monotonicity-trick we prove the
existence of a positive solution to the problem{

(−∆)su+Ku = f (x,u) in RN

u ∈ Hs(RN), K > 0

where f (x, t) : RN ×R→ R is a Caratheodory function, 1-periodic in x
and does not satisfy the Ambrosetti-Rabinowitz condition.

1. Introduction

In this paper we are concerned with the existence of positive solutions of the
following problem {

(−∆)su+Ku = f (x,u) in RN

u ∈ Hs(RN), K > 0
(1)

where s ∈ (0,1), N > 2s and f : RN ×R→ R is a Caratheodory function satis-
fying the following hypotheses:
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(H1) f (x,s) = 0 for any s < 0 and a.e. x ∈ RN , f (·, t) ∈ L∞(RN) and f (·, t) is
1-periodic in xi, i = 1, . . . ,N;

(H2) There exists p ∈ (2, 2N
N−2s) such that lim

t→∞

f (x, t)
t p−1 = 0 uniformly in x ∈ RN ;

(H3) lim
t→0

f (x, t)
t

= 0 uniformly in x ∈ RN ;

(H4) There exists a ∈ (0,∞] such that lim
t→∞

f (x, t)
t

= a uniformly in x ∈ RN .

Let G : RN×R+→ R be a function defined by setting

G(x, t) =
1
2

f (x, t)t−F(x, t) where F(x, t) =
∫ t

0
f (x,τ)dτ.

Then, we also assume

(J1) G(x, t)≥ 0 for any t ≥ 0, a.e. x ∈ RN and there is δ > 0 such that

f (x, t)t−1 ≥ K−δ ⇒ G(x, t)≥ δ

(J2) There exists D ∈ [1,∞) such that, a.e. x ∈ RN

G(x, t̄)≤ DG(x, t) for any 0 < t̄ ≤ t.

Here (−∆)s denotes the fractional Laplacian defined through the Fourier trans-
form in the following way

F(−∆)su(k) = |k|2sFu(k) (k ∈ RN)

for any u ∈ S(RN). It can be also computed by the following singular integral

(−∆)su(x) = cN,s P.V.
∫
RN

u(x)−u(y)
|x− y|N+2s dy (x ∈ RN),

where P.V. stands for the Cauchy principal value and cN,s is a normalization
constant; see [9] for more details.

Equation (1) appears in the study of the fractional Schrödinger equation

ı
∂ψ

∂ t
+(−∆)s

ψ +Kψ = F(x,ψ) in RN (2)

when looking for standing waves solutions that have the form ψ(x, t) = eıωtu(x)
where ω ∈R and u∈Hs(RN). This equation plays an important role in the study
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of the fractional quantum mechanics; see for example [7, 10–12, 14, 15, 18]. For
the interested reader we also suggest the Appendix A of [8] where a detailed
physical description of (2) is given.
When s = 1, (2) reduces to the classical nonlinear Schrödinger equation

−∆u+Ku = f (x,u) in RN (3)

which has been extensively investigated in these last twenty years. In the cel-
ebrated paper [3], Berestycki and Lions proved the existence of ground states
to (3) (and a multiplicity result in [4]), when f is autonomous and satisfies the
assumptions (H1)− (H4). They work in the radially symmetric Sobolev space
H1

r (RN) of H1(RN) and use a Lagrange multiplier procedure which is essen-
tially based on the Pohozaev’s Identity [16] for (3). When f is not autonomous,
Pohozaev’s identity provides no informations, so in many works concerning (3),
it is usually assumed that f (x,u) satisfies the Ambrosetti-Rabinowitz condition
[1], i.e.

∃µ > 2,R > 0 : 0 < µF(x, t)≤ f (x, t)t, ∀|t| ≥ R, a.e. x ∈ RN . (AR)

This condition is very crucial in applying the critical point theory, because,
roughly speaking, it ensures the boundedness of the Palais-Smale sequences
of the energy functional

J(u) =
∫
RN

1
2
[|∇u|2 +Ku2]dx−

∫
RN

F(x,u)dx u ∈ H1(RN)

associated to the problem (3). However, although (AR) is a quite natural condi-
tion, it is somewhat restrictive and eliminates many nonlinearities. In fact, (AR)
implies that for some A,B > 0,

F(x, t)≥ A|t|µ −B for any t ∈ R. (4)

Hence, for example, the function

f (x, t) = t log(1+ |t|), (5)

does not satisfy the (AR)-condition. For this reason, many authors studied (3)
trying to drop the condition (AR). One of the first result in this direction was due
to Jeanjean [13]. To overcome the difficulty that the Palais-Smale sequences of
J may be unbounded, he developed an abstract version of the monotonicity trick
due to Struwe [2, 21] for functionals depending on a real parameter.
Here we recall his result:
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Theorem 1.1 ([13]). Let (X , || · ||) be a Banach space and Λ⊂ R+ an interval.
We consider a family {Iλ}λ∈Λ of C1-functionals on X of the form

Iλ (u) = A(u)−λB(u), ∀λ ∈ Λ

where B(u) ≥ 0 ∀u ∈ X and such that either A(u)→ +∞ or B(u)→ +∞ as
||u|| → ∞.
If there are two points v1,v2 ∈ X such that

cλ = inf
γ∈Γ

max
t∈[0,1[

Iλ (γ(t))> max{Iλ (v1), Iλ (v2)} λ ∈ Λ,

where
Γ = {γ ∈C([0,1],X) : γ(0) = v1,γ(1) = v2},

then, for almost every λ ∈ Λ, there exists a sequence {vn} ⊂ X such that

(i) {vn} is bounded;

(ii) Iλ (vn)→ cλ ;

(iii) I′
λ
(vn)→ 0 in the dual X−1 of X.

This principle says, essentially, that given a family of C1 functionals Iλ sat-
isfying a uniform Mountain Pass geometry and monotonically depending on the
parameter λ , then the almost everywhere differentiability of the Mountain Pass
value cλ induces the existence of a bounded Palais-Smale sequence for Iλ for
almost every λ in the interval Λ where the family is defined.
As application of Theorem 1.1, Jeanjean obtained the following existence result
for the problem (3):

Theorem 1.2 ([13]). Let N > 2. Assume that f satisfies the assumptions (H1)−
(H4) with p ∈ (2, 2N

N−2). If (J1) holds with a < ∞ in (H4), then, if K ∈ (0,a),
there exists a non-trivial positive solution of (3). If (J2) holds with a = ∞ in
(H4), then there exists a non-trivial positive solution of (3).

Let us notice that in the above Theorem 1.2, the condition (AR) is replaced
by (J1) if a < ∞ or by (J2) if a = ∞. In fact, taking into account (4), we can see
that when a < ∞, (AR) does not hold, while if a = ∞ it may happen that (AR)
is satisfied but, by using the assumptions on f , this is not possible. For example
(AR) is not true for the function in (5), which satisfies (H1)− (H4) and (J2).

In this paper we claim to extend the above Theorem 1.2 for the nonlocal
analogue of problem (3), by replacing the standard Laplacian operator by the
fractional Laplacian operator.
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Recently, a great attention has been devoted to the study of non-local equa-
tions, in particular to the ones driven by the fractional Laplace operator. In
fact such operator arises in several fields such as optimization, finance, phase
transitions, stratified materials, anomalous diffusion, crystal dislocation, flame
propagation, conservation laws, ultra-relativistic limits of quantum mechanics,
quasi-geostrophic flows, minimal surfaces and water waves. The literature is
too wide to attempt a reasonable list of references here, so we derive the reader
to the work by Di Nezza et al. [9], where a more extensive bibliography and
an introduction to the subject are given. We would just cite the papers “Moun-
tain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389
(2012), no. 2, 887-898” [19] and “Variational methods for non-local operators
of elliptic type. Discrete Contin. Dyn. Syst. 33 (2013), no. 5, 2105-2137” [20]
by R. Servadei & E. Valdinoci, which are probably the first results dealing with
nonlinear analysis in fractional setting.
Now we state our main result.

Theorem 1.3. Let s ∈ (0,1) and N > 2s. Assume that (H1)− (H4) and (J1)
hold with a < ∞ in (H4). Then if K ∈ (0,a) there exists a non-trivial positive
solution of (1). Assume that (H1)− (H4) and (J2) hold with a = ∞ in (H4).
Then there exists a non-trivial positive solution u of (1).

Remark 1.4. By using similar arguments to those developed in [11], it is pos-
sible to prove that u ∈C0,α(RN) for some α ∈ (0,1) and u(x)→ 0 as |x| → ∞.

To prove Theorem 1.3, we follow the approach developed in [13]. Several mod-
ifications will be necessary to deal with the non-local features of problem (1).

We consider the following family of functionals

Iλ (u) =
1
2
||u||2Hs(RN)−λ

∫
RN

F(x,u)dx

with λ ∈ [1,2], and we show that it satisfies the assumptions of Theorem 1.1.
Then, for almost every λ ∈ [1,2], there exists a bounded sequence {vm} ⊂
Hs(RN) such that

Iλ (vm)→ cλ and I′
λ
(vm)→ 0 in H−s(RN).

By using the translational invariance of (1) we obtain the existence of a se-
quence {ym} ⊂ ZN such that um(x) := v(x−ym)⇀ uλ 6= 0 in Hs(RN), Iλ (uλ )≤
cλ and I′

λ
(uλ ) = 0. By the weak maximum principle [6] we have uλ ≥ 0 a.e.

in RN . As a consequence we deduce the existence of a decreasing sequence
{λn} ⊂ [1,2] such that λn→ 1 and a sequence {un} ⊂Hs(RN) such that un 6= 0,
Iλn(un)≤ cλn and I′

λn
(un) = 0. We prove that {un} is bounded and we show how

this information to allow us to obtain a positive solution u to (1).
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The paper is organized as follows: in Section 2 we give a quick review about
the fractional Sobolev spaces; in Section 3 we give the proof of Theorem 1.3.

2. Preliminaries

In this section we collect some preliminaries facts about the fractional Sobolev
spaces. Let s ∈ (0,1). We define the fractional Sobolev space by setting

Hs(RN) =
{

u ∈ L2(RN) : [u]Hs(RN) :=

√∫∫
R2N

|u(x)−u(y)|2
|x− y|N+2s dxdy < ∞

}
which is a Hilbert space endowed with the norm

||u||Hs(RN) =
√
||u||2L2(RN)

+[u]2Hs(RN)
.

By using the Plancherel’s Theorem we can see [9] that

[u]2Hs(RN) = 2C(N,s)−1
∫
RN
|k|2s|Fu(k)|2dk.

where
C(n,s) :=

(∫
RN

1− cosx1

|x|N+2s dx
)−1

.

We recall the following embedding:

Theorem 2.1 ([9]). Let s ∈ (0,1) and N > 2s. Then Hs(RN) is continuously
embedded in Lq(RN) for any q∈ [2, 2N

N−2s ] and compactly embedded in Lq
loc(R

N)

for any q ∈ [2, 2N
N−2s).

Now we state the following results which we will use later

Lemma 2.2 ([5]). Let {un} be a sequence in Lq(RN) with q ∈ [1,∞] and let
u ∈ Lq(RN) be such that un → u in Lp(RN). Then there exists a subsequence
{unk} and a function h ∈ Lq(RN) such that

• unk → u a.e. in RN;

• |unk(x)| ≤ h(x) a.e. x ∈ RN and for any k ∈ N.

Lemma 2.3 ([11]). Let N ≥ 2. Assume that {un} is bounded in Hs(RN) and it
satisfies

lim
n→∞

sup
y∈RN

∫
BR(y)
|un(x)|2dx = 0

where R > 0. Then un→ 0 in Lq(RN) for q ∈ (2, 2N
N−2s).
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We conclude this section giving some estimates for the nonlinear term f and
its primitive F . This part is quite standard and the proof of the following Lemma
can be found in [17].

Lemma 2.4. Assume f : RN×R→R is a function satisfying conditions (H1)−
(H3). Then for any ε > 0 there exists Cε > 0 such that

f (x, t)≤ εt +Cεt p−1 for t ≥ 0 (6)

and so, as a consequence

F(x, t)≤ ε

2
t2 +

Cε

p
t p for t ≥ 0. (7)

3. Positive solution of (1)

In this section we give the proof of Theorem 1.3. Firstly we recall the definition
of weak solution to (1).

Definition 3.1. We say that u ∈ Hs(RN) is a weak solution to (1) if∫∫
R2N

(u(x)−u(y))
|x− y|N+2s (ϕ(x)−ϕ(y))dxdy+

∫
RN

Kuϕdx =
∫
RN

f (x,u)ϕdx (8)

for any ϕ ∈ Hs(RN).

Let us consider the functional

I(u) =
1
2
||u||2Hs(RN)−

∫
RN

F(x,u)dx

for u ∈ Hs(RN). Here we use the notation

||u||2Hs(RN) := [u]2Hs(RN)+K||u||2L2(RN)

which is equivalent to the standard norm in Hs(RN) (defined in Section 2) since
K > 0. Then it is clear that I is well defined, I(0) = 0, I ∈C1(Hs(RN),R) and
the critical points of I are weak solutions to (1).

We begin proving that I has a Mountain-Pass geometry:

Lemma 3.2. Assume that (H1)− (H3) hold. Then

I(u) =
1
2
||u||2Hs(RN)+o(||u||2Hs(RN)) as ||u||Hs(RN)→ 0.
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Proof. By using (7) and Theorem 2.1 we get∫
RN

F(x,u)dx≤ ε

2
||u||2Hs(RN)+

C′ε
p
||u||pHs(RN)

which implies that
∫
RN F(x,u)dx = o(||u||2Hs(RN)) as ||u||Hs(RN)→ 0.

Lemma 3.3. Assume that (H1),(H2),(H4) hold and that K ∈ (0,a). Then we
can find a function v ∈ Hs(RN) such that v 6= 0 and I(v)≤ 0.

Proof. For simplicity we assume a < ∞.
Let us introduce

d2(N) :=
∫
RN

e−2|x|2dx and D(N) :=
2

C(s,N)
d(N)−2

∫
RN
|k|2se−2|k|2dk.

For α > 0 we set wα(x) = d(N)−1
α

N
4 e−α|x|2 . Then it is easy to prove that

wα ∈ Hs(RN), ||wα ||L2(RN) = 1 and [wα ]
2
Hs(RN) = α

sD(N).

Fix α ∈ (0,
(

a−K
D(N)

) 1
s
). Thus we deduce that

[wα ]
2
Hs(RN) < a−K. (9)

Since twα(x)→+∞ as t→ ∞, by (H4) we have

lim
t→+∞

F(x, twα)

t2w2
α

=
a
2

a.e. x ∈ RN . (10)

On the other hand, by using (H1),(H3), and (H4) we obtain the existence of a
positive constant C such that

0≤ F(x, t)
t2 ≤C for any t ∈ R and a.e. x ∈ RN . (11)

Then, taking into account (10) and (11), and by using the Dominated Conver-
gence Theorem we can see

lim
t→+∞

∫
RN

F(x, twα)

t2 =
a
2

∫
RN

w2
α dx =

a
2
. (12)

As a consequence, by using (9) and (12) we obtain

lim
t→+∞

I(twα)

t2 =
1
2
[wα ]

2
Hs(RN)+

K
2
||wα ||2L2(RN)− lim

t→+∞

∫
RN

F(x, twα)

t2 dx

=
1
2
[wα ]

2
Hs(RN)+

K
2
− a

2
< 0.
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To construct a solution of (1), we introduce the following parametrized fam-
ily of functionals

Iλ (u) =
1
2
||u||2Hs(RN)−λ

∫
RN

F(x,u)dx with λ ∈ [1,2]. (13)

Thus, we are ready to prove

Lemma 3.4. Assume that (H1)− (H4) hold. Then the family (Iλ )λ∈[1,2] defined
in (13) satisfies the hypotheses of Theorem 1.1. In particular for almost every
λ ∈ [1,2] there exists a bounded sequence {vm} ⊂ Hs(RN) such that

Iλ (vm)→ cλ and I′
λ
(vm)→ 0 in H−s(RN).

Proof. Let v ∈ Hs(RN) be the function obtained in Lemma 3.3. Then we have
Iλ (v)≤ 0 for all λ ≥ 1 since∫

RN
F(x,u)dx≥ 0, ∀u ∈ Hs(RN).

By Lemma 3.2 follows that∫
RN

F(x,u)dx = o(||u||2Hs(RN)) as ||u||Hs(RN)→ 0.

Then, for any λ ∈ [1,2] we have

cλ = inf
γ∈Γ

max
t∈[0,1]

Iλ (γ(t))> 0

where
Γ = {γ ∈C([0,1],Hs(RN)) : γ(0) = 0 and γ(1) = v}.

Therefore, we are in the position to apply Theorem 1.1.

Now we give the following terminology which we will often use later. Let
{un} ⊂Hs(RN) be an arbitrary sequence. We say that {un} does not vanish if it
is possible to translate each un so that the translated sequence (still denoted by
{un}) satisfies, up to a subsequence, the following condition: there exists α > 0
and R < ∞ such that

lim
n→∞

∫
BR

u2
ndx≥ α > 0.

If it is not the case then necessarily one has

lim
n→∞

sup
y∈ZN

∫
y+BR

u2
ndx = 0 for any R < ∞

and we say that {un} vanishes.
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Lemma 3.5. Assume that (H1)− (H3) hold. Let {un} ⊂Hs(RN) be a bounded
sequence which vanishes. Then

lim
n→+∞

∫
RN

G(x,un)dx = 0.

Proof. By using Lemma 2.3 we know that

un→ 0 in Lq(RN) for any q ∈
(

2,
2N

N−2s

)
. (14)

Taking into account (6), (7), Theorem 2.1 and (14), and by using the fact that un

is bounded, we can see that∫
RN

G(x,un)dx =
∫
RN

[1
2

f (x,un)un−F(x,un)
]

dx→ 0 as n→ ∞.

Now we prove the following result

Lemma 3.6. Assume that (H1)− (H4) and either (J1) or (J2) hold. Let λ ∈
[1,2] be fixed. Let {vm} ⊂ Hs(RN) be a bounded sequence such that

(I) 0 < lim
m→+∞

Iλ (vm)≤ cλ ;

(II) I′
λ
(vm)→ 0 in H−s(RN).

Then there exists {ym}⊂ZN such that, up to a subsequence, um(x) := vm(x−ym)
satisfies

(i) um ⇀ uλ 6= 0;

(ii) Iλ (uλ )≤ cλ ;

(iii) I′
λ
(uλ ) = 0.

Proof. Taking into account (I),(II) and the boundedness of vm we have

lim
m→∞

∫
RN

G(x,vm)dx = lim
m→∞

[Iλ (vm)−
1
2

I′
λ
(vm)vm]> 0.

Then, by Lemma 3.5 we can see that vm does not vanish, so there exists {ym} ⊂
ZN such that, up to a subsequence, um(x) = vm(x− ym) satisfies the following
condition: there exist α > 0 and R < ∞ such that

lim
m→∞

∫
BR

u2
mdx≥ α > 0. (15)

Since the problem (1) is invariant under the translation group associated to the
periodicity of f (·, t), we have
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(a) 0 < limm→+∞ Iλ (um)≤ cλ ;

(b) I′
λ
(um)→ 0 in H−s(RN);

(c) um ⇀ uλ , for some uλ ∈ Hs(RN).

Then, (i) follows by (c), (15) and Theorem 2.1. In order to prove (iii), it is
enough to show that I′

λ
(v)ϕ = 0 for all ϕ ∈ C∞

0 (RN), since C∞
0 (RN) is dense

in Hs(RN) (see [9]). Taking into account um ⇀ uλ in Hs(RN) and um→ uλ in
Lq

loc(R
N) for any q ∈ [2, 2N

N−2s), we get

I′
λ
(um)ϕ− I′

λ
(uλ )ϕ = (um−uλ ,ϕ)Hs(RN)−

∫
RN

( f (x,um)− f (x,uλ ))ϕ dx→ 0.

Then (iii) follows by (b). Finally we verify (iv). We note that either (J1) or
(J2) imply that

G(x, t)≥ 0 for all t ≥ 0 and a.e. x ∈ RN .

So, by using Fatou’s Lemma we can see that

cλ ≥ lim
m→+∞

[
Iλ (um)−

1
2

I′
λ
(um)um

]
= lim

m→+∞

∫
RN

G(x,um)dx

≥
∫
RN

G(x,uλ )dx

= Iλ (uλ )−
1
2

I′
λ
(uλ )uλ = Iλ (uλ ).

Combining Lemma 3.4 and Lemma 3.6 we obtain the existence of two se-
quences {λn} ⊂ [1,2] and {un} ⊂ Hs(RN) such that

• λn→ 1 and {λn} is decreasing;

• un 6= 0, Iλn(un)≤ cλn and I′
λn
(un) = 0.

Let us observe that un ≥ 0 a.e. in RN (it is enough to multiply (−∆)sun +Kun =
λn f (x,un) in RN by the negative part of un and then one uses the assumption
(H1)).

Taking into account

1
2
||un||2Hs(RN)−λn

∫
RN

F(x,un)dx≤ cλn ,

||un||2Hs(RN) = λn

∫
RN

f (x,un)undx
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and the fact that cλn
λn

is increasing, we deduce∫
RN

G(x,un)dx≤
cλn

λn
≤ c1 ∀n ∈ N. (16)

Lemma 3.7. Assume that (H1)− (H4) and either (J1) or (J2) hold. If the
sequence {un}⊂Hs(RN) given above is bounded, then there exists u∈Hs(RN),
u 6= 0 such that I′(u) = 0.

Proof. Firstly we observe that for any v ∈ Hs(RN)

I′(un)v = I′
λn
(un)v+(λn−1)

∫
RN

f (x,un)vdx→ 0

and
I(un) = Iλn(un)+(λn−1)

∫
RN

F(x,un)dx.

Now we distinguish two cases:
First case: limsupn→∞ Iλn(un) > 0. Then limsupn→∞ I(un) > 0 and the thesis
follows by Lemma 3.6.
Second case: limsupn→∞ Iλn(un)≤ 0.

Let us consider tn ∈ [0,1] such that

Iλn(tnun) = max
t∈[0,1]

Iλn(tun). (17)

Let zn = tnun and observe that {zn} is bounded in Hs(RN). Since I′
λn
(zn)zn = 0

for any n ∈ N, we have

λn

∫
RN

G(x,zn)dx = Iλn(zn)−
1
2

I′
λn
(zn)zn = Iλn(zn). (18)

Proceeding as in the proof of Lemma 3.2 we can see that I′
λn
(u)u = ||u||2Hs(RN)+

o(||u||2Hs(RN)) as ||u||Hs(RN)→ 0, uniformly in n ∈ N. Then, being I′
λn
(un) = 0,

there exists α > 0 such that ||un||Hs(RN) ≥ α for all n ∈ N.
Putting together limsupn→∞ Iλn(un)≤ 0, Lemma 3.2, (17), (18) and λn→ 1

we have
liminf

n→∞

∫
RN

G(x,zn)dx = liminf
n→∞

Iλn(zn)> 0.

Then, Lemma 3.5 implies that zn (so un) does not vanish. Proceeding as in the
proof of Lemma 3.6 we obtain the assertion.

Then, taking into account Lemma 3.7, it is enough to prove that {un} ⊂
Hs(RN) is bounded to conclude the proof of Theorem 1.3.
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Proof. (end of proof of Theorem 1.3) We argue by contradiction and we assume
that ||un||Hs(RN)→ ∞.

Let us consider the sequence

wn =
un

||un||Hs(RN)
.

Then ||wn||Hs(RN) = 1 and we can assume that wn ⇀ w in Hs(RN). As a con-
sequence either wn vanishes or it does not vanish. We will prove that none of
these alternatives occur and this gives a contradiction.

• Step 1: wn does not vanish.

Proceeding as in the proof of Lemma 3.6 and by using the translation invari-
ance of problem (1), we can assume that wn ⇀ w 6= 0 in Hs(RN) and wn→ w
a.e. in RN . Now we distinguish two cases.

Firstly we assume that a < ∞ in (H4) and K ∈ (0,a). We prove that w 6= 0
satisfies the eigenvalue problem

(−∆)sw+Kw = aw in RN

that is, for any ϕ ∈C∞
0 (RN)∫∫

R2N

(w(x)−w(y))
|x− y|N+2s (ϕ(x)−ϕ(y))dxdy+

∫
RN

Kwϕdx =
∫
RN

awϕdx. (19)

This gives a contradiction since (−∆)s has no eigenvalue in Hs(RN). To see this
last fact, we can observe that if µ ∈R and u ∈Hs(RN) satisfies (−∆)su = µu in
RN , by using the Pohozaev identity proved in [7], we can deduce that

µN
2

∫
RN

u2dx =
N−2s

2

∫
RN
|k|2s|Fu(k)|2dk = µ

N−2s
2

∫
RN

u2dx,

which necessarily implies that u≡ 0.
Now, we are going to prove (19). Since I′

λn
(un) = 0 we can see that wn satisfies∫∫

R2N

(wn(x)−wn(y))
|x− y|N+2s (ϕ(x)−ϕ(y))dxdy+

∫
RN

Kwnϕdx

=
∫
RN

λn
f (x,un)

un
wnϕdx

for any ϕ ∈C∞
0 (RN). By using the fact that wn ⇀ w in Hs(RN) we get∫∫

R2N

(wn(x)−wn(y))
|x− y|N+2s (ϕ(x)−ϕ(y))dxdy+

∫
RN

Kwnϕdx

→
∫∫

R2N

(w(x)−w(y))
|x− y|N+2s (ϕ(x)−ϕ(y))dxdy+

∫
RN

Kwϕdx
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for any ϕ ∈C∞
0 (RN).

To obtain (19) we have to prove that∫
RN

λn
f (x,un)

un
wnϕdx→

∫
RN

awϕdx (20)

Firstly we show

λn
f (x,un)

un
wn→ aw a.e. in RN . (21)

We distinguish when w(x) = 0 and w(x) 6= 0 (without loss of generality we can
suppose that w 6= 0 is defined everywhere in RN).

Fix x ∈ RN such that w(x) = 0. By using (H1),(H3) and (H4) we can see
that there exists C < ∞ such that

0≤ f (x, t)
t
≤C for all t ≥ 0 a.e. in RN . (22)

Since λn is bounded and wn→ w a.e. in RN , we have for such x ∈ RN

0≤ λn
f (x,un(x))

un(x)
wn(x)≤ λnCwn(x)→ 0 = aw(x).

Now, let x ∈RN be such that w(x) 6= 0. Then un(x)→∞ and by using (H4) and
λn→ 1 we have

λn
f (x,un(x))

un(x)
wn(x)→ aw(x).

Therefore, we have proved (21). At this point, we fix ϕ ∈C∞
0 (RN) and let Ω be

a compact set such that supp(ϕ)⊂ Ω. Since Hs(Ω) is compactly embedded in
L1(Ω) we have wn→ w in L1(Ω). By Lemma 2.2 we deduce the existence of a
function h ∈ L1(Ω) such that wn ≤ h a.e. in Ω, and by using (22) we get

0≤ λn
f (x,un)

un
wn ≤Cwn ≤Ch a.e. x ∈Ω.

This last fact, (21) and the Dominated Convergence Theorem imply (20).
Secondly we assume that a = ∞ in (H4). Since un solves weakly

(−∆)sun +Kun = λn f (x,un) in RN (23)

we deduce that wn satisfies∫∫
R2N

(wn(x)−wn(y))
|x− y|N+2s (ϕ(x)−ϕ(y))dxdy+

∫
RN

Kwnϕdx

=
∫
RN

λn
f (x,un)

un
wnϕdx (24)
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for any ϕ ∈ Hs(RN). Then, being wn ⇀ w in Hs(RN), we get

lim
n→∞

∫
RN

f (x,un)

||un||Hs(RN)
ϕdx

=
∫∫

R2N

(w(x)−w(y))
|x− y|N+2s (ϕ(x)−ϕ(y))dxdy+

∫
RN

Kwϕdx. (25)

Taking ϕ = w in (25) we deduce that

lim
n→∞

∫
RN

f (x,un)

||un||Hs(RN)
wdx = ||w||2Hs(RN). (26)

Now, let Ω = {x ∈ RN : w(x) 6= 0}. Since a = ∞ we have

f (x,un)

||un||Hs(RN)
w =

f (x,un)

un
wnw→+∞ a.e. in RN .

Taking into account that |Ω|> 0 and by using Fatou’s Lemma we obtain

+∞≤ liminf
n→∞

∫
RN

f (x,un)

||un||Hs(RN)
wdx = ||w||2Hs(RN) < ∞,

that is a contradiction.

• Step 2: wn vanishes.

As in the Step 1 we have to consider two cases. Assume that a < +∞ in
(H4) and (J1) hold. Since un solves (23) we can see that wn satisfies (24).
Taking ϕ = wn in (24), and recalling that ||wn||Hs(RN) = 1, we get

1 = lim
n→+∞

∫
RN

f (x,un)

un
w2

ndx. (27)

Set

Ωn =
{

x ∈ RN :
f (x,un)

un
≤ K− δ

2

}
,

where δ is defined as in (J1). Since 1= ||wn||Hs(RN)= [wn]
2
Hs(RN)+K||wn||2L2(RN)

we can see that∫
Ωn

f (x,un)

un
w2

ndx≤
(

K− δ

2

)∫
Ωn

w2
ndx≤ 1

K

(
K− δ

2

)
which together with (27) imply

liminf
n→+∞

∫
RN\Ωn

f (x,un)

un
w2

ndx≥ δ

2K
> 0. (28)
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Now, we claim to prove that

limsup
n→+∞

|RN \Ωn|=+∞. (29)

We argue by contradiction and we suppose that

limsup
n→+∞

|RN \Ωn|<+∞. (30)

Taking into account (22), (28), (30) and the fact that wn vanishes, we deduce
that

0 < lim
n→+∞

∫
RN\Ωn

f (x,un)

un
w2

ndx≤C lim
n→+∞

∫
RN\Ωn

w2
ndx = 0

that is a contradiction. Now, by using (16) and the fact that G(x, t) ≥ 0 for any
t ≥ 0 by (J1), we have

c1 ≥
∫
RN

G(x,un)dx

=
∫

Ωn

G(x,un)dx+
∫
RN\Ωn

G(x,un)dx

≥
∫
RN\Ωn

G(x,un)dx.

But this gives a contradiction because of G(x,un) ≥ δ a.e. x ∈ RN \Ωn and
(29). Now we assume that a = ∞ in (H4) and (J2) hold. Let zn be the sequence
introduced in Lemma 3.7.

We claim to prove that

lim
n→+∞

Iλn(zn) = +∞. (31)

We recall that ||un||Hs(RN)→+∞. Assume by contradiction that

liminf
n→∞

Iλn(zn)≤M < ∞. (32)

Consider the following sequence

ξn =
√

4M
un

||un||Hs(RN)
=
√

4Mwn.

Then, ξn is bounded in Hs(RN), ξn vanishes and by Lemma 2.3

ξn→ 0 in Lq(RN), for any q ∈
(

2,
2N

N−2s

)
. (33)
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Thus, by (7), Theorem 2.1 and (33) we deduce∫
RN

F(x,ξn)dx→ 0.

So we get, for n ∈ N large enough,

Iλn(zn)≥ Iλn(ξn) = 2M−λn

∫
RN

F(x,ξn)dx≥M

which is incompatible with (32). Now, by using I′
λn
(zn)zn = 0 for any n ∈N and

(31), we obtain

λn

∫
RN

G(x,zn)dx = Iλn(zn)−
1
2

I′
λn
(zn)zn = Iλn(zn)→+∞.

But this is impossible because (J2) and (16) give∫
RN

G(x,zn)dx≤ D
∫
RN

G(x,un)dx≤ Dc1.
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