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SOME NEW ESTIMATES OF HERMITE-HADAMARD
INEQUALITIES VIA HARMONICALLY
r-CONVEX FUNCTIONS

M. A.NOOR - K. I. NOOR - M. U. AWAN

In this paper, we introduce the class of harmonically r-convex func-
tions. We derive some Hermite-Hadamard type inequalities for this class
of harmonic convex functions.

1. Introduction

In recent decades, the concepts of classical convex sets and convex functions
have been extended and generalized in various directions using novel and in-
novative ideas, for example see [1, 2, 5, 6, 8-14, 16, 17]. Recently Iscan et
al. introduced the concept of harmonically convex functions, see [5]. For some
recent investigations on harmonically convex functions interested readers are
referred to [6, 12]. Pearce et al. [16] improved the Hermite-Hadamard type in-
equality for r-convex function. For some useful details on r-convex functions,
see [4, 15, 18].

Theory of convex functions is closely related with theory of inequalities. Many
classical inequalities are proved for convex functions, see [8, 17]. One of the
extensively studied inequality in the literature is Hermite-Hadamard’s inequal-
ity. It reads as: A function f : I = [a,b] C R — R is convex if and only if the
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following inequality

f<a+b / dx< —|—f(b)7

holds.

For some generalizations and extensions of Hermite-Hadamard’s type inequal-
ity interested readers are referred to [2]-[18].

In this paper, we introduce the class of harmonically r-convex functions, we de-
rive some interesting Hermite-Hadamard type inequalities for this new class of
harmonically convex functions. This is the main motivation of this paper.

2. Preliminaries

In this section, we recall some previous known concepts.

Definition 2.1 ([5]). Let/ C R\ {0} be interval. A function f: 7 — R is said to
be harmonically convex function, if

xy
f<tx—|—(1—t)y

We note that for r = %, we have the definition of Jensen type of harmonic convex
functions, that is

) <(A=t)f(x)+tf(y), VYx,yel,tel0,1]. (D

f( 2xy > SO0 e )
x+y 2

Definition 2.2 ([12]). Let/ C R\ {0} be interval. A function f : I — R is said
to be harmonically log-convex function, if

Xy
f (tx—i— (1—1)y

Definition 2.3 ([16, 17]). A function f is said to be r-convex positive function,
if Vx,y € [a,b] and ¢ € [0, 1], we have

) < ()P0 VeyelieDdl @)

~ =

t "+(1—t " 0
Flxt (1— 1)) < { (O +1=DO)" 0
f (X)f (y)a r=0.
One can see that 0-convex is classical log-convex function and 1-convex is

classical convex function.
Now we define the harmonically r-convex functions.
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Definition 2.4. A function f is said to be harmonically r-convex positive func-
tion, if Vx,y € [a,b] and ¢ € [0,1], we have

o\ (=@, £,
f<”+“‘””>§{fl%@f@% =0,

Note that for r = 1, we have classical harmonic convex functions and for
r = 0, we have harmonically log-convex functions.
Logarithmic mean L(x,y) of two positive numbers x,y is given by

i7 x#y,
L(_x’y) = lnx—lny

X, xX=Yy.

Generalized logarithmic means of order r of positive numbers x,y defined by

r xr+l _yr+l
-1,0
oo rAL0h#y
xX=y
T o 1 r= O,X )
Lr(x7y) — lnx—lny #y
Inx—1
Mv r=-—1 X 7é Y,
xX—=y
X, X=y.
Minkowski’s Inequality is stated as follows;
Let
b b
p>1,0< /f(x)pdx <o0,0< /w(x)pdx < oo,
a a
Then

b i b L b 5
(/(f(x)—&-w(x))pdx) < (/f(x)pdx> + (/w(x)pdx> .

3. Main Results

In this section, we derive our main results.

Proposition 3.1. Let f and w be two harmonically r-convex function. Then,
for r # 0, the product of f and w is harmonically r-convex, if both f and w are
similarly ordered and for r =0 the product of f and w is harmonically r-convex.
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Proof. Let f and w be harmonically r-convex function. We consider both cases:
(i) If r #£ 0, then

fr(l‘er(ly t)y)wr(tqu(ly—t)y)

(L= f ()" () + 22 )" () + (L= 1) [f (x)w" (3) + £ ()W (x)]
(L= 0)f" W () + 22 ()w' () +1(1 =) [f" ()" (x) + " (x)w" (x)]
= (L=0)f W' (x) +2f (y)w' ().

(ii) The case r = 0 is obvious.
This completes the proof. O

IN A

Theorem 3.2. Let f : I — R be harmonically r-convex function, where a,b € I
and a < b. Then for r # 0, we have

b
- 2xy ab_ [ f'(x) , _ f(a)+ /(D)
f (x—i—y) Sh—al ¥ drs 2 '

Proof. Let f be harmonically r-convex function. For ¢t = %, we have

r 2xy 1 r r
Fr(22) <5l + o)

This implies that

(@) <l ) )]

Integrating above inequality with respect to 7 on [0, 1], we have

1 1
- ( 2ab 1 . ab - ab
f <a+b>§2 O/f ((1—t)a+tb>dt+0/f <ta+(1—t)b>dt

This implies that

b
- 2ab ab [ f'(x)
f (a-l—b) Sh—al R dx. X

Also

e G e e e

Combining (4) and (5) completes the proof. ]
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Theorem 3.3. Let f,w: I — R be harmonically r-convex functions on I = [a, D]
with a < b. Then for r # 0, we have

2 (@) (

2ab
a+b

2ab
a+b

b
< ba_ba/f (xi;v (x)dx§ %M(a,b)—FlN(a,b),
where
M(a,b) = f"(a)w'(a) + [ (b)w" (D), (6)
N(a,b) = f"(a)w'(b) + f"(b)w'(a). (7

Proof. Let f and w be harmonically r-convex functions. Then

- 2ab ~( 2ab
(o) (05)

1y, ab - ab
§4{f ((1—t)a+tb>w ((1—t)a+tb>

ab

ab

(l—t)b)wr<ta+

)Wr<ta+ (alb— )b
ab

+ <ta +

ab
l1—t)a+tb

+411[fr((

)

(1—1)b

)

ab

(l—t)b)wr<(

ab
1 —t)a+tb

+fr (ta +

- )Wr<(

<
- 1 —t)a+tb )
ab

€

l—t)a+tb

Y

ab

+fr<ta+ (1 —t)b)wr<ta+

2 (=) (@)W (@) + (B (8))

P+ (L=1)(f" ()W (@) + 1" (a)w'(b))]

Integrating with respect to 7 on [0, 1], we have

() (@55)

b
1| ab [ fr(x)w'(x) 1[1
<4{ba/ x? dx]+2[6

2ab
a+b

2ab
a+b

)

(1—1)b

—M(a,b) + lN(a,b) .

3
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This implies that

2f <a2—cfl-bb> (azibb>_[éM(“’bH;N(“’b)}
<

a

fr((l —:l)i—l—tb)wr((l —:l)[;—l—tb)dt

N

IN
St O~ _

—~M(a,b) + éN(a, b).

[1f" (@) + (L =2) £ (B)][w"(a) + (1 —1)w' (b)]dt = 3

This completes the proof. O

Theorem 3.4. Let f : I — R be harmonically r-convex function, where a,b € I
and a < b. Then

, L,(f(a), f(b)), r#{0,—1},f(a) # f(b),

/ L,(f(a),f(a)), r#{0,—1},f(a) = f(b),
Ly(f(a), f(b)), r=—1,f(a)# f(b),
Li(f(a), f(a)), r=—1,f(a)=f(b).

Proof. Since f is harmonically r-convex function, so we have

1

b
ab /f / dr
—a ta+( l—t

a

0

_/{(l—t)f( )+if (b))}
0

:( r frH(b)—frH(a)
r+17 fr(b) = f'(a)

The case r # {0,—1}, f(a) = f(b) can be proved similarly.
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Now, when r = —1, f(a) # f(b), we have

a\@
\
N
Q
+
._

\
\_/
QU
~

_ Sf@f®) 1
=0 ) % “du=L_1(f(a). (b))
The case r = —1, f(a) = f(b) can be proved on the similar lines. O

Theorem 3.5. Let f: I — R be harmonically r-convex function, where a,b € I
and a < b. Then for 0 < r <1, we have

b 1
b—a f)g)dxg <r—’;1> [(f’(a)+f’(b)) ;

Proof. Using Minkowski’s inequality and the fact that f is harmonically r-
convex function, we have

1

b
a—baa/f)E / 1—ta+tb)d

0
/{tf FU=0f (b))

1
-

1
i fla )dt / (1-1)F f(b)dt) ]
0

AN
/N
o\_

This completes the proof. O
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Theorem 3.6. Let f and w be harmonically ri-convex function and harmoni-
cally ry-convex function respectively, then for 0 < ry,r, <2, we have

b

Cy (TP ARt

a

1

()o@ ok

Proof. Using the fact that f and w are harmonically rj-convex function and
harmonically r,-convex function respectively and also using Cauchy’s inequal-
ity and Minkowski’s inequality, we have

f((l—ngth)W((l—ngwtb)dt

This completes the proof. O

Corollary 3.7. Under the conditions of Theorem 3.6, if r = 2 = ry, we have

=

(w?(a) +w(b))=.

b
S [T < LR+ PN+

Ny
Bl —
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Corollary 3.8. Under the conditions of Theorem 3.6, if rj =2 =ry and f(x) =
w(x), we have

[P0,

D < (P @+ P o)

Theorem 3.9. Let f and w be harmonically r\-convex function and harmoni-
cally ry-convex function respectively. Then for ri > 1 and % + % =1, we have

b % ') D %
aba/f(x));v(x)dxg{fl(a)-;fl(b)} {W (a)—;w (b)} .

Proof. Using the fact that f and w are harmonically r|-convex function and
harmonically r,-convex function respectively and also using Holder’s inequal-
ity, we have

b
ab rw)
b—a/ x2

a

1
O/f< 11—t a+tb> ((1_f>i+tb)dt

(17 (@) + (1= 1) 7 (B))7F (1w (@) + (1 — D)™ (1))

1 1

< {/(tf”(a) —t)f"(b } {/ (tw"(a t)w’%b))dt}r2
0

0
1 1

_{ﬂW®+fWM}”{W%®+WWW}Q,
2 2

This completes the proof. OJ

W3 =
QL
~

O\_

Corollary 3.10. Under the conditions of Theorem 3.9, if ri = 2 = rp, we have

’ 7 :
fa/fggv%hg{f%w;f%w},{w%w;w%m}'




126 MUHAMMAD A. NOOR - KHALIDA I. NOOR - MUHAMMAD U. AWAN

Corollary 3.11. Under the conditions of Theorem 3.9, if rj =2 =r and f(x) =

w(x), we have
b
ab /
b—a
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