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PATTERN CLASSIFICATION THROUGH
FUZZY LIKELIHOOD

G. GALLO - R. M. PIDATELLA - M. ZEINALI

This paper introduces a novel way to compute the membership func-
tion of a fuzzy set approximating the distribution of some observed data
starting with their histogram. This membership function is in turn used to
obtain a posteriori probability through a suitable version of the Bayesian
formula. The ordering imposed by an overtaking relation between fuzzy
numbers translates immediately into a dominance of the a posteriori prob-
ability of a class over another for a given observed value. In this way a
crisp classification is eventually obtained.

1. Introduction

Generalization of classification rules is a fundamental issue in automatic pattern
recognition. Overfitting a classifier on the training data is a well known problem
and it has been the focus of a lot of research in the recent decade. Fuzzy tech-
niques naturally provide soft representation of functions that could be adapted
to address some of the overfitting/generalization dilemma.

In the literature there are a lot of papers concerning fuzzy theory as a mean
for classifying and extracting information from a huge amount of data in a
human-like fashion. Many authors have studied how to obtain a membership
function of a fuzzy set by ad hoc heuristics, histograms, nearest-neighbor, etc.
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In [1] a definition of fuzzy likelihood measure was proposed in the similarity
estimation context, while [2] puts the basis of adaptive fuzzy likelihood algo-
rithms in the context of system theory and fuzzy logic.

In this paper we propose a new approach to supervised classification based
on a novel proposal for a fuzzy likelihood function. This new function leads to
a fuzzy version of Bayes Rules for Maximum a Posteriori classification(MAP).
The performance of the proposed method is close to the performance of classi-
cal MAP algorithms but the new technique provides intrinsic advantages when
applied to some commonly observed data distributions. The most useful feature
provided by the fuzzy MAP approach is, perhaps, that this technique authomat-
ically signals the data items when the classification cannot be safely done.

Starting from the histograms of the observed data, we provide a simple way
to obtain the membership function of a fuzzy set approximating the data dis-
tribution. This is done combining together the raw data histograms with their
successively smoothed versions. A posteriori probability is, in turn, obtained
through a suitable fuzzy version of the Bayesian formula. It is important to note
that, since our likelihoods are fuzzy numbers, a careful translation in terms of
restricted fuzzy arithmetic has to be done for the classical Bayes rule in order to
obtain meaningful probabilities.

To classify a member in a set we adopt the overtaking relation between fuzzy
numbers introduced in [3]. The overtaking mimics an ordering relation between
fuzzy numbers that depends on an assigned threshold value. The imposed or-
dering by the overtaking relation translates immediately into a dominance of the
a posteriori probability of a class over another one for a given observed value.
In this way a crisp classification is eventually obtained. The proposed method
has been tested on several standard data sets and the results are discussed in a
section below.

The rest of this paper is organized as follows: Section 2 describes our fuzzy-
fication procedure to obtain a fuzzy version for likelyhood distribution from a
given training set; Section 3 introduces a fuzzy version of Bayes rule and ex-
plains how to wisely use the arithmetic of fuzzy number to keep the results of
computation within reasonable bounds; Section 4 recalls the concept of over-
taking, a possible pseudo-ordering for fuzzy numbers; Section 5 reports some
of the experimental test that have been performed on some benchmark data sets.

2. Histogram fuzzification

In this section we show how to construct fuzzy likelihoods directly from the
data by using a membership construction algorithm. Our technique applies to
one dimensional labelled data set. The data are a set of pairs (x, l) where x is the
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Figure 1: Histograms of Fisher’s irises data set for the four features.
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Figure 2: Histograms of the three species of flowers for the first feature.
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Figure 3: Iterated convolution of the histograms of figure 2

measure of an observed feature, i.e. it is a crisp number, and l is the indicator of
a class and ranges over a finite set L of labels.

Let [xmin,xmax] the range of the observed data. We choose to partition it into
h suitable number of equally spaced discrete bins (i.e. uniform quantization).
The relative frequencies of the data in the bins form the standard crisp histogram
approximating the training data. In practice, if fi is the relative frequence of
data falling in the i-th bin, the histogram is a vector ( f1, . . . , fh). In figure 1
we show the histograms of the whole population of the classical Fisher’s irises
data set for the four registered features of the flowers. In figure 2 we show
the separate histograms of the three species of flowers for the first feature. We
are interested into assigning a fuzzy membership function m to the bins i.e. to
assign a fuzzy number m(i) to each bin. The function m is indeed our proposed
fuzzy likelihood. In this paper we choose a computational representation of a
fuzzy number as a finite sequence of nested intervals (a,b)[α]. According to
fuzzy arithmetic notation, each interval corresponds to successive α values

1≥ α1 ≥ ·· · ≥ αl ≥ 0.

In our proposal α1 = 1 and the first α-cut of m(i) is the singleton { fi}i=1,...,h.
To obtain the successive α-cut we perform the convolution of ( f1, . . . , fh)

with a suitable smoothing unitary kernel K = (1
4 ,

1
2 ,

1
4).

Let ( f1
0, . . . , fh

0) = ( f1, . . . , fh). We define :

( f1
(i), . . . , fh

(i)) = ( f1
(i−1), . . . , fh

(i−1))∗K
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In figure 3 we show the results obtained with the iterated convolution of the orig-
inal histogram of figure 2 for iris data. The i-th α-cut for the j-th bin (a j

(i),b j
(i))

is obtained as follows:
a j

(i) = min( f j
(0), . . . , f j

(i)), b j
(i) = max( f j

(0), . . . , f j
(i)).

For the sake of simplicity we write: (a,b)[αi]≡ (a j
(i),b j

(i)).

3. Fuzzy Bayes rule

Following [4], in this section we illustrate the use of the restricted arithmetics
which is necessary to adopt when using Bayes rule in order to obtain values
within the range [0,1] so that they can be soundly considered as a posteriori
probabilities.

Suppose we have a finite set Xn = {x1, . . . ,xn} and let P the probability func-
tion of each xi such that:

P({xi}) = pi, i = 1, . . . ,n, 0 < pi < 1,
n

∑
i=1

pi = 1

Then P is a discrete probability function on Xn.
If one or more pi are uncertain, we can substitute pi with p̄i, a fuzzy number

such that each α-cut of p̄i is contained within [0,1]. With abuse of notation we
write:

P̄({xi}) = p̄i, 0 < p̄i < 1, i = 1, . . . ,n

Let’s indicate the α-cut of the fuzzy number p̄i with p̄i[α]. We can choose
pi ∈ p̄i[α] if and only if we satisfy the condition: ∑

n
i=1 pi = 1 for every α ∈ [0,1].

With this hypothesis, we can define now the fuzzy conditional probability.
Let Xk = {x1, . . . ,xk} ⊆ Xn with 1≤ k < n. Then:

P̄(Xk)[α] =

{
k

∑
i=1

pi | S

}
where S means the statement:

S = pi ∈ p̄i[α], i = 1, . . . ,n,
n

∑
i=1

pi = 1

In [4] it is proven that P̄(Xk)[α] is the α-cut of the fuzzy probability P̄(Xk).
Let X1k = {x1, . . . ,xk}, Xlm = {xl, . . . ,xm}, 1 ≤ l ≤ k ≤ m ≤ n be two not

disjoint subsets of Xn. As in [4], we define the fuzzy conditional probability of
X1k given Xlm as

P̄(X1k \Xlm) =

{
∑

k
i=l pi

∑
m
j=l p j

| S

}
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where S is the same above statement. To better illustrate the ideas reported
above, let’s turn to the iris data set. Let P̄(C j \Sq) be the fuzzy likelihood of the
species Sq,q = 1,2,3 with the characteristic C j, j = 1, . . . ,h and let P̄(Sq \C j)
be the fuzzy a posteriori probability of the species Sq with the characteristic C j

. We apply the Bayes rule, using the restricted arithmetics, in order to obtain
values for the probability within the range [0,1] for the a posteriori probability:

P̄(Sq \C j) =
P̄(C j \Sq)

∑
3
k=1 P̄(C j \Sk)

(1)

To apply restricted arithmetics it is useful to investigate the functional behaviour
of the terms in (1).

We put, for simplicity:

pq j = P̄(C j \Sq), q = 1,2,3 j = 1, . . . ,h

Let us study the behaviour of the functions:

fq(p1 j, p2 j, p3 j) =
pq j

p1 j + p2 j + p3 j
, q = 1,2,3 j = 1, . . . ,h.

For the sake of simplicity let fix q = 1.
Observe that:

∂ f1

∂ p1 j
> 0,

∂ f1

∂ p2 j
< 0,

∂ f1

∂ p3 j
< 0.

We then obtain:

min f1 = f1(min p1 j,max p2 j,max p3 j)

max f1 = f1(max p1 j,min p2 j,min p3 j)

then: P̄(S1 \C j)[α] = [min f1,max f1].

The same derivation can be carried on for q = 2,3.

4. Overtaking

There are many ways to compare fuzzy numbers [5]. In [3], an overtaking oper-
ator is introduced first on intervals and then it is generalized to fuzzy numbers.
For the sake of self-containment the construction introduced in [3] is here re-
ported.

First let us define a function σ(A,B) for pairs of intervals A and B. Let us
first assume that neither A or B are reduced to a crisp number. Observe that if
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Au ≤ Bu Au ≤ Bl Al ≤ Bu Al ≤ Bl σ(A,B)
T T T T 0
T F T T Au−Bl

w(A)
T F T F 1
F F T T Bu−Bl

w(A)

F F T F Bu−Al

w(A)
F F F F 1

Table 1: σ values for different positions of intervals A and B

Al,Au,Bl,Bu are, respectively, the lower and upper bounds of intervals A and B,
only the cases reported in the following table are possible.
where w(A) is the width of the interval A.

Now let us consider some special cases to be treated separately. They are:
(i) Al = Au = a, i.e. interval A is degenerate into a single point a, but Bl < Bu;
(ii) Al < Au but Bl = Bu = b, i.e. interval B is degenerate into a single point b;
(iii) both A and B are degenerate intervals.

Then
in case (i)

σ(A,B) =
{

0 if a≤ Bl
1 if a > Bl

; (2)

in case (ii)

σ(A,B) =
{

1 if b≤ Au

0 if b > Au
; (3)

in case (iii)

σ(A,B) =


0 if a < b
1 if a = b
1 if a > b

. (4)

The δ -overtaking operator is defined as follows. Given two intervals A, B and a
real number δ ∈ [0,1], A overtakes B if σ(A,B)≥ δ or:

A≥δ B ⇐⇒ σ(A,B)≥ δ

The overtaking depends then on the choosen δ value.
The extension of the δ -overtaking relation to pairs of fuzzy numbers, once

these are defined using α-cuts, is as follows. Let us assume that fuzzy numbers
A and B are defined as two finite and equal sized collections of α-cuts

A = {A[αi]}, B = {B[αi]}
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0≤ αk ≤ αk−1 ≤ ·· · ≤ α1 ≤ 1.

The degree of overtaking of A and B is

overtaking(A,B) =
k

∑
i=1

wi ·σ(A[αi],B[αi])

where w1,w2, . . .wk ∈ [0,1] and ∑
k
i=1 wi = 1.

We say that A δ -overtakes B if

overtaking(A,B)> δ .

5. Experiments

To verify the performance of the proposed classification technique several ex-
periments on public data sets, commonly used by the pattern recognition com-
munity as benchmarks, have been carried out. This section reports our experi-
mental protocol and discusses the weakness and the points of our method.

The data sets used in the experiments have been:

1. Fisher’s irises data set (150 records, 4 features, 3 classes);

2. Diabetes Pima Indians data set (768 records, 8 features, 2 classes);

3. Italian wines quality data set (178 records, 13 features, 3 classes).

All three data sets may be retrieved from the public data repository at the
URL [6].

Observe that the data sets taken as benchmarks are multidimensional: it is
well known that achieving good classification results for them requires to jointly
consider all of their features. On the other hand, at this stage of our investigation,
the proposed fuzzy Bayesian classification algorithm has been developed only to
process single featured data. Research to generalize it to the multi-featured case
is ongoing. For these reasons only one feature at a time has been considered,
performing 25 experiments in total.

The aim of the experimental phase has been to assess the discriminative
power of our classifier when it is compared with the classical Bayes MAP clas-
sifier. The training error has been selected as an indicator for the algorithm
performance. In particular we measured the number of hits, misses and non-
classified record obtained in each classification experiment when the classifier
is run on the same records of the training set.
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The implementation of classical and fuzzy MAP algorithms has been done
in MATLAB. The performances were not greatly affected by the chosen value
of the δ parameter in the overtaking relation; for this reason δ has been fixed at
the value of 0.25.

Three distinct behaviours of our classifier has been observed in correspon-
dence to typical patterns of the a posteriori functions deduced from the data. The
first case occurs when the observed feature is not very discriminative between
the classes. The a posteriori functions relative to each class, in this case, are
very similar and overimposed. This is, for example, the case of Iris data, feature
1, as illustrated in fig. 4. In this case the performance indicators of classical
and of fuzzy MAP classification are identical. For the Iris data, feature 1, the
percentage of hits and misses are 63% and 37% respectively. In such a case our
algorithm does not offer a great advantage with respect to the simpler classical
approach.

The same observation is valid even when the a posteriori functions relative
to each class are very different and separates well the data. This is, for example,
the case of Iris data, feature 4, as illustrated in fig. 5.

In this case the performance indicators of the two classifier are almost iden-
tical: 91% hits, 4% misses, 5% non classified; interestingly both approaches
have to face the same number of observed data that cannot be classified because
the a posteriori functions have, in these cases, the same value. The fuzzy ap-
proach indeed reduces the misses but at the price of labelling some records as
unclassified. The proposed algorithm automatically weights the evidence lead-
ing to classification. When evidence is not sufficiently strong, instead of risking
a wrong labelling, it declares the record as unclassified. In real applications this
problematic datum could be hence passed to a more sophisticated and typically
more costly classifier.

As an example, see fig. 6 relative to the first feature of the wine data set. In
this case the classical MAP algorithm provides 65% hits and only 35% misses.
Our algorithm provides 59% hits, only 27% misses at the price of 14% unclas-
sified records.

6. Conclusions

This paper has introduced a possible generalization into a fuzzy framework of
the classical MAP classifier. The new algorithm is based on histogram smooth-
ing and on fuzzy version of Bayes rule. Experimental results have shown that
the algorithm could be useful in practical pattern recognition providing both a
good classifier and an automatic sieve for ambiguous data to be treated with
more complex techniques.
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Figure 4: (a) Crisp Likelyhood function for the Iris data set, feature 1; (b) Fuzzy
likelyhood function for the same data, α = 0.5
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Figure 5: (a) Crisp Likelyhood function for the Iris data set, feature 4; (b) Fuzzy
likelyhood function for the same data, α = 0.5
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Figure 6: (a) Crisp Likelyhood function for the Wines data set, feature 1; (b)
Fuzzy likelyhood function for the same data, α = 0.5

Although only one feature case has been reported here, research is ongoing
to apply the same ideas to the multidimensional case.
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