LE MATEMATICHE Vol. LXXII (2017) – Fasc. I, pp. 9–21 doi: 10.4418/2017.72.1.2

SOME STRUCTURE THEOREMS ON LOCALLY CONVEX CONES OF LINEAR OPERATORS

DAVOOD AYASEH - ASGHAR RANJBARI

In this paper we investigate the structure of $C(\mathcal{P}, \mathcal{Q})$ (the cone of all continuous linear operators from locally convex cone $(\mathcal{P}, \mathfrak{U})$ into locally convex cone (\mathcal{Q}, W)), when $(\mathcal{P}, \mathfrak{U})$ or (\mathcal{Q}, W) are inductive or projective limit locally convex cones. We consider some special convex quasiuniform structures on $C(\mathcal{P}, \mathcal{Q})$, and prove some structure theorems.

1. Introduction

The theory of locally convex cones as developed in [5] and [13] uses an order theoretical concept or a convex quasiuniform structure to introduce a topological structure on a cone. In this paper we use the later. For recent researches see [1-3, 9, 12].

A *cone* is a set \mathcal{P} endowed with an addition and a scalar multiplication for nonnegative real numbers. The addition is assumed to be associative and commutative, and there is a neutral element $0 \in \mathcal{P}$. For the scalar multiplication the usual associative and distributive properties hold, that is $\alpha(\beta a) = (\alpha \beta)a$, $(\alpha + \beta)a = \alpha a + \beta a$, $\alpha(a + b) = \alpha a + \alpha b$, 1a = a and 0a = 0 for all $a, b \in \mathcal{P}$ and $\alpha, \beta \ge 0$.

Entrato in redazione: 4 gennaio 2014

AMS 2010 Subject Classification: 46A03, 46A13

Keywords: Locally convex cones, Cones of linear operators.

This paper is published as a part of a research project supported by the University of Tabriz Research Affairs Office.

Let \mathcal{P} be a cone. A collection \mathfrak{U} of convex subsets $U \subseteq \mathcal{P}^2 = \mathcal{P} \times \mathcal{P}$ is called a convex quasiuniform structure on \mathcal{P} , if the following properties hold: $(U_1) \Delta \subseteq U$ for every $U \in \mathfrak{U}$ ($\Delta = \{(a, a) : a \in \mathcal{P}\}$); (U_2) for all $U, V \in \mathfrak{U}$ there is a $W \in \mathfrak{U}$ such that $W \subseteq U \cap V$; $(U_3) \lambda U \circ \mu U \subseteq (\lambda + \mu)U$ for all $U \in \mathfrak{U}$ and $\lambda, \mu > 0$;

 $(U_4) \ \alpha U \in \mathfrak{U} \text{ for all } U \in \mathfrak{U} \text{ and } \alpha > 0.$

Here, for $U, V \subseteq \mathcal{P}^2$, by $U \circ V$ we mean the set of all $(a,b) \in \mathcal{P}^2$ such that there is some $c \in \mathcal{P}$ with $(a,c) \in U$ and $(c,b) \in V$.

Let \mathcal{P} be a cone and \mathfrak{U} be a convex quasiuniform structure on \mathcal{P} . We shall say $(\mathcal{P}, \mathfrak{U})$ is a locally convex cone if

 (U_5) for each $a \in \mathcal{P}$ and $U \in \mathfrak{U}$ there is some $\rho > 0$ such that $(0, a) \in \rho U$.

We say that the convex subset E of \mathcal{P}^2 is uniformly convex whenever E has properties (U1) and (U3). The uniformly convex subsets play an important role in the construction of a convex quasiuniform structure. With every collection of uniformly convex subsets we can obtain a convex quasiuniform structure (see [1], Proposition 2.2). With every convex quasiuniform structure \mathfrak{U} on \mathcal{P} we associate two topologies: The neighborhood bases for an element a in the upper and lower topologies are given by the sets

$$U(a) = \{b \in \mathcal{P} : (b,a) \in U\}, \quad \text{resp.} \quad (a)U = \{b \in \mathcal{P} : (a,b) \in U\}, \quad U \in \mathfrak{U}.$$

The common refinement of the upper and lower topologies is called symmetric topology. A neighborhood base for $a \in \mathcal{P}$ in this topology is given by the sets

$$U(a)U = U(a) \cap (a)U, \quad U \in \mathfrak{U}.$$

Let \mathfrak{U} and \mathcal{W} be convex quasiuniform structures on \mathcal{P} . We say that \mathfrak{U} is finer than \mathcal{W} if for every $W \in \mathcal{W}$ there is $U \in \mathfrak{U}$ such that $U \subseteq W$.

In locally convex cone $(\mathcal{P}, \mathfrak{U})$ the *closure* of $a \in \mathcal{P}$ is defined to be the set

$$\overline{a} = \bigcap_{U \in \mathfrak{U}} U(a)$$

(see [5], chapter I). The locally convex cone $(\mathcal{P},\mathfrak{U})$ is called *separated* if $\overline{a} = \overline{b}$ implies a = b for $a, b \in \mathcal{P}$. It is proved in [5] that the locally convex cone $(\mathcal{P},\mathfrak{U})$ is separated if and only if its symmetric topology is Hausdorff.

The extended real number system $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\}$ is a cone endowed with the usual algebraic operations, in particular $a + \infty = +\infty$ for all $a \in \overline{\mathbb{R}}$, $\alpha \cdot (+\infty) = +\infty$ for all $\alpha > 0$ and $0.(+\infty) = 0$. We set $\tilde{\mathcal{V}} = \{\tilde{\varepsilon} : \varepsilon > 0\}$, where

$$\tilde{\varepsilon} = \{(a,b) \in \overline{\mathbb{R}}^2 : a \le b + \varepsilon\}.$$

Then $\tilde{\mathcal{V}}$ is a convex quasiuniform structure on \mathbb{R} and $(\mathbb{R}, \tilde{\mathcal{V}})$ is a locally convex cone. For $a \in \mathbb{R}$ the intervals $(-\infty, a + \varepsilon]$ are the upper and the intervals $[a - \varepsilon, +\infty]$ are the lower neighborhoods, while for $a = +\infty$ the entire cone \mathbb{R} is the only upper neighborhood, and $\{+\infty\}$ is open in the lower topology. The symmetric topology is the usual topology on \mathbb{R} with $+\infty$ as an isolated point.

For cones \mathcal{P} and \mathcal{Q} , a mapping $T : \mathcal{P} \to \mathcal{Q}$ is called a *linear operator* if T(a+b) = T(a) + T(b) and $T(\alpha a) = \alpha T(a)$ hold for all $a, b \in \mathcal{P}$ and $\alpha \ge 0$. If both $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ are locally convex cones, the operator T is called *(uniformly) continuous* if for every $W \in \mathcal{W}$ one can find $U \in \mathfrak{U}$ such that $(T \times T)(U) \subseteq W$, where $(T \times T)(U) = \{(T(a), T(b)) \in \mathcal{Q}^2 : (a, b) \in U\}$.

A *linear functional* on \mathcal{P} is a linear operator $\mu : \mathcal{P} \to \overline{\mathbb{R}}$. The *dual cone* \mathcal{P}^* of a locally convex cone $(\mathcal{P}, \mathfrak{U})$ consists of all continuous linear functionals on \mathcal{P} .

Let $(\mathcal{P}, \mathfrak{U})$ be a locally convex cone. We shall say that the subset F of \mathcal{P}^2 is *u*-bounded if it is absorbed by each $U \in \mathfrak{U}$. The subset B of \mathcal{P} is called bounded below (or above) whenever $\{0\} \times B$ (or $B \times \{0\}$) is *u*-bounded. The subset B is called bounded if it is bounded below and above. An element $a \in \mathcal{P}$ is called bounded below (or above) whenever $\{a\}$ is so (recall that every $a \in \mathcal{P}$ is required to be bounded below by (U_5)).

The locally convex cone $(\mathcal{P},\mathfrak{U})$ is called a *uc*-cone whenever $\mathfrak{U} = \{\alpha U : \alpha > 0\}$ for some $U \in \mathfrak{U}$. It is proved in [1] that the locally convex cone $(\mathcal{P},\mathfrak{U})$ is a *uc*-cone if and only if \mathfrak{U} has a *u*-bounded element.

Let $(\mathcal{P},\mathfrak{U})$ and $(\mathcal{Q},\mathcal{W})$ be locally convex cones. The linear operator T: $\mathcal{P} \to \mathcal{Q}$ is called *u*-bounded whenever for every *u*-bounded subset *B* of \mathcal{P}^2 , $(T \times T)(B)$ is *u*-bounded. The locally convex cone $(\mathcal{P},\mathfrak{U})$ is called bornological if every *u*-bounded linear operator from $(\mathcal{P},\mathfrak{U})$ into any locally convex cone is continuous.

The projective and inductive limits of locally convex cones have been investigated in [10]. Also, the strict inductive limit of locally convex cones has been defined in [9]. The products and direct sums as a special case of projective and inductive limits have been investigated in [8]. The dual of projective and inductive limits of locally convex cones have been investigated in [7]. In this paper we want to study the structure of $C(\mathcal{P}, \mathcal{Q})$ (the cone of continuous linear operators), when $(\mathcal{P}, \mathfrak{U})$ or $(\mathcal{Q}, \mathcal{W})$ are the inductive or projective limit locally convex cones. The structure of $C(\mathcal{P}, \mathcal{Q})$, when \mathcal{P} or \mathcal{Q} are products or direct sums of some locally convex cones is an interesting special case that investigated in this paper. We review some results from [10]. For every $\gamma \in \Gamma$ let $(\mathcal{P}_{\gamma}, \mathfrak{U}_{\gamma})$ be a locally convex cone. If \mathcal{P} is a cone and for every $\gamma \in \Gamma$, u_{γ} is a linear mapping of \mathcal{P} into \mathcal{P}_{γ} , then there is a coarsest convex quasiuniform structure \mathfrak{U} on \mathcal{P} that makes all u_{γ} continuous. $(\mathcal{P}, \mathfrak{U})$ is a locally convex cone

and it is called the projective limit of the locally convex cones $(\mathcal{P}_{\gamma},\mathfrak{U}_{\gamma}), \gamma \in \Gamma$. If $\mathcal{P} = \prod_{\gamma \in \Gamma} \mathcal{P}_{\gamma}$, then \mathcal{P} can be made into a locally convex cone by regarding it as the projective limit of the locally convex cones $(\mathcal{P}_{\gamma},\mathfrak{U}_{\gamma})$ by the projections mapping $\pi_{\gamma} : \mathcal{P} \to \mathcal{P}_{\gamma}, \pi_{\gamma}((x_{\gamma})_{\gamma \in \Gamma}) = x_{\gamma}$.

For each $\gamma \in \Gamma$, let $(\mathcal{P}_{\gamma},\mathfrak{U}_{\gamma})$ be a locally convex cone. Suppose \mathcal{P} is a cone and for every $\gamma \in \Gamma$, $v_{\gamma} : \mathcal{P}_{\gamma} \to \mathcal{P}$ is a linear mapping such that $\mathcal{P} = span(\bigcup_{\gamma \in \Gamma} v_{\gamma}(\mathcal{P}_{\gamma}))$. Then there is the finest convex quasiuniform structure \mathfrak{U} on \mathcal{P} that makes all v_{γ} continuous. $(\mathcal{P},\mathfrak{U})$ is a locally convex cone and it is called the inductive limit of locally convex cones $(\mathcal{P}_{\gamma},\mathfrak{U}_{\gamma}), \gamma \in \Gamma$. The subcone of $\mathcal{P} = \prod_{\gamma \in \Gamma} \mathcal{P}_{\gamma}$ spanned by $\bigcup_{\gamma \in \Gamma} j_{\gamma}(\mathcal{P}_{\gamma})$, where $j_{\gamma} : \mathcal{P}_{\gamma} \to \prod_{\gamma \in \Gamma} \mathcal{P}_{\gamma}$ is the injection mapping, is called the direct sum of cones $\mathcal{P}_{\gamma}, \gamma \in \Gamma$ and denoted by $\bigoplus_{\gamma \in \Gamma} \mathcal{P}_{\gamma}$. If we consider the product convex quasiunifom structure on $\bigoplus_{\gamma \in \Gamma} \mathcal{P}_{\gamma}$, then it induces the original convex quasiunifom structure on each \mathcal{P}_{γ} . The finest such convex quasiunifom structure on $\bigoplus_{\gamma \in \Gamma} \mathcal{P}_{\gamma}$ as the inductive limit of locally convex cones $(\mathcal{P}_{\gamma},\mathfrak{U}_{\gamma}), \gamma \in \Gamma$ (see [8]).

Let $(\mathcal{P},\mathfrak{U})$ be a locally convex cone and \mathcal{P}^* be its dual. In the following we denote by $\mathfrak{U}_{\sigma}(\mathcal{P},\mathcal{P}^*)$ the coarsest convex quasiuniform structure on \mathcal{P} that makes all $\mu \in \mathcal{P}^*$ continuous. Similarly, $\mathfrak{U}_{\sigma}(\mathcal{P}^*,\mathcal{P})$ is the the coarsest convex quasiuniform structure that makes all $a \in \mathcal{P}$ continious, as linear functionals on \mathcal{P}^* . In fact, $(\mathcal{P},\mathfrak{U}_{\sigma}(\mathcal{P},\mathcal{P}^*))$ is the projective limit of $(\overline{\mathbb{R}},\tilde{\mathcal{V}})$ by the functionals $\mu \in \mathcal{P}^*$.

2. Some structure theorems

Let $(\mathcal{P},\mathfrak{U})$ and $(\mathcal{Q},\mathcal{W})$ be locally convex cones. We denote the cone of all continuous linear operators from \mathcal{P} into \mathcal{Q} by $\mathcal{C}(\mathcal{P},\mathcal{Q})$. If $(\mathcal{Q},\mathcal{W}) = (\overline{\mathbb{R}},\mathcal{V})$, then $\mathcal{C}(\mathcal{P},\mathcal{Q}) = \mathcal{P}^*$. We define a convex quasiuniform structure on $\mathcal{C}(\mathcal{P},\mathcal{Q})$. Let \mathcal{B} be a collection of bounded below subsets of $(\mathcal{P},\mathfrak{U})$ such that

for every $A, B \in \mathcal{B}$ there is $C \in \mathcal{B}$ such that $A \cup B \subseteq C$. (UW)

For $B \in \mathcal{B}$ and $W \in \mathcal{W}$ we set

$$V_{B,W} = \{(S,T) \in \mathcal{C}(\mathcal{P},\mathcal{Q}) \times \mathcal{C}(\mathcal{P},\mathcal{Q}) : (S(b),T(b)) \in W\}.$$

Then $\mathcal{V}_{\mathcal{B},\mathcal{W}} = \{V_{B,W} : B \in \mathcal{B}, W \in \mathcal{W}\}$ is a convex quasiuniform structure on $\mathcal{C}(\mathcal{P}, \mathcal{Q})$. We prove that the elements of $\mathcal{C}(\mathcal{P}, \mathcal{Q})$ are bounded below with respect to the convex quasiuniform structure $\mathcal{V}_{\mathcal{B},\mathcal{W}}$. Let $V_{B,W} \in \mathcal{V}_{\mathcal{B},\mathcal{W}}$ and $T \in \mathcal{C}(\mathcal{P}, \mathcal{Q})$. Since *B* is bounded below and *T* is continuous, we realize that T(B) is bounded below in $(\mathcal{Q}, \mathcal{W})$. Then there is $\lambda > 0$ such that $(0, T(b)) \in \lambda W$ for all $b \in B$. This shows that $(0, T) \in \lambda V_{B,W}$. Therefore $(\mathcal{C}(\mathcal{P}, \mathcal{Q}), \mathcal{V}_{\mathcal{B},\mathcal{W}})$ is a locally convex cone.

Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be locally convex cones. If \mathcal{B} is the collection of all bounded below or bounded subsets of $(\mathcal{P}, \mathfrak{U})$, then we denote the corresponding convex quasiuniform structure on $\mathcal{C}(\mathcal{P}, \mathcal{Q})$ by $\mathcal{V}_{b\beta}$ or \mathcal{V}_{β} . Obviously, $\mathcal{V}_{b\beta}$ is finer than \mathcal{V}_{β} , since every bounded subset of \mathcal{P} is bounded below.

Proposition 2.1. Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be uc-cones. Then $\mathcal{C}(\mathcal{P}, \mathcal{Q})$ is a uccone if endowed with the convex quasiuniform structures $\mathcal{V}_{b\beta}$ and \mathcal{V}_{β} .

Proof. Let $\mathfrak{U} = \{ \alpha U : \alpha > 0 \}$ and $\mathcal{W} = \{ \alpha W : \alpha > 0 \}$. We set B = (0)U. We shall prove that $\mathcal{V}_{b\beta}$ is equivalent to the convex quasiuniform structure $\{ \varepsilon V_{B,W} : \varepsilon > 0 \}$. It is enough to show that $\{ \varepsilon V_{B,W} : \varepsilon > 0 \}$ is finer than $\mathcal{V}_{b\beta}$. Let $V_{A,\alpha W} \in \mathcal{V}_{b\beta}$. Then we have $A \subseteq \lambda B$ for some $\lambda > 0$. We claim that $\frac{\alpha}{\lambda} V_{B,W} \subseteq V_{A,\alpha W}$. Let $(S,T) \in \frac{\alpha}{\lambda} V_{B,W}$. Then $(S(\lambda a), T(\lambda a)) \in \alpha W$ for all $a \in B$. If we set $b = \lambda a$, then we have $(S(b), T(b)) \in \alpha W$ for all $b \in \lambda B$. Since $A \subseteq \lambda B$, this shows that $(S(b), T(b)) \in \alpha W$ for all $b \in A$. Therefore $(S,T) \in V_{A,\alpha W}$.

In a similar way one can prove that \mathcal{V}_{β} is equivalent to the convex quasiuniform structure $\{\alpha V_{B',W} : \alpha > 0\}$, where B' = U(0)U.

Example 2.2. Suppose that $(\mathcal{P},\mathfrak{U}) = (\mathcal{Q},\mathcal{W}) = (\overline{\mathbb{R}},\tilde{\mathcal{V}})$. Then $\mathcal{C}(\overline{\mathbb{R}},\overline{\mathbb{R}}) = \overline{\mathbb{R}}^* = [0,+\infty) \cup \{\overline{0}\}$, where $\overline{0}$ is a functional on $(\overline{\mathbb{R}},\tilde{\mathcal{V}})$ acting as follows:

$$\overline{0}(a) = \begin{cases} 0 & a \in \mathbb{R} \\ & \\ +\infty & else. \end{cases}$$

In this example we have $\mathcal{V}_{b\beta} = \{\alpha V_{[-1,+\infty],\tilde{1}} : \alpha > 0\}$ and $\mathcal{V}_{\beta} = \{\alpha V_{[-1,+1],\tilde{1}} : \alpha > 0\}$ by Proposition 2.1. The upper, lower and symmetric neighborhoods of $\overline{0}$ in $(\mathcal{C}(\overline{\mathbb{R}},\overline{\mathbb{R}}), \mathcal{V}_{b\beta})$ are as follows:

$$V_{[-1,+\infty],\tilde{1}}(\overline{0}) = \{0,\overline{0}\}, (\overline{0})V_{[-1,+\infty],\tilde{1}} = \{\overline{0}\} \text{ and } V_{[-1,+\infty],\tilde{1}}(\overline{0})V_{[-1,+\infty],\tilde{1}} = \{\overline{0}\}.$$

Then the functional $\overline{0}$ is an isolated point in the lower and symmetric topologies of $(\mathcal{C}(\overline{\mathbb{R}}, \overline{\mathbb{R}}), \mathcal{V}_{b\beta})$. Similarly in $(\mathcal{C}(\overline{\mathbb{R}}, \overline{\mathbb{R}}), \mathcal{V}_{\beta})$ we have

$$V_{[-1,+1],\tilde{1}}(\overline{0}) = \{0,\overline{0}\}, \ (\overline{0})V_{[-1,+1],\tilde{1}} = \{0,\overline{0}\} \text{ and } V_{[-1,+1],\tilde{1}}(\overline{0})V_{[-1,+1],\tilde{1}} = \{0,\overline{0}\}.$$

We shall say that a subset H of $\mathcal{C}(\mathcal{P}, \mathcal{Q})$ is equicontinuous whenever for each $W \in \mathcal{W}$ there is $U \in \mathfrak{U}$ such that $(S \times S)(U) \subseteq W$ for all $S \in H$. Every equicontinuous subset H of $\mathcal{C}(\mathcal{P}, \mathcal{Q})$ is bounded below with respect to the convex quasiuniform structure $\mathcal{V}_{\mathcal{B},\mathcal{W}}$. Indeed, let $V_{\mathcal{B},\mathcal{W}} \in \mathcal{V}_{\mathcal{B},\mathcal{W}}$. Then there is $U \in \mathfrak{U}$ such that $(S \times S)(U) \subseteq W$ for all $S \in H$. Also, there is $\lambda > 0$ such that $(\{0\} \times B) \subseteq \lambda U$, since B is bounded below in $(\mathcal{P},\mathfrak{U})$. We claim that $\{0\} \times H \subseteq \lambda \mathcal{V}_{\mathcal{B},\mathcal{W}}$. Let $S \in H$. Then $(S \times S)(U) \subseteq W$. This shows that $(S \times S)(\frac{1}{\lambda}(\{0\} \times B)) \subseteq W$, since $\frac{1}{\lambda}(\{0\} \times B) \subseteq U$. Therefore $(0, \frac{1}{\lambda}S(b)) \in W$ for all $b \in B$, yields $(0, S) \in \lambda \mathcal{V}_{\mathcal{B},\mathcal{W}}$.

Proposition 2.3. Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be locally convex cones and let \mathcal{B} be a collection of bounded below subsets of \mathcal{P} which has property (UW). If $\mathcal{P} = \bigcup_{B \in \mathcal{B}} B$, then for every $a \in \mathcal{P}$ the linear operator $\delta_a : \mathcal{C}(\mathcal{P}, \mathcal{Q}) \to \mathcal{Q}, \delta_a(T) = T(a)$ is continuous.

Proof. Let $W \in W$ and $a \in \mathcal{P}$. There is $B \in \mathcal{B}$ such that $a \in B$. We prove that $(\delta_a \times \delta_a)(V_{B,W}) \subseteq W$. Let $(S,T) \in V_{B,W}$. Then $(S(b),T(b)) \in W$ for all $b \in B$. This shows that $(S(a),T(a)) \in W$, since $a \in B$. Then $(\delta_a(S),\delta_a(T)) \in W$. This yields that $(\delta_a \times \delta_a)(S,T) \in W$.

Theorem 2.4. Let $(\mathcal{P}, \mathfrak{U})$ be the inductive limit of the locally convex cones $(\mathcal{P}_{\gamma}, \mathfrak{U}_{\gamma})$ by the linear mappings $u_{\gamma}, \gamma \in \Gamma$ and let $(\mathcal{Q}, \mathcal{W})$ be a locally convex cone. Let \mathcal{B}_{γ} be a class of bounded below subsets of \mathcal{P}_{γ} for every $\gamma \in \Gamma$, which has (UW), and let \mathcal{B} be the class of all finite unions of the sets contained in $\bigcup_{\gamma \in \Gamma} u_{\gamma}(\mathcal{B}_{\gamma})$. Then $(\mathcal{C}(\mathcal{P}, \mathcal{Q}), \mathcal{V}_{\mathcal{B}, \mathcal{W}})$ is the projective limit of the locally convex cones $(\mathcal{C}(\mathcal{P}_{\gamma}, \mathcal{Q}), \mathcal{V}_{\mathcal{B}, \mathcal{W}})$ by the linear mappings $T_{\gamma} : \mathcal{C}(\mathcal{P}, \mathcal{Q}) \to \mathcal{C}(\mathcal{P}_{\gamma}, \mathcal{Q})$, $T_{\gamma}(A) = A \circ u_{\gamma}$, for $A \in \mathcal{C}(\mathcal{P}, \mathcal{Q})$.

Proof. Obviously, \mathcal{B} has property (UW). Then $(\mathcal{C}(\mathcal{P}, \mathcal{Q}), \mathcal{V}_{\mathcal{B},W})$ is a locally convex cone. Now, we prove that $T_{\gamma} : (\mathcal{C}(\mathcal{P}, \mathcal{Q}), \mathcal{V}_{\mathcal{B},W}) \to (\mathcal{C}(\mathcal{P}_{\gamma}, \mathcal{Q}), \mathcal{V}_{\mathcal{B}_{\gamma},W})$ is continuous for each $\gamma \in \Gamma$. Let $V_{B_{\gamma},W} \in \mathcal{V}_{\mathcal{B}_{\gamma},W}$. We set $B = u_{\gamma}(B_{\gamma})$. Obviously, we have $B \in \mathcal{B}$. We prove that $(T_{\gamma} \times T_{\gamma})(V_{B,W}) \subseteq V_{B_{\gamma},W}$. Let $(S,A) \in V_{B,W}$. Then $(S(b),A(b)) \in W$ for all $b \in B$. For every $b \in B$ there is $b_{\gamma} \in B_{\gamma}$ such that b = $u_{\gamma}(b_{\gamma})$. This shows that $(S \circ u_{\gamma}(b_{\gamma}), A \circ u_{\gamma}(b_{\gamma})) \in W$ and then $(T_{\gamma}(S), T_{\gamma}(A)) \in$ $V_{B_{\gamma},W}$. Now, let \mathcal{H} be a convex quasiuniform structure on $\mathcal{C}(\mathcal{P}, \mathcal{Q})$, that makes all T_{γ} continuous. We shall prove that \mathcal{H} is finer than $\mathcal{V}_{\mathcal{B},W}$. Let $B = u_{\gamma}(B_{\gamma})$. There is $H \in \mathcal{H}$ such that $(T_{\gamma} \times T_{\gamma})(H) \subseteq V_{B_{\gamma},W}$. We show that $H \subseteq V_{B,W}$. If $(S,A) \in H$, then $(T_{\gamma}(S), T_{\gamma}(A)) \in V_{B_{\gamma},W}$. Then $(S(u_{\gamma}(b_{\gamma})), A(u_{\gamma}(b_{\gamma}))) \in W$ for all $b_{\gamma} \in B_{\gamma}$. This yields that $(S(b), A(b)) \in W$ for all $b \in B$. Therefore $(S,A) \in V_{B,W}$.

Corollary 2.5. Let $(\mathcal{P}, \mathfrak{U}) = \bigoplus_{\gamma \in \Gamma} (\mathcal{P}_{\gamma}, \mathfrak{U}_{\gamma})$ and let $(\mathcal{Q}, \mathcal{W})$ be a locally convex cone. Suppose \mathcal{B}_{γ} is a class of bounded below subsets of \mathcal{P}_{γ} for every $\gamma \in \Gamma$, which has property (UW) and \mathcal{B} is the class of all finite unions of the sets contained in $\bigcup_{\gamma \in \Gamma} j_{\gamma}(\mathcal{B}_{\gamma})$. Then $(\mathcal{L}(\mathcal{P}, \mathcal{Q}), \mathcal{V}_{\mathcal{B}, \mathcal{W}}) = \prod_{\gamma \in \Gamma} (\mathcal{C}(\mathcal{P}_{\gamma}, \mathcal{Q}), \mathcal{V}_{\mathcal{B}_{\gamma}, \mathcal{W}})$.

Corollary 2.6. Let $(\mathcal{P}, \mathfrak{U}) = \bigoplus_{\gamma \in \Gamma} (\mathcal{P}_{\gamma}, \mathfrak{U}_{\gamma})$. Suppose \mathcal{B}_{γ} is a class of bounded below subsets of \mathcal{P}_{γ} for every $\gamma \in \Gamma$, which has property (UW) and \mathcal{B} is the class of all finite unions of the sets contained in $\bigcup_{\gamma \in \Gamma} j_{\gamma}(\mathcal{B}_{\gamma})$. Then $(\mathcal{P}^*, \mathcal{V}_{\mathcal{B}, \tilde{\mathcal{V}}}) = \prod_{\gamma \in \Gamma} (\mathcal{P}^*_{\gamma}, \mathcal{V}_{\mathcal{B}_{\gamma}, \tilde{\mathcal{V}}})$.

Example 2.7. Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be locally convex cones and ~ be an equivalence relation on \mathcal{P} which is compatible with the algebraic operations of \mathcal{P} (see

[12]). We denote the equivalence class of an element $a \in \mathcal{P}$ by [a] and set

$$[\mathcal{P}] = \{ [a] \mid a \in \mathcal{P} \}.$$

The operations [a] + [b] = [a + b] and $\alpha[a] = [\alpha a]$ are well-defined for $a, b \in \mathcal{P}$ and $\alpha \ge 0$ and $[\mathcal{P}]$ becomes a cone with these operations, which had been called the quotient cone. On $[\mathcal{P}]$ we consider the finest convex quasiuniform structure $[\mathfrak{U}]$, that makes the projection mapping $\pi : \mathcal{P} \to [\mathcal{P}], \pi(a) = [a]$ continuous. In fact, $([\mathcal{P}], [\mathfrak{U}])$ is the inductive limit of $(\mathcal{P}, \mathfrak{U})$ under the projection mapping. Suppose that \mathcal{B} is a collection of bounded below subsets of \mathcal{P} , which has property (UW) and suppose $[\mathcal{B}]$ is the collection of all finite unions of the sets contained in $\pi(\mathcal{B})$. Then $(\mathcal{C}([\mathcal{P}], \mathcal{Q}), \mathcal{V}_{[\mathcal{B}], \mathcal{W}})$ is the projective limit of the locally convex cone $(\mathcal{C}(\mathcal{P}, \mathcal{Q}), \mathcal{V}_{\mathcal{B}, \mathcal{W}})$ by the linear mapping $T : \mathcal{C}([\mathcal{P}], \mathcal{Q}) \to \mathcal{C}(\mathcal{P}, \mathcal{Q})$, $T(A) = A \circ \pi$ by Theorem 2.4.

Let $(\mathcal{P}, \mathfrak{U})$ be a locally convex cone. For a uniformly convex *u*-bounded subset *H* of \mathcal{P}^2 , we set

 $\mathcal{P}_H = \{ a \in \mathcal{P} : \exists \lambda > 0, (0, a) \in \lambda H \} \text{ and } \mathfrak{U}_H = \{ \alpha(H \cap \mathcal{P}_H^2) : \alpha > 0 \}.$

Then $(\mathcal{P}_H, \mathfrak{U}_H)$ is a *uc*-cone.

Remark 2.8. Suppose $(\mathcal{P}, \mathfrak{U})$ is a bornological cone and \mathcal{H} is the collection of all uniformly convex *u*-bounded subsets of \mathcal{P}^2 , then it is proved in [1] that $(\mathcal{P}, \mathfrak{U})$ is the inductive limit of *uc*-subcones $(\mathcal{P}_H, \mathfrak{U}_H)_{H \in \mathcal{H}}$, with the inclusion mappings $I_H : \mathcal{P}_H \to \mathcal{P}$. Now for every $H \in \mathcal{H}$, suppose \mathcal{B}_H is a collection of bounded below subsets of $(\mathcal{P}_H, \mathfrak{U}_H)$, which has property (UW) and suppose \mathcal{B} is the class of all finite unions of the sets contained in $\bigcup_{H \in \mathcal{H}} \mathcal{B}_H$. Then $(\mathcal{C}(\mathcal{P}, \mathcal{Q}), \mathcal{V}_{\mathcal{B}, \mathcal{W}})$ is the projective limit of the locally convex cones $(\mathcal{C}(\mathcal{P}_H, \mathcal{Q}), \mathcal{V}_{\mathcal{B}, \mathcal{W}})$ with the linear mappings $T_H : \mathcal{C}(\mathcal{P}, \mathcal{Q}) \to \mathcal{C}(\mathcal{P}_H, \mathcal{Q}), T_H(A) = AoI_H$, by Theorem 2.4. If $(\mathcal{Q}, \mathcal{W})$ is a *uc*-cone, then for every $H \in \mathcal{H}, (\mathcal{C}(\mathcal{P}_H, \mathcal{Q}), \mathcal{V}_{\mathcal{B}, \mathcal{W}})$ is a *uc*-cone by Proposition 2.1. Therefore $(\mathcal{C}(\mathcal{P}, \mathcal{Q}), \mathcal{V}_{\mathcal{B}, \mathcal{W}})$ is the projective limit of *uc*-cones in this case.

Definition 2.9. Let \mathcal{P} be a cone. We shall say that the subset *B* of $\mathcal{P} \setminus \{0\}$ is a base for \mathcal{P} whenever

(1) for every *a* ∈ *P* there are *n* ∈ N, *b*₁,...,*b_n* ∈ *B* and *α*₁,...,*α_n* ≥ 0 such that *a* = ∑_{*i*=1}^{*n*} *α_ib_i*, in the other words *P* = *span*(*B*),
(2) for every *B'* ⊆ *B*, *P* ≠ *span*(*B'*).

Let *B* be a base for the cone \mathcal{P} . For $b \in B$ we set $\mathcal{P}_b = \{\alpha b : \alpha \ge 0\}$. Then we have $\mathcal{P} = \bigoplus_{b \in B} \mathcal{P}_b$. Indeed, (1) shows that $\mathcal{P} \subseteq \bigoplus_{b \in B} \mathcal{P}_b$. We prove that for $b_1, b_2 \in B$, $\mathcal{P}_{b_1} \cap \mathcal{P}_{b_2} = \{0\}$. If $a \in \mathcal{P}_{b_1} \cap \mathcal{P}_{b_2}$ and $a \ne 0$, then $a = \alpha_1 b_1 = \alpha_2 b_2$ for some $\alpha_1, \alpha_2 > 0$. Then $b_2 = \frac{\alpha_1}{\alpha_2} b_1$. This shows that $\mathcal{P} = span(B \setminus \{b_1\})$. This is a contradiction by (2). Now, we suppose that $(\mathcal{P}, \mathfrak{U})$ is a locally convex cone and for $b \in B$, \mathfrak{U}_b is the convex quasiuniform structure on \mathcal{P}_b induced by \mathfrak{U} . Then it is easy to see that $(\mathcal{P}, \mathfrak{U}) = \bigoplus_{b \in B} (\mathcal{P}_b, \mathfrak{U}_b)$.

Example 2.10. Let S be the cone of all sequences in $\overline{\mathbb{R}}$. For $i \in \mathbb{N}$, we define the sequences $(a_n^i)_{n \in \mathbb{N}}$, $(b_n^i)_{n \in \mathbb{N}}$ and $(c_n^i)_{n \in \mathbb{N}}$ as following:

$$a_n^i = \begin{cases} 1 & \qquad n=i \\ 0 & \qquad else \end{cases}, b_n^i = \begin{cases} -1 & \qquad n=i \\ 0 & \qquad else \end{cases} \text{ and } c_n^i = \begin{cases} +\infty & \qquad n=i \\ 0 & \qquad else. \end{cases}$$

Then $B = \{(a_n^i)_{n \in \mathbb{N}}, (b_n^i)_{n \in \mathbb{N}}, (c_n^i)_{n \in \mathbb{N}} : i \in \mathbb{N}\}$ is a base for *S*. For $\delta > 0$, we set

$$ilde{\delta} = \{((a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}})\in S^2: a_n\leq b_n+\delta, \forall n\in\mathbb{N}\}.$$

Then $\mathfrak{U} = \{\tilde{\delta} : \delta > 0\}$ is a convex quasiuniform structure on *S*. If \mathcal{P} is the subcone of all bounded below elements of *S* with respect to \mathfrak{U} , then $(\mathcal{P},\mathfrak{U})$ is a locally convex cone. The above discussion yields that $(\mathcal{P},\mathfrak{U}) = \bigoplus_{b \in \mathcal{B}} (\mathcal{P}_b,\mathfrak{U}_b)$. Now, let $(\mathcal{Q}, \mathcal{W})$ be a locally convex cone and \mathcal{B}_b be a collection of bounded below subsets of \mathcal{P}_b which have (UW). If we assume that \mathcal{B} is the collection of all the sets contained in $\bigcup_{b \in \mathcal{B}} \mathcal{B}_b$, then we have

$$(\mathcal{C}(\mathcal{P},\mathcal{Q}),\mathcal{V}_{\mathcal{B},\mathcal{W}}) = \prod_{b\in B} (\mathcal{C}(\mathcal{P}_b,\mathcal{Q}),\mathcal{V}_{\mathcal{B}_b,\mathcal{W}}),$$
(1)

by Corollary 2.5. For $i \in \mathbb{N}$ and $b = (a_n^i)_{n \in \mathbb{N}}$ or $b = (b_n^i)_{n \in \mathbb{N}}$ we have $(\mathcal{P}_b, \mathfrak{U}_b)^* = [0, +\infty)$. Also for $b = (c_n^i)_{n \in \mathbb{N}}$ we have $(\mathcal{P}_b, \mathfrak{U}_b)^* = \{0, +\infty\}$. Now, formula (1) with $(\mathcal{Q}, \mathcal{W}) = (\overline{\mathbb{R}}, \tilde{\mathcal{V}})$ implies that

$$\begin{aligned} (\mathcal{P}^*, \mathcal{V}_{\mathcal{B}, \tilde{\mathcal{V}}}) &= \big(\prod_{i=1}^{\infty} ([0, +\infty), \mathcal{V}_{\mathcal{B}_b, \tilde{\mathcal{V}}})\big) \times \big(\prod_{i=1}^{\infty} ([0, +\infty), \mathcal{V}_{\mathcal{B}_b, \tilde{\mathcal{V}}})\big) \\ &\times \big(\prod_{i=1}^{\infty} (\{0, +\infty\}, \mathcal{V}_{\mathcal{B}_b, \tilde{\mathcal{V}}})\big) \end{aligned}$$

Lemma 2.11. In a separated locally convex cone the only bounded subcone is $\{0\}$.

Proof. Let $(\mathcal{P},\mathfrak{U})$ be a separated locally convex cone and \mathcal{Q} be a bounded subcone of \mathcal{P} . Then for every $U \in \mathfrak{U}$ there is $\lambda > 0$ such that $(0,q) \in \lambda U$ and $(q,0) \in \lambda U$ for all $q \in \mathcal{Q}$. Let $q \in \mathcal{Q}$ be a fixed element. We have $(0,nq) \in \lambda U$ and $(nq,0) \in \lambda U$ for all $n \in \mathbb{N}$, since \mathcal{Q} is a subcone. This yields that

$$q \in \bigcap_{n \in \mathbb{N}} (\frac{\lambda}{n}U)(0)(\frac{\lambda}{n}U).$$

Therefore q = 0, since the symmetric topology of $(\mathcal{P}, \mathfrak{U})$ is Hausdorff.

The situation is more telling if we assume $(\mathcal{P},\mathfrak{U})$ to be a projective limit locally convex cone. We suppose first that $(\mathcal{P},\mathfrak{U}) = \prod_{\gamma \in \Gamma} (\mathcal{P}_{\gamma},\mathfrak{U}_{\gamma})$ and $(\mathcal{Q},\mathcal{W})$ is a locally convex cone. Let $S \in \mathcal{C}(\mathcal{P},\mathcal{Q})$. If S_{γ} is the restriction of S to \mathcal{P}_{γ} and p_{γ} is the projection mapping, then for $(a_{\gamma})_{\gamma \in \Gamma} \in \mathcal{P}$ we have $S_{\gamma}(a_{\gamma}) = S \circ p_{\gamma}((a_{\gamma})_{\gamma \in \Gamma})$ and $S_{\gamma} \circ p_{\gamma} = S \circ p_{\gamma} \in \mathcal{C}(\mathcal{P}_{\gamma},\mathcal{Q})$. If only finitely many S_{γ} are non zero, then $\sum_{i=1}^{n} S_{\gamma_i} \in \bigoplus_{\gamma \in \Gamma} \mathcal{C}(\mathcal{P}_{\gamma},\mathcal{Q})$ and $S = \sum_{i=1}^{n} S_{\gamma_i} \circ p_{\gamma_i} \in \mathcal{C}(\mathcal{P},\mathcal{Q})$. This shows that

$$\bigoplus_{\gamma\in\Gamma}\mathcal{C}(\mathcal{P}_{\gamma},\mathcal{Q})\subset\mathcal{C}(\prod_{\gamma\in\Gamma}\mathcal{P}_{\gamma},\mathcal{Q}).$$

Generally $\bigoplus_{\gamma \in \Gamma} C(\mathcal{P}_{\gamma}, \mathcal{Q})$ is a proper subset of $C(\prod_{\gamma \in \Gamma} \mathcal{P}_{\gamma}, \mathcal{Q})$. For example consider the cone $\mathcal{P} = \prod_{i=1}^{\infty} \mathcal{P}_i$, where $\mathcal{P}_i = \overline{\mathbb{R}}$ for all $i \in \mathbb{N}$. Then the range of every linear operator $T \in \bigoplus_{i=1}^n C(\mathcal{P}_i, \mathcal{P})$ has a base with finite elements, but it is not true for the identity mapping $I \in C(\mathcal{P}, \mathcal{P})$.

Under an additional condition we have the equality in the above.

Proposition 2.12. Let $(\mathcal{P}, \mathfrak{U}) = \prod_{\gamma \in \Gamma} (\mathcal{P}_{\gamma}, \mathfrak{U}_{\gamma})$, where all elements of \mathcal{P}_{γ} are bounded above for all $\gamma \in \Gamma$. Also, let $(\mathcal{Q}, \mathcal{W})$ be a separated locally convex cone with a sequence $C_1 \subset C_2 \subset ...$ of bounded subsets such that every bounded subset of \mathcal{Q} contained in some C_i , $i \in \mathbb{N}$. Then (a) Algebrically, we have

$$\mathcal{C}(\mathcal{P}, \mathcal{Q}) = \bigoplus_{\gamma \in \Gamma} \mathcal{C}(\mathcal{P}_{\gamma}, \mathcal{Q}).$$

(b) If for every $\gamma \in \Gamma$, \mathcal{B}_{γ} is a collection of bounded below subsets of $(\mathcal{P}_{\gamma}, \mathfrak{U}_{\gamma})$ and \mathcal{B} is the collection af all sets $\prod_{\gamma \in \Gamma} B_{\gamma}$, where $B_{\gamma} \in \mathcal{B}_{\gamma}$, then the iductive limit convex quasiuniform structure on $\mathcal{C}(\mathcal{P}, \mathcal{Q})$ is finer than $\mathcal{V}_{\mathcal{B}, \mathcal{W}}$.

Proof. For (*a*) assume that there exists $S \in C(\mathcal{P}, \mathcal{Q})$ such that

$$S \notin \bigoplus_{\gamma \in \Gamma} \mathcal{C}(\mathcal{P}_{\gamma}, \mathfrak{U}_{\gamma}).$$

Then there are infinitely many restrictions S_{γ_n} , n = 1, 2, ... such that $S_{\gamma_n} \neq 0$. Then there is $a_{\gamma_n} \in \mathcal{P}_{\gamma_n}$ such that $b_{\gamma_n} = S_{\gamma_n}(a_{\gamma_n}) \notin C_n$ for all $n \in \mathbb{N}$, by Lemma 2.11. The net $(a_{\gamma_n})_{n \in \mathbb{N}}$ is bounded in $(\mathcal{P}, \mathfrak{U})$, since all of its component are bounded by the assumption, but $S((a_{\gamma_n})_{n \in \mathbb{N}}) = \sum_{n=1}^{\infty} S_{\gamma_n}(a_{\gamma_n}) = \sum_{n=1}^{\infty} b_n$ is unbounded in $(\mathcal{Q}, \mathcal{W})$. This is a contradiction, because *S* is continuous. Then

$$\mathcal{C}(\mathcal{P},\mathcal{Q}) \subseteq \bigoplus_{\gamma \in \Gamma} \mathcal{C}(\mathcal{P}_{\gamma},\mathfrak{U}_{\gamma}).$$

For (b), let $V_{B,W} \in \mathcal{V}_{\mathcal{B},\mathcal{W}}$, where $B = \prod_{\gamma \in \Gamma} B_{\gamma}$, $B_{\gamma} \in \mathcal{B}_{\gamma}$ and $W \in \mathcal{W}$. It is enough to show that $\bigcup_{\gamma \in \Gamma} (j_{\gamma} \times j_{\gamma})(V_{B_{\gamma},W}) \subseteq V_{B,W}$. For $\gamma' \in \Gamma$, let $(S_{\gamma'}, T_{\gamma'}) \in$ $V_{B_{\gamma'},W}$. Then for each $b_{\gamma'} \in B_{\gamma'}$, we have $(S_{\gamma'}(b_{\gamma'}), T_{\gamma'}(b_{\gamma'})) \in W$. Now, since for $(b_{\gamma})_{\gamma \in \Gamma} \in B$ we have $(j_{\gamma'}(S_{\gamma'}))((b_{\gamma})_{\gamma \in \Gamma}) = S_{\gamma'}(b_{\gamma'})$ and $(j_{\gamma'}(T_{\gamma'}))((b_{\gamma})_{\gamma \in \Gamma}) = T_{\gamma'}(b_{\gamma'})$ by (a), we conclude that

$$(j_{\gamma'} \times j_{\gamma'})(S_{\gamma'},T_{\gamma'}) \in V_{B,W}.$$

Theorem 2.13. Let $(\mathcal{P},\mathfrak{U})$ be a locally convex cone and let $(\mathcal{Q},\mathcal{W})$ be the projective limit of the locally convex cones $(\mathcal{Q}_{\gamma},\mathcal{W}_{\gamma})$ by the linear mappings v_{γ} , $\gamma \in \Gamma$. If \mathcal{B} is a collection of bounded below subsets of $(\mathcal{P},\mathfrak{U})$ which has property (UW), then the locally convex cone $(\mathcal{C}(\mathcal{P},\mathcal{Q}),\mathcal{V}_{\mathcal{B},\mathcal{W}})$ is the projective limit of the locally convex cones $(\mathcal{C}(\mathcal{P},\mathcal{Q}_{\gamma}),\mathcal{V}_{\mathcal{B},\mathcal{W}_{\gamma}})$, $\gamma \in \Gamma$, by the linear mappings $T_{\gamma}: \mathcal{C}(\mathcal{P},\mathcal{Q}) \to \mathcal{C}(\mathcal{P},\mathcal{Q}_{\gamma}), T_{\gamma}(A) = v_{\gamma} \circ A$.

Proof. Firstly, we prove that for every γ , T_{γ} is continuous. Let $V_{B,W_{\gamma}} \in \mathcal{V}_{\mathcal{B},\mathcal{W}_{\gamma}}$. Since v_{γ} is continuous, there is $W \in \mathcal{W}$ such that $(v_{\gamma} \times v_{\gamma})(W) \subseteq W_{\gamma}$. We show $(T_{\gamma} \times T_{\gamma})(V_{B,W}) \subseteq V_{B,W_{\gamma}}$. If $(S,A) \in V_{B,W}$, then $(S(b),A(b)) \in W$ for all $b \in B$. Therefore $(v_{\gamma} \circ S(b), v_{\gamma} \circ A(b)) \in W_{\gamma}$ and then $(T_{\gamma} \times T_{\gamma})(S,A) = (v_{\gamma} \circ S, v_{\gamma} \circ A) \in V_{B,W_{\gamma}}$. Now, we prove that $\mathcal{V}_{\mathcal{B},\mathcal{W}}$ is the coarsest convex quasiuniform structure on $\mathcal{L}(\mathcal{P}, \mathcal{Q}_{\gamma})$ that makes all $T_{\gamma}, \gamma \in \Gamma$ continuous. For this aim let \mathcal{H} be another convex quasiuniform structure on $\mathcal{C}(\mathcal{P}, \mathcal{Q}_{\gamma})$ that makes all $T_{\gamma}, \gamma \in \Gamma$ continuous. We shall prove that \mathcal{H} is finer than $\mathcal{V}_{\mathcal{B},\mathcal{W}}$. There are $n \in \mathbb{N}$ and $\gamma_1, \dots, \gamma_n \in \Gamma$ such that $\bigcap_{i=1}^n (v_{\gamma_i} \times v_{\gamma_i})^{-1}(W_{\gamma_i}) \subseteq W$, since $(\mathcal{Q}, \mathcal{W})$ is the projective limit of $(\mathcal{Q}_{\gamma}, \mathcal{W}_{\gamma}), \gamma \in \Gamma$. For every $i = 1, \dots, n$ there is $H_i \in \mathcal{H}$ such that $H \subseteq \bigcap_{i=1}^n H_i$. We claim that $H \subseteq V_{B,W}$. Let $(S,A) \in H$. Then for every $i = 1, \dots, n$, we have $(S,A) \in H_i$. This shows that

$$(T_{\gamma}(S), T_{\gamma}(A)) = (v_{\gamma} \circ S, v_{\gamma} \circ A) \in V_{B, W_{\gamma}}.$$

Then for every i = 1, ..., n, $(v_{\gamma} \circ S(b), v_{\gamma} \circ A(b)) \in W_{\gamma_i}$ for all $b \in B$. Therefore

$$(S(b),A(b)) \in \bigcap_{i=1}^{n} V_{\gamma}^{-1}(W_{\gamma_i}) \subseteq W,$$

for all $b \in B$. This yields that $(S,A) \in V_{B,W}$.

Corollary 2.14. Let $(\mathcal{P}, \mathfrak{U})$ be a locally convex cone and let

$$(\mathcal{Q}, \mathcal{W}) = \prod_{\gamma \in \Gamma} (\mathcal{Q}_{\gamma}, \mathcal{W}_{\gamma}).$$

If \mathcal{B} is a collection of bounded below subsets of \mathcal{P} which has property (UW), then $(\mathcal{C}(\mathcal{P}, \mathcal{Q}), \mathcal{V}_{\mathcal{B}, \mathcal{W}}) = \prod_{\gamma \in \Gamma} (\mathcal{C}(\mathcal{P}, \mathcal{Q}_{\gamma}), \mathcal{V}_{\mathcal{B}, \mathcal{W}_{\gamma}}).$

Example 2.15. Let $(\mathcal{P},\mathfrak{U})$ and $(\mathcal{Q},\mathcal{W})$ be locally convex cones. We consider the locally convex cone $(\mathcal{Q}, \mathcal{W}_{\sigma}(\mathcal{Q}, \mathcal{Q}^*))$. We note that $(\mathcal{Q}, \mathcal{W}_{\sigma}(\mathcal{Q}, \mathcal{Q}^*))$ is the projective limit of $(\mathbb{R}, \tilde{\mathcal{V}})$ under the functionals $\mu \in \mathcal{Q}^*$. If \mathcal{B} is a collection of bounded below subsets of $(\mathcal{P},\mathfrak{U})$ which has property (UW), then the locally convex cone $(\mathcal{C}(\mathcal{P}, \mathcal{Q}), \mathcal{V}_{\mathcal{B}, \mathcal{W}_{\sigma}(\mathcal{Q}, \mathcal{Q}^*)})$ is the projective limit of the locally convex cone $(\mathcal{P}^*, \mathcal{V}_{\mathcal{B}, \tilde{\mathcal{V}}})$ by the linear mappings $T_{\mu} : \mathcal{C}(\mathcal{P}, \mathcal{Q}) \to \mathcal{P}^*, T_{\mu}(A) = \mu oA, \mu \in \mathcal{Q}^*$, by Theorem 2.13.

In the following proposition we present some conditions under which the locally convex cone $(\mathcal{C}(\mathcal{P}, \mathcal{Q}), \mathcal{V}_{\mathcal{B}, \mathcal{W}})$ is separated.

Proposition 2.16. Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be locally convex cones and \mathcal{B} be a collection of bounded below subsets of \mathcal{P} , which have (UW). If $(\mathcal{Q}, \mathcal{W})$ is separated and $\mathcal{P} = \bigcup_{B \in \mathcal{B}} B$, then $(\mathcal{C}(\mathcal{P}, \mathcal{Q}), \mathcal{V}_{\mathcal{B}, \mathcal{W}})$ is separated.

Proof. It is sufficient to show that the symmetric topology of $(\mathcal{C}(\mathcal{P}, \mathcal{Q}), \mathcal{V}_{\mathcal{B}, \mathcal{W}})$ is Hausdorff. Let $S, T \in \mathcal{C}(\mathcal{P}, \mathcal{Q})$ and $S \neq T$. There is $a \in \mathcal{P}$ such that $S(a) \neq T(a)$. Since $(\mathcal{Q}, \mathcal{W})$ is separated, there are $W, W' \in \mathcal{W}$ such that

$$W(S(a))W \cap W'(T(a))W' = \emptyset.$$

We have $a \in B$ for some $B \in \mathcal{B}$, since $\mathcal{Q} = \bigcup_{B \in \mathcal{B}} B$. Now, we claim that

$$\mathcal{V}_{B,W}(S)\mathcal{V}_{B,W}\cap\mathcal{V}_{B,W'}(T)\mathcal{V}_{B,W'}=\emptyset.$$

If $K \in \mathcal{V}_{B,W}(S)\mathcal{V}_{B,W} \cap \mathcal{V}_{B,W'}(T)\mathcal{V}_{B,W'}$, then

$$K(a) \in W(S(a))W \cap W'(T(a))W',$$

and this is a contradiction.

Example 2.17. Let $(\mathcal{P},\mathfrak{U})$ be a locally convex cone and \mathcal{B} be the collection of all finite subsets of \mathcal{P} . If we set $(\mathcal{Q},\mathcal{W}) = (\overline{\mathbb{R}},\tilde{\mathcal{V}})$, then $\mathcal{P}^* = \mathcal{C}(\mathcal{P},\mathcal{Q})$, endowed with the convex quasiuniform structure $\mathcal{V}_{\mathcal{B},\tilde{\mathcal{V}}}$ is a separated locally convex cone by Proposition 2.16. We note that the convex quasiuniform structure $\mathcal{V}_{\mathcal{B},\tilde{\mathcal{V}}}$ is equivalent with $\mathfrak{U}_{\sigma}(\mathcal{P}^*,\mathcal{P})$ on \mathcal{P}^* . Then the locally convex cone $(\mathcal{P}^*,\mathfrak{U}_{\sigma}(\mathcal{P}^*,\mathcal{P}))$ is separated.

REFERENCES

- D. Ayaseh and A. Ranjbari, Bornological Convergence in Locally Convex Cones, Mediterr. J. Math., 13 (4), 1921-1931(2016).
- [2] D. Ayaseh and A. Ranjbari, Bornological Locally Convex Cones, Le Matematiche, 69(2), 267-284(2014).
- [3] D. Ayaseh and A. Ranjbari, Locally Convex Quotient Lattice Cones, Math. Nachr., 287(10), 1083-1092(2014).
- [4] D. Ayaseh and A. Ranjbari, Some notes on bornological and nonbornological locally convex cones, Le Matematiche, 70(2), 235-241(2015).
- [5] K. Keimel and W. Roth, Ordered cones and approximation, Lecture Notes in Mathematics, vol. 1517, 1992, Springer Verlag, Heidelberg-Berlin-New York.
- [6] G. Kothe, Topological Vector Spaces II, Springer-Verlag New York Heidelberg Berlin, 1979.
- [7] M. R. Motallebi and H. Sai u, Duality on Locally Convex Cones, J. Math. Anal. Appl., 337 (2008) 888-905.
- [8] M. R. Motallebi and H. Saiflu, Products and Direct Sums in Locally Convex Cones, Canad. Math. Bull. 55, 783-798(2012).
- [9] A. Ranjbari, Strict inductive limits in locally convex cones, Positivity 15(3), 465-471(2011).
- [10] A. Ranjbari and H. Saiflu, Projective and inductive limits in locally convex cones, J. Math. Anal. Appl., 332, 1097-1108(2007).
- [11] A. P. Robertson and W. Robertson, Topological vector spaces, Cambridge Univesity Press 1964, 1973.
- [12] W. Roth, Locally convex quotient cones, J. Convex Anal. 18(4),903-913(2011).
- [13] W. Roth, Operator-valued measures and integrals for cone-valued functions, Lecture Notes in Mathematics, vol. 1964, 2009, Springer Verlag, Heidelberg-Berlin-New York.

DAVOOD AYASEH Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran. e-mail: d_ayaseh@tabrizu.ac.ir

ASGHAR RANJBARI

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran. e-mail: ranjbari@tabrizu.ac.ir