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SOME PROPERTIES FOR CERTAIN CLASS OF ANALYTIC
FUNCTIONS DEFINED BY CONVOLUTION

M. KAMAL AOUF - A. O. MOSTAFA - E. AHMED ADWAN

In this paper, we introduce a new class HT ( f ,g;α,k) of analytic func-
tions in the open unit disc U = {z ∈ C : |z| < 1} defined by convolu-
tion. The object of the present paper is to determine coefficient estimates,
extreme points, distortion theorems, partial sums and integral means for
functions belonging to the class HT ( f ,g;α,k). We also obtain several
results for the neighborhood of functions belonging to this class.

1. Introduction

Let A denote the class of functions of the form

f (z) = z+
∞

∑
n=2

anzn, (1)

which are analytic in the open unit disc U = {z ∈ C : |z|< 1}.
For functions f given by (1) and g ∈ A given by

g(z) = z+
∞

∑
n=2

bnzn (bn > 0) , (2)

the Hadamard product (or convolution) of f and g is defined by
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( f ∗g)(z) = z+
∞

∑
n=2

anbnzn = (g∗ f )(z).

Definition 1.1 ([9], [10], [13] and [16]). For k ≥ 0,0 ≤ α < 1 and z ∈U , let
S(k,α) denote the subclass of functions f ∈ Aand satisfying the condition:

Re

(
z f
′
(z)

f (z)
+ k

z2 f
′′
(z)

f (z)

)
> α.

Definition 1.2. For 0≤α < 1,k≥ 0and for all z∈U, let H( f ,g;α,k) denote the
subclass of A consisting of functions f (z), g(z) ∈ A and satisfying the analytic
criterion:

Re

{
z( f ∗g)

′
(z)

( f ∗g)(z)
+ k

z2 ( f ∗g)
′′
(z)

( f ∗g)(z)

}
> α. (3)

We note that for suitable choice of g, we obtain the following subclasses.
(1) If we take g(z) = z

1−z , then the class H( f , z
1−z ;α,k) reduces to the class

S(k,α) (see [13]);
(2) If we take

g(z) = z+
∞

∑
n=2

σnzn (4)

(or bn = σn), where

σn =
ΘΓ(α1 +A1(n−1)) . . .Γ(αq +Aq(n−1))

(n−1)!Γ(β1 +B1(n−1)) . . .Γ(βs +Bs(n−1))
(5)

(αi,Ai > 0, i= 1, . . . ,q;β j,B j > 0, j = 1, . . . ,s;q≤ s+1;q,s∈N,N= {1,2, . . .})

and

Θ =

(
s

∏
j=0

Γ(β j)

)
(

q
∏
i=0

Γ(αi)

) , (6)

then the class H( f ,z+
∞

∑
n=2

σnzn;α,k) reduces to the class W q
s (α,k) (see [5])

=

{
f ∈ A : Re

{
z
(
W q

s f (z)
)′

W q
s f (z)

+ k
z2
(
W q

s f (z)
)′′

W q
s f (z)

}
> α,
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0≤ α < 1;k ≥ 0;q,s ∈ N;z ∈U} , (7)

where W q
s f (z) is the Wright’s generalized hypergeometric function (see [6]

and [22]) which contains well known operators such as the Dziok-Srivastava
operator (see [7]), the Carlson-Shaffer linear operator (see [1]), the Bernardi-
Libera-Livingston operator (see [11]), Owa-Srivastava fractional derivative op-
erator (see [15]), the Choi-Saigo-Srivastava operator (see [4]), the Cho-Kwon-
Srivastava operator (see [3]), the Ruscheweyh derivative operator (see [17]) and
the Noor integral operator of n-th order (see [14);
(3) If we take

g(z) = z+
∞

∑
n=2

(
l +1+µ(n−1)

l +1

)m

zn (8)

(or bn =
(

l+1+µ(n−1)
l+1

)m
, m ∈ N0 = N ∪ {0} , µ ≥ 0, l ≥ 0), then the class

H( f ,z+
∞

∑
n=2

(
l+1+µ(n−1)

l+1

)m
zn;α,k) reduces to the class Lm(µ, l,α,k):

=

{
f ∈ A : Re

{
z(Im(µ, l) f (z))

′

Im(µ, l) f (z)
+ k

z2(Im(µ, l) f (z))
′′

Im(µ, l) f (z)

}
> α,

0≤ α < 1;k ≥ 0; µ, l ≥ 0,m ∈ N0;z ∈U
}
, (9)

where the operator Im(µ, l) was introduced and studied by Cătaş et al. (see [2]).
Denote by T the subclass of A consisting of functions of the form:

f (z) = z−
∞

∑
n=2

anzn (an ≥ 0), (10)

which are analytic in U . We define the class HT ( f ,g;α,k) by:

HT ( f ,g;α,k) = H( f ,g;α,k)∩T. (11)

Also we note that:
(1) HT ( f ,z +

∞

∑
n=2

σnzn;α,k) = TW q
s (α,k) (q,s ∈ N,k ≥ 0,0≤ α < 1) , where

σn given by (5) (see [5]);
(2) HT ( f , z

1−z ;α,k) = ST (k,α) (k ≥ 0,0≤ α < 1);

(3) HT ( f ,z+
∞

∑
n=2

(
l+1+µ(n−1)

l+1

)m
zn;α,k) = TLm(µ, l,α,k) (0 ≤ α < 1,k ≥ 0,

µ, l ≥ 0,m ∈ N0).
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2. Coefficient estimates

Unless otherwise mentioned, we shall assume in the reminder of this paper that,
0≤ α < 1, k ≥ 0,bn > 0,n≥ 2, z ∈U and g(z) is defined by (2).

Theorem 2.1. A function f (z) of the form (1) is in the class H( f ,g;α,k) if
∞

∑
n=2

(
kn2 +n− kn−α

)
bn |an| ≤ 1−α. (12)

Proof. Assume that the inequality (12) holds true. Then we have∣∣∣∣∣z( f ∗g)
′
(z)

( f ∗g)(z)
+ k

z2 ( f ∗g)
′′
(z)

( f ∗g)(z)
−1

∣∣∣∣∣≤
∞

∑
n=2

[n+ kn(n−1)−1]bn |an| |z|n−1

1+
∞

∑
n=2

bn |an| |z|n−1

≤

∞

∑
n=2

[n+ kn(n−1)−1]bn |an|

1−
∞

∑
n=2

bn |an|
≤ 1−α.

This shows that the values of the function

Φ(z) =

(
z( f ∗g)

′
(z)+ kz2 ( f ∗g)

′′
(z)

( f ∗g)(z)

)
(13)

lie in a circle centered at w = 1 and whose radius is 1−α . Hence f (z) satisfies
the condition (12). This completes the proof of Theorem 2.1.

Theorem 2.2. A necessary and sufficient condition for f (z) of the form (10) to
be in the class HT ( f ,g;α,k) is that

∞

∑
n=2

(
kn2 +n− kn−α

)
bnan ≤ 1−α. (14)

Proof. In view of Theorem 2.1, we need only to show that f (z)∈HT ( f ,g;α,k)
satisfies the coefficient inequality (12). If f (z)∈HT ( f ,g;α,k) then the function
Φ(z) given by (13) satisfies Re{Φ(z)}> α. This implies that

( f ∗g)(z) = z−
∞

∑
n=2

bnanzn 6= 0(z ∈U\{0}) ,

Noting that
( f ∗g)(r)

r
is the real continuous function in the open interval (0,1)

with f (0) = 1, we have

1−
∞

∑
n=2

bnanrn−1 > 0(0 < r < 1) . (15)
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Now

Φ(r) =
1−

∞

∑
n=2

nbnanrn−1− k
∞

∑
n=2

n(n−1)bnanrn−1

1−
∞

∑
n=2

bnanrn−1
> α,

and consequently by (15) we obtain

∞

∑
n=2

(
kn2 +n− kn−α

)
bnanrn−1 ≤ 1−α. (16)

Letting r → 1− in (16), we get (14). This completes the proof of Theorem
2.2.

Corollary 2.3. Let the function f defined by (10) be in the class HT ( f ,g;α,k),
then

an ≤
(1−α)

(kn2 +n− kn−α)bn
(n≥ 2). (17)

The result is sharp for the function

f (z) = z− (1−α)

(kn2 +n− kn−α)bn
zn (n≥ 2). (18)

3. Distortion theorems

Theorem 3.1. Let the function f (z) defined by (10) belong to the class HT ( f ,g;
α,k). Then for |z|= r < 1,we have

r− (1−α)

(2k+2−α)b2
r2 ≤ | f (z)| ≤ r+

(1−α)

(2k+2−α)b2
r2, (19)

provided bn ≥ b2 (n≥ 2). The result is sharp with equality for the function f (z)
defined by

f (z) = z− (1−α)

(2k+2−α)b2
z2 (20)

at z = r and z = rei(2n+1)π (n ∈ N).

Proof. We have

| f (z)| ≤ r+
∞

∑
n=2

anrn ≤ r+ r2
∞

∑
n=2

an. (21)
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Since for n≥ 2, we have

(2k+2−α)b2 ≤
(
kn2 +n− kn−α

)
bn,

then (14) yields

(2k+2−α)b2

∞

∑
n=2

an ≤
∞

∑
n=2

(
kn2 +n− kn−α

)
bnan ≤ (1−α) (22)

or

∞

∑
n=2

an ≤
(1−α)

(2k+2−α)b2
. (23)

From (23) and (21) we have

| f (z)| ≤ r+
(1−α)

(2k+2−α)b2
r2

and similarly, we have

| f (z)| ≥ r− (1−α)

(2k+2−α)b2
r2.

This completes the proof of Theorem 3.1.

Theorem 3.2. Let the function f (z) defined by (10) belong to the class HT ( f ,g;
α,k). Then for |z|= r < 1, we have

1− 2(1−α)

(2k+2−α)b2
r ≤

∣∣∣ f ′(z)∣∣∣≤ 1+
2(1−α)

(2k+2−α)b2
r, (24)

provided bn ≥ b2 (n≥ 2). The result is sharp for the function f (z) given by (20)
at z = r and z = rei(2n+1)π (n ∈ N).

Proof. For a function f (z) ∈ HT ( f ,g;α,k), it follows from (14) and (23) that

∞

∑
n=2

nan ≤
2(1−α)

(2k+2−α)b2
. (25)

Since the remaining part of the proof is similar to the proof of Theorem 3.1, we
omit the details.
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4. Extreme points

Theorem 4.1. The class HT ( f ,g;α,k)is closed under convex linear combina-
tions.

Proof. Let f j (z) ∈ HT ( f ,g;α,k) ( j = 1,2) , where

f j (z) = z−
∞

∑
n=2

an, jzn (an, j ≥ 0; j = 1,2) . (26)

Then it is sufficient to prove that the function h(z) given by

h(z) = µ f1(z)+(1−µ) f2(z) (0≤ µ ≤ 1)

is also in the class HT ( f ,g;α,k). For 0≤ µ ≤ 1

h(z) = z−
∞

∑
n=2

[µan,1 +(1−µ)an,2]zn,

and with the aid of Theorem 2.2, we have

∞

∑
n=2

(
kn2 +n− kn−α

)
bn · [µan,1 +(1−µ)an,2]

≤ µ(1−α)+(1−µ)(1−α) = 1−α,

which implies that h(z) ∈ HT ( f ,g;α,k). This completes the proof of Theorem
4.1.

As a consequence of Theorem 4.1, there exist extreme points of the class
HT ( f ,g;α,k), which are given by:

Theorem 4.2. Let f1(z) = z and

fn(z) = z− (1−α)

(kn2 +n− kn−α)bn
zn.

Then f (z) is in the class HT ( f ,g;α,k) if and only if it can be expressed in the
form

f (z) =
∞

∑
n=1

µn fn(z), (27)

where µn ≥ 0 (n≥ 1) and
∞

∑
n=1

µn = 1.
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Proof. Assume that

f (z) =
∞

∑
n=1

µn fn(z) = z−
∞

∑
n=2

(1−α)

(kn2 +n− kn−α)bn
µnzn.

Then it follows that

∞

∑
n=2

(
kn2 +n− kn−α

)
bn

(1−α)

(1−α)

(kn2 +n− kn−α)bn
µn

=
∞

∑
n=2

µn = (1−µ1)≤ 1. (28)

So, by Theorem 2.2, we have f (z) ∈ HT ( f ,g;α,k).
Conversely, assume that the function f (z) defined by (4) belongs to the class
HT ( f ,g;α,k). Then an are given by (14). Setting

µn =

(
kn2 +n− kn−α

)
bn

(1−α)
an (29)

and

µ1 = 1−
∞

∑
n=2

µn,

we can see that f (z) can be expressed in the form (27). This completes the
proof of Theorem 4.2.

Corollary 4.3. The extreme points of the class HT ( f ,g;α,k) are the functions
f1(z) = z and

fn(z) = z− (1−α)

(kn2 +n− kn−α)bn
zn(n≥ 2).

5. Partial sums

In this section, applying methods used by Silverman [21], we investigate the
ratio of a function of the form (1) to its sequence of partial sums fm(z) = z+

m
∑

n=2
anzn. More precisely, we will determine sharp lower bounds for Re

{
f (z)
fm(z)

}
,

Re
{

fm(z)
f (z)

}
, Re

{
f ′(z)
f ′m(z)

}
and Re

{
f ′m(z)
f ′(z)

}
. In the sequel, we will make use of the

well-known result that Re
{

1+w(z)
1−w(z)

}
> 0(z∈U) if and only if w(z) =

∞

∑
n=1

cnzn

satisfies the inequality |w(z)| ≤ |z| .
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Theorem 5.1. If f (z) is of the form (1) and satisfies the condition (12) and
f (z)

z
6= 0 (0 < |z|< 1), then

Re
{

f (z)
fm(z)

}
≥ 1− 1

Cm+1
(30)

and

Cn ≥
{

1 n = 2,3, . . . ,m
Cm+1 n = m+1,m+2, . . .

, (31)

where

Cn =

(
kn2 +n− kn−α

)
bn

(1−α)
. (32)

The result in (30) is sharp for every m, with the extremely function

f (z) = z+
zm+1

Cm+1
. (33)

Proof. We may write

1+w(z)
1−w(z)

=Cm+1

{
f (z)
fm(z)

− (1− 1
Cm+1

)

}

=


1+

m
∑

n=2
anzn−1 +Cm+1

∞

∑
n=m+1

anzn−1

1+
m
∑

n=2
anzn−1

 . (34)

Then

w(z) =
Cm+1

∞

∑
n=m+1

anzn−1

2+2
m
∑

n=2
anzn−1 +Cm+1

∞

∑
n=m+1

anzn−1

and

|w(z)| ≤
Cm+1

∞

∑
n=m+1

|an|

2−2
m
∑

n=2
|an|−Cm+1

∞

∑
n=m+1

|an|
.

Now |w(z)| ≤ 1 if

2Cm+1

∞

∑
n=m+1

|an| ≤ 2−2
m

∑
n=2
|an| ,
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which is equivalent to

m

∑
n=2
|an|+Cm+1

∞

∑
n=m+1

|an| ≤ 1. (35)

It is suffices to show that the left hand side of (35) is bounded above by
∞

∑
n=2

Cn |an|, which is equivalent to

m

∑
n=2

(Cn−1) |an|+
∞

∑
n=m+1

(Cn−Cm+1) |an| ≥ 0.

To see that the function f given by (33) gives the sharp result, we observe for
z = reiπ/n that

f (z)
fm(z)

= 1+
zm

Cm+1
. (36)

Letting z−→ 1−, we have

f (z)
fm(z)

= 1− 1
Cm+1

.

This completes the proof of Theorem 5.1.

Theorem 5.2. If f (z) is of the form (1) and satisfies the condition (12) and
f (z)

z
6= 0 (0 < |z|< 1), then

Re
{

fm(z)
f (z)

}
≥ Cm+1

1+Cm+1
.

The result is sharp for every m, with the extremely function f (z) given by (33).

Proof. We may write

1+w(z)
1−w(z)

= (1+Cm+1)

{
fm(z)
f (z)

− Cm+1

1+Cm+1

}

=


1+

m
∑

n=2
anzn−1−Cm+1

∞

∑
n=m+1

anzn−1

1+
∞

∑
n=2

anzn−1

 , (37)

where
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w(z) =
(1+Cm+1)

∞

∑
n=m+1

anzn−1

2+2
m
∑

n=2
anzn−1 +(Cm+1−1)

∞

∑
n=m+1

anzn−1
,

and

|w(z)| ≤
(1+Cm+1)

∞

∑
n=m+1

|an|

2−2
m
∑

n=2
|an|− (Cm+1−1)

∞

∑
n=m+1

|an|
.

Now |w(z)| ≤ 1 if and only if

2Cm+1

∞

∑
n=m+1

|an| ≤ 2−2
m

∑
n=2
|an| ,

which is equivalent to

m

∑
n=2
|an|+Cm+1

∞

∑
n=m+1

|an| ≤ 1. (38)

It is suffices to show that the left hand side of (38) is bounded above by
∞

∑
n=2

Cn |an|, which is equivalent to

m

∑
n=2

(Cn−1) |an|+
∞

∑
n=m+1

(Cn−Cm+1) |an| ≥ 0.

This completes the proof of Theorem 5.2.

Theorem 5.3. If f (z) is of the form (1) and satisfies the condition (12) and
f (z)

z
6= 0 (0 < |z|< 1), then

(a) Re

{
f
′
(z)

f ′m(z)

}
≥ 1− m+1

Cm+1
(39)

and

(b) Re

{
f
′
m(z)
f ′(z)

}
≥ Cm+1

1+m+Cm+1
, (40)

where

Cn ≥

 1 n = 1,2,3, . . . ,m

n
Cm+1

m+1
n = m+1,m+2, . . .
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and Cn is defined by(32). The estimates in (39) and (40) are sharp with the
extremely function given by (33).

Proof. We prove only (a), which is similar in spirit of the proof of Theorem 5.1.
The proof of (b) follows the pattern of that in Theorem 5.2. We write

1+w(z)
1−w(z)

=Cm+1

{
f
′
(z)

f ′m(z)
− (1− 1+m

Cm+1
)

}

=


1+

m
∑

n=2
nanzn−1 + Cm+1

m+1

∞

∑
n=m+1

nanzn−1

1+
m
∑

n=2
nanzn−1

 ,

where

w(z) =

Cm+1
m+1

∞

∑
n=m+1

nanzn−1

2+2
m
∑

n=2
nanzn−1 + Cm+1

m+1

∞

∑
n=m+1

nanzn−1

and

|w(z)| ≤

Cm+1
m+1

∞

∑
n=m+1

n |an|

2−2
m
∑

n=2
n |an|− Cm+1

m+1

∞

∑
n=m+1

n |an|
.

Now |w(z)| ≤ 1 if and only if

m

∑
n=2

n |an|+
Cm+1

m+1

∞

∑
n=m+1

n |an| ≤ 1, (41)

since the left hand side of (41) is bounded above by
∞

∑
n=2

Cn |an| , this completes

the proof of Theorem 5.3.

6. Integral means

In [19] Silverman found that the function f2 = z− z2

2
is often extremal over

the family T . He applied this function to resolve his integral means inequality,
conjectured and settled in [20]:
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∫ 2π

0

∣∣ f (reiθ )
∣∣δ dθ ≤

∫ 2π

0

∣∣ f2(reiθ )
∣∣δ dθ ,

for all f ∈ T , δ > 0 and 0 < r < 1. In [19], he also proved his conjecture for
the subclasses T ∗(α) and C(α) of T , where C(α) and T ∗(α) are the classes of
convex and starlike functions of order α, 0≤ α < 1, respectively.

In this section, we prove Silverman,s conjecture for functions in the class
HT ( f ,g;α,k).

Lemma 6.1 ([12]). If the functions f and g are analytic in U with g≺ f , then
for δ > 0 and 0 < r < 1,

∫ 2π

0

∣∣g(reiθ )
∣∣δ dθ ≤

∫ 2π

0

∣∣ f (reiθ )
∣∣δ dθ .

Applying Theorems 2.1, 2.2 and Lemma 6.1 we prove the following theorem.

Theorem 6.2. Suppose f (z) ∈HT ( f ,g;α,k),δ > 0, the sequence {bn} (n≥ 2)
is non-decreasing and f2(z) is defined by:

f2(z) = z− 1−α

(2k+2−α)b2
z2, (42)

then for z = reiθ , 0 < r < 1, we have

∫ 2π

0

∣∣ f (reiθ )
∣∣δ dθ ≤

∫ 2π

0

∣∣ f2(reiθ )
∣∣δ dθ . (43)

Proof. For f (z) of the form (10) (43) is equivalent to prove that

∫ 2π

0

∣∣∣∣∣1− ∞

∑
n=2

anzn−1

∣∣∣∣∣
δ

dθ ≤
∫ 2π

0

∣∣∣∣1− (1−α)

(2k+2−α)b2
z
∣∣∣∣δ dθ .

By using Lemma 6.1, it suffices to show that

1−
∞

∑
n=2

anzn−1 ≺ 1− (1−α)

(2k+2−α)b2
z. (44)

Setting

1−
∞

∑
n=2

anzn−1 = 1− (1−α)

(2k+2−α)b2
w(z), (45)

and using (14) and the hypothesis {bn} (n≥ 2) is non-decreasing, we obtain
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|w(z)|=

∣∣∣∣∣(2k+2−α)b2

(1−α)

∞

∑
n=2

anzn−1

∣∣∣∣∣
≤ |z|

∞

∑
n=2

(2k+2−α)b2

(1−α)
an

≤ |z|
∞

∑
n=2

(
kn2 +n− kn−α

)
bn

(1−α)
an

≤ |z| .

This completes the proof of Theorem 6.2.

7. Neighborhood for the class HT ( f ,g;α,k)

In [8], Goodman and in [18], Ruscheweyh defined the δ - neighborhood of func-
tion T by

Nδ ( f ) =

{
h ∈ T : h(z) = z−

∞

∑
n=2

cnzn,
∞

∑
n=2

n |an− cn| ≤ δ

}
. (46)

In particular, if
e(z) = z, (47)

we immediately have

Nδ (e) =

{
h ∈ T : h(z) = z−

∞

∑
n=2

cnzn,
∞

∑
n=2

n |cn| ≤ δ

}
. (48)

Theorem 7.1. If bn ≥ b2 (n≥ 2) and

δ =
2(1−α)

(2k+2−α)b2
, (49)

then

HT ( f ,g;α,k)⊂ Nδ (e) (50)

Proof. Let f ∈ HT ( f ,g;α,k). Then, in view of the assertion (14) of Theorem
2.2 and the given condition that bn ≥ b2 (n≥ 2), we have
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(2k+2−α)b2

∞

∑
n=2

an ≤
∞

∑
n=2

(
kn2 +n− kn−α

)
bnan

≤ (1−α) ,

so that
∞

∑
n=2

an ≤
(1−α)

(2k+2−α)b2
. (51)

Making use of (14) again, in conjunction with (51), we get

b2

∞

∑
n=2

nan ≤ (1−α)+(α−2k)b2

∞

∑
n=2

an

≤ (1−α)+(α−2k)b2
(1−α)

(2k+2−α)b2

≤ 2(1−α)

(2k+2−α)
.

Hence
∞

∑
n=2

nan ≤
2(1−α)

(2k+2−α)b2
= δ , (52)

which, by means of the definition (48). This completes the proof of Theorem
7.1.

Now we determine the neighborhood for the class H(γ)
T ( f ,g;α,k), which we

define as follows. A function f (z)∈ T is said to the class H(γ)
T ( f ,g;α,k) if there

exists a function ζ (z) ∈ HT ( f ,g;α,k) such that∣∣∣∣ f (z)
ζ (z)

−1
∣∣∣∣< 1− γ (0≤ γ < 1) (53)

Theorem 7.2. If ζ (z) ∈ HT ( f ,g;α,k) and

γ = 1− δ (2k+2−α)b2

2 [(2k+2−α)b2− (1−α)]
(54)

then
Nδ (ζ )⊂ H(γ)

T ( f ,g;α,k) (55)

where
δ ≤ 2−2(1−α) [(2k+2−α)b2]

−1 . (56)
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Proof. Suppose that ζ (z) ∈ Nδ (ζ ). We find from (46) that

∞

∑
n=2

n |an− cn| ≤ δ , (57)

which readily implies that

∞

∑
n=2
|an− cn| ≤

δ

2
. (58)

Next, since ζ (z) ∈ HT ( f ,g;α,k), we have [cf. equation (51)] that

∞

∑
n=2

cn ≤
(1−α)

(2k+2−α)b2
, (59)

so that

∣∣∣∣ f (z)
ζ (z)

−1
∣∣∣∣≤

∞

∑
n=2
|an− cn|

1−
∞

∑
n=2

cn

≤ δ

2
(2+2k−α)b2

[(2k+2−α)b2− (1−α)]

= 1− γ,

thus, by the above definition, f (z) ∈ H(γ)
T ( f ,g;α,k) for γ given by (54). This

completes the proof of Theorem 7.2.

Remark 7.3. (i) Taking g(z) = z+
∞

∑
n=2

σnzn (q,s ∈ N,k ≥ 0,0≤ α < 1) , where

σn given by (5), in the above results we obtain the corresponding results for
the class TW q

s (α,k), we obtain the results obtained by Dziok and Murugusun-
daramoorthy (see [5]);

(ii) Taking g(z) = z
1−z and g(z) = z+

∞

∑
n=2

(
l+1+µ(n−1)

l+1

)m
zn, respectively, in the

above results we obtain the corresponding results for the classes ST (k,α) and
TLm(µ, l,α,k) , respectively.
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