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QUALITATIVE AND QUANTITATIVE UNCERTAINTY
PRINCIPLES FOR THE GENERALIZED FOURIER

TRANSFORM ASSOCIATED WITH THE
RIEMANN-LIOUVILLE OPERATOR

HATEM MEJJAOLI - YOUSSEF OTHMANI

The aim of this paper is to establish an extension of qualitative and
quantitative uncertainty principles for the Fourier transform connected
with the Riemann-Liouville operator.

1. Introduction

Classical uncertainty principles give us information about a function and its
Fourier transform. If we try to limit the behavior of one we lose control of
the other. Uncertainty principles have implications in two main areas: quan-
tum physics and signal analysis. In quantum physics they tell us that a particles
speed and position cannot both be measured with infinite precision. In signal
analysis they tell us that if we observe a signal only for a finite period of time,
we will lose information about the frequencies the signal consists of. The math-
ematical equivalent is that a function and its Fourier transform cannot both be
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arbitrarily localized. There is two categories of uncertainty principles: Quanti-
tative uncertainty principles and Qualitative uncertainty principles.

Quantitative uncertainty principles is just another name for some special
inequalities. These inequalities give us information about how a function and
its Fourier transform relate. They are called uncertainty principles since they
are similar to the classical Heisenberg Uncertainty Principle, which has had
a big part to play in the development and understanding of quantum physics.
For example: Benedicks [3], Slepian and Pollak [29], Landau and Pollak [18],
and Donoho and Stark [10] paid attention to the supports of functions and gave
qualitative uncertainty principles for the Fourier transforms.

Qualitative uncertainty principles are not inequalities, but are theorems that
tell us how a function (and its Fourier transform) behave under certain circum-
stances. For example: Hardy [14], Morgan [23], Cowling and Price [8], Beurl-
ing [4], Miyachi [22] theorems enter within the framework of the quantitative
uncertainty principles.

The quantitative and qualitative uncertainty principles has been studied by
many authors for various Fourier transforms, for examples (cf. [6, 7, 12, 13, 19,
20, 30]).

In [2], the authors considered the singular partial differential operators de-
fined by

∆1 = ∂

∂x ,

∆2 = ∂ 2

∂ r2 +
2α+1

r
∂

∂ r −
∂ 2

∂x2 , (r,x) ∈ (0,∞)×R, α ≥ 0

and they associated to ∆1 and ∆2 the following integral transform, called the
Riemann-Liouville operator, defined on C∗(R2) by

Rα( f )(r,x) =


α

π

∫ 1

−1

∫ 1

−1
f (rs

√
1− t2,x+ rt)(1− t2)α− 1

2 (1− s2)α−1dtds, i f α > 0

1
π

∫ 1

−1
f (r
√

1− t2,x+ rt)(1− t2)−
1
2 dt, i f α = 0

In addition, a convolution product and a Fourier transform Fα connected with
the mapping Rα have been studied and many harmonic analysis results have
been established for the Fourier transform Fα (Inversion formula, Plancherel
formula, Paley-Winer and Plancherel theorems, ...). Our purpose in this work is
to study the uncertainty principles for the Fourier transform Fα connected with
Rα .

Our aim here is to consider quantitative and qualitative uncertainty princi-
ples when the transform under consideration is the Fourier transform connected
with the Riemann-Liouville operator .

The remaining part of the paper is organized as follows. In §2, we recall
the main results about the Riemann-Liouville operator. §3 is devoted to gen-
eralize Cowling-Price’s theorem for the generalized Fourier transform Fα . In
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§4 we generalize Miyachi’s theorem and in §5 Beurling’s theorem for Fα . §6
is devoted to Donoho-Stark’s uncertainty principle and variants of Heisenberg’s
inequalities for Fα .

2. Riemann-Liouville operator

In this section, we define and recall some properties of the Riemann-Liouville
operator. For more details see ([2, 21]). We denote by

• C∗(R2) the space of continuous functions on R2, even with respect to the
first variable.

• C∗,c(R2) the subspace of C∗(R2) formed by functions with compact sup-
port.

• E∗(R2) the space of infinitely differentiable functions on R2, even with
respect to the first variable.

• S∗(R2) the Schwartz space of rapidly decreasing functions on R2, even
with respect to the first variable.

• S1 the unit sphere in R2,

S1 =
{
(η ,ξ ) ∈ R2 : η

2 +ξ
2 = 1

}
.

• R2
+ =

{
(r,x) ∈ R2 : r > 0

}
.

It is well known [2] that for all (µ,λ ) ∈ C2, the system
∆1u(r,x) = −iλu(r,x),
∆2u(r,x) = −µ2u(r,x)
u(0,0) = 1, ∂u

∂ r (0,x) = 0, ∀x ∈ R,

admits a unique solution ϕµ,λ , given by

ϕµ,λ (r,x) = jα(r
√

µ2 +λ 2)e−iλx,

where jα is the normalized Bessel function defined by

∀z ∈ C, jα(z) = Γ(α +1)
∞

∑
k=0

(−1)k

k!Γ(k+1+α)
(z/2)2k.
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Definition 1. The Riemann-Liouville operator is defined on C∗(R2) by: ∀(r,x)∈
R2
+

Rα f (r,x) =


α

π

∫ 1

−1

∫ 1

−1
f (rs

√
1− t2,x+ rt)(1− t2)α− 1

2 (1− s2)α−1dtds i f α > 0

1
π

∫ 1

−1
f (r
√

1− t2,x+ rt)(1− t2)−
1
2 dt i f α = 0.

Remark 1. (i) The function ϕµ,λ , (µ,λ ) ∈ C2, can be written as

∀(r,x) ∈ R2
+, ϕµ,λ (r,x) =Rα(cos(µ.)e−iλ .)(r,x).

(ii) For all ν ∈ N2,(r,x) ∈ R2 and z = (µ,λ ) ∈ C2,

|Dν
z ϕµ,λ (r,x)| ≤ ||(r,x)|||ν | exp(2||(r,x)|| ||Imz||), (2.1)

where

Dν
z =

∂ |ν |

∂ zν1
1 ∂ zν2

2
and |ν |= ν1 +ν2.

Now let Γ be the set

Γ = R2∪
{
(it,x);(t,x) ∈ R2, |t| ≤ |x|

}
.

Γ+ the subset of Γ, given by

Γ+ = R2∪
{
(it,x);(t,x) ∈ R2,0≤ t ≤ |x|

}
.

We have for all (µ,λ ) ∈ Γ,

sup
(r,x)∈R2

|ϕµ,λ (r,x)|= 1.

In the following, we denote by

• dνα(r,x) the measure defined on R2
+ by

dνα(r,x) = kαr2α+1dr⊗dx,

with
kα =

1
2αΓ(α +1)(2π)1/2 .

• Lp(dνα),1≤ p≤∞, the space of measurable functions on R2
+, satisfying

‖ f‖Lp(dνα ) =

(∫
R2
+

| f (r,x)|pdνα(r,x)
)1/p

< ∞, 1≤ p < ∞,

‖ f‖L∞(dνα ) = ess sup
(r,x)∈R2

+

| f (r,x)|< ∞, p = ∞.
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• BΓ+ the σ -algebra defined on Γ+ by

BΓ+ =
{

θ
−1(B) : B ∈ BBor(R2

+)
}
,

where θ defined on the set Γ+ by θ(λ ,µ) = (
√

µ2 +λ 2,λ ).

• dγα the measure defined on BΓ+ by

∀A⊂ BΓ+ , γα(A) = να(θ(A)).

• Lp(dγα),1≤ p≤ ∞, the space of measurable functions on Γ+, satisfying

‖ f‖Lp(dγα ) =

(∫
Γ+

| f (µ,λ )|pdγα(µ,λ )

)1/p

< ∞, 1≤ p < ∞,

‖ f‖L∞(dγα ) = ess sup
(µ,λ )∈Γ+

| f (µ,λ )|< ∞, p = ∞.

We have the following properties.

Proposition 1. i) For every nonnegative measurable function g on Γ+, we have∫
Γ+

f (µ,λ )dγα(µ,λ ) = kα

[∫
R2
+

f (µ,λ )(µ2 +λ
2)α

µdµdλ

+
∫
R2

∫ |λ |
0

f (iµ,λ )(λ 2−µ
2)α

µdµdλ

]
.

ii) For every nonnegative measurable function f on R2
+ (resp. integrable on

R2
+ with respect to the measure dν), f ◦θ is a measurable nonnegative function

on Γ+, (resp. integrable on Γ+ with respect to the measure dγα ) and we have∫
Γ+

f ◦θ(µ,λ )dγα(µ,λ ) =
∫
R2
+

f (r,x)dνα(r,x). (2.2)

In the following we recall some results on the dual of the Riemann-Liouville
operatorRα .

Definition 2. The dual tRα of the Riemann-Liouville operatorRα is defined by
: ∀(s,y) ∈ R2,

tRα ( f )(s,y) =


α

π

∫
∞

r

∫ √u2−r2

−
√

u2−r2
f (u,x+ v)(u2− v2− r2)α−1(1− s2)α−1ududv i f α > 0

1
π

∫
R

f (r2 +(x− y)2),y)dy, i f α = 0

(2.3)
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Example 1. Let p ∈ [1,∞). For all a > 0, β > 0 we have

∀ (s,y) ∈ R2, tRα(E
p
a,β )(s,y) =C(a,β , p)E p

aβ

1+β
,1+β

(s,y), (2.4)

with Ea,β is the Gauss kernel associated with the Riemann-Liouville operator
Rα defined by

∀(r,x) ∈ R2, Ea,β (r,x) = k(a,β )e−a(β r2+x2), (2.5)

where

k(a,β )=
2
√

πa2α+ 3
2

Γ(α +1)
(
β

π
)α+1, and C(a,β , p)=

Γ(α +1)√
π

[(1+β )p−1

aβ p p

] 2α+1
2

Proposition 2. The function tRα( f ) defined almost everywhere on R2
+, by re-

lation (2.3), is Lebesgue integrable on R2
+. Moreover for all bounded function

g ∈C∗(R2), we have the formula∫
R2
+

tRα( f )(s,y)g(s,y)dsdy =
∫
R2
+

Rα(g)(r,x) f (r,x)r2α+1drdx. (2.6)

Remark 2. Let f be in L1(dνα). By taking g≡ 1 in the relation (2.6) we deduce
that ∫

R2
+

tRα( f )(s,y)dsdy =
∫
R2
+

f (r,x)r2α+1drdx. (2.7)

We consider the generalized Fourier transform Fα associated with the Rie-
mann Liouville operatorRα and we recall its main properties.

Definition 3. The Fourier transform associated with the Riemann Liouville
mean operator is defined on L1(dνα) by

∀ (µ,λ ) ∈ Γ,Fα( f )(µ,λ ) =
∫
R2
+

f (r,x)ϕµ,λ (r,x)dνα(r,x). (2.8)

Example 2. Let a,β > 0. The Fourier transform of Gauss kernel associated
with Riemann-Liouville operator is given by

∀ (µ,λ ) ∈ Γ, Fα(Ea,β )(µ,λ ) =C(a,β ,α)E 1+β

4aβ
, 1

1+β

(µ,λ ),

where
C(a,β ,α) = 24α+2

Γ(α +1)(aβ )2α+ 3
2 (

π

1+β
)

2α+1
2 .
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Proposition 3. For all f in L1(dνα), we have the relation

∀ (µ,λ ) ∈ Γ,Fα( f )(µ,λ ) = F0 ◦ tRα( f )(µ,λ ), (2.9)

where F0 is the Fourier-cosine transform on R2 defined for f in S∗(R2) by

∀ (µ,λ ) ∈ R2, F0( f )(µ,λ ) =
∫
R2
+

f (r,x)e−iλx cos(rµ)drdx.

In the follow we recall some properties on the Fourier transform Fα .
For all f ∈ L1(dνα),

||Fα( f )||L∞(dγα ) ≤ || f ||L1(dνα ). (2.10)

For f ∈ L1(dνα) such that Fα( f ) ∈ L1(dγα), we have the inversion formula for
Fα : for almost every (r,x) ∈ R2

+,

f (r,x) =
∫

Γ+

Fα( f )(µ,λ )ϕµ,λ (r,x)dγα(µ,λ ). (2.11)

Theorem 1. (Plancherel formula). For every f in S∗(R2), we have∫
Γ

|Fα( f )(λ ,µ)|2dγα(λ ,µ) =
∫
R2
+

| f (r,x)|2dνα(r,x). (2.12)

In particular, the Fourier transform F can be extended to an isometric isomor-
phism from L2(dνα) onto L2(dγα).

Proposition 4. Let f be in Lp(dνα), p∈ [1,2]. ThenFα( f ) belongs to Lp′(dγα)
with 1

p +
1
p′ = 1, and we have

‖Fα( f )‖Lp′ (dγα )
6 ‖ f‖Lp(dνα )

.

For (r,x) ∈ R2,s > 0, we note Ns(r,x), by

Ns(r,x) := e−s(r2+x2). (2.13)

We have
Fα (Ns(r,x))(t,y) =C(s)e−

(t2+2y2)
4s .

We define the following functions W s
l , W̃ s

l , l ∈ N2, s > 0 by

∀(r,x) ∈ R2, W s
l (r,x) = r2kxme−s(r2+x2), l = (k,m), (2.14)

and

∀(r,x) ∈ R2, W̃ s
l (r,x) = F−1

α (λ 2k
µ

me−s(λ 2+µ2))(r,x), l = (k,m), (2.15)

Notation. We denote by Pm(R2) the set of homogeneous polynomials of degree
m.
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Proposition 5. ([26]). Let l ∈ N2. For all s > 0, there exists a homogeneous
Q ∈ Pl(R2) such that

∀(r,x) ∈ R2, Fα(W s
l )(r,x) = Q(r,x)e−

1
4s (r

2+2x2). (2.16)

3. Generalized Cowling-Price theorem for the Generalized Fourier trans-
form

Theorem 2. Let f be a measurable function on R2
+ such that∫

R2
+

eap||(r,x)||2 | f (r,x)|p

(1+ ||(r,x)||)n dνα(r,x)< ∞ (3.17)

and ∫
R2
+

e4bq||θ(µ,ξ )||2 |Fα( f )(µ,ξ )|q

(1+ ||(µ,ξ )||)m dµdξ < ∞, (3.18)

for some constants a > 0, b > 0, 1 ≤ p,q < ∞, and for any n ∈ (2α + 3,2α +
3+ p] and m ∈ (2,2+q]. Then

i) If ab > 1
4 , we have f = 0 almost everywhere.

ii) If ab = 1
4 , we have f =CNb.

iii) If ab < 1
4 , for all δ ∈]b, 1

4a [, the functions of the form f (r,x) = Nδ (r,x),
where P ∈ P , satisfy (3.17) and (3.18).

Proof. We shall show that Fα( f )(z) exists and is an entire function in z ∈ C2

and

|Fα( f )(z)| ≤Ce
1
a ||θ(Imz)||2(1+ ||Imz||)s, for allz ∈ C2, for some s > 0.

(3.19)
The first assertion follows from the hypothesis on the function f and Hölder’s
inequality using (3.17) and the derivation theorem under the integral sign. We
want to prove (3.19). Actually, it follows from (2.8) and (2.1) that for all z =
(z1,z2) = (µ + iλ ,ξ + iη) ∈ C2,

|Fα ( f )(µ + iλ ,ξ + iη)| ≤
∫
R2

+

| f (r,x)||ϕ(µ+iλ ,ξ+iη)(r,x)|dνα (r,x)

≤ e
||(λ ,η)||2

a

∫
R2

+

ea||(r,x)||2 | f (r,x)|
(1+ ||(r,x)||)

n
p
(1+ ||(r,x)||)

n
p e−a(||(r,x)||−|| (λ ,η)

a ||)
2
dνα (r,x)

Then by using the Hölder inequality, (3.17) we can obtain that

|F
α
( f )(µ + iλ ,ξ + iη)| ≤Ce

λ2+η2
a

(∫
R2

+

(1+ ||(r,x)||)
np′

p e−ap′(||(r,x)||−|| (λ ,η)
a ||)

2
dνα (r,x)

) 1
p′

≤Ce
λ2+η2

a

(∫ ∞

0
(1+ t)

np′
p +2α+2e−ap′(t−|| (λ ,η)

a ||)
2
dt
) 1

p′

≤Ce
||θ(λ ,η)||2

a (1+ ||(λ ,η)||)
n
p +

2α+2
p′

=Ce
1
a ||θ(Imz)||2(1+ ||Imz||)

n
p +

2α+2
p′ .
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Thus (3.19) is proved.
• If ab = 1

4 , then

|Fα( f )(z)| ≤Ce4b||θ(Imz)||2(1+ ||Imz||)
n
p+

2α+2
p′ .

Therefore, if we let g(z) = e4b(z2
1+2z2

2)Fα( f )(z), then

|g(z)| ≤Ce4b||θ(Rez)||2(1+ ||Imz||)
n
p+

2α+2
p′ .

Hence it follows from (3.18) that∫
R2
+

|g(µ,ξ )|q

(1+ ||(µ,ξ )||)m dµdξ < ∞.

Here we use the following lemma.

Lemma 1. ([28]) Let h be an entire function on C2 such that

|h(z)| ≤Cea||θ(Rez)||2(1+ ||Imz||)m

for some m > 0, a > 0 and∫
R2

|h(x)|q

(1+ |||(r,x)|||)s |Q(x)|dx < ∞

for some q≥ 1, s > 1 and Q ∈ PM(R2).
Then h is a polynomial with degh≤min{m, s−M−2

q } and, if s≤ q+M+2, then
h is a constant.

Hence by this lemma g is a polynomial, we say Pb, with degPb := d ≤
min{ n

p +
2α+2

p′ , m−2
q }. Then

Fα( f )(λ ,µ) = Pb(λ ,µ)e−4b(λ 2+2µ2).

Thus, by using (2.16), we can find constants cs
l such that

f (r,x) = ∑
|l|≤d

cs
lW

a
l (r,x) forall (r,x) ∈ R2.

Therefore, nonzero f satisfies (3.17) provided that

n > 2α +3+ pmin
{n

p
+

2α +2
p′

,
m−2

q

}
.

Furthermore, if m≤ q+2, then g is a constant by the Lemma 1 and thus

Fα( f )(λ ,µ) =Ce−4b(λ 2+2µ2) and f (r,x) =Cbe−a‖(r,x)‖2
.
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When n > 2α + 3 and m > 2, these functions satisfy (3.18) and (3.17) respec-
tively. This proves ii).
• If ab > 1

4 , then we can choose positive constants, a1,b1 such that a >
a1 =

1
4b1

> 1
4b . Then f and Fα( f ) also satisfy (3.17) and (3.18) with a and b

replaced by a1 and b1 respectively. Therefore, it follows that Fα( f )(λ ,µ) =
Pb1(λ ,µ)e

−4b1(λ
2+2µ2). But then Fα( f ) cannot satisfy (3.18) unless Pb1 ≡ 0,

which implies f ≡ 0. This proves i).
• If ab < 1

4 , then for all δ ∈ (b, 1
4a), the functions of the form f (r,x) =

W δ
l (r,x), where P ∈ P , satisfy (3.17) and (3.18). This proves iii).

The following is an immediate consequence of Theorem 2.

Corollary 1. Let f be a measurable function on R2
+ such that

| f (r,x)| ≤Me−a||(r,x)||2(1+ ||(r,x)||)m a.e. (3.20)

and for all (µ,ξ ) ∈ R2
+,

|Fα( f )(µ,ξ )| ≤Me−4b||θ(µ,ξ )||2 (3.21)

for some constants a,b > 0, r ≥ 0 and M > 0.
i) If ab > 1

4 , then f = 0 almost everywhere.
ii) If ab = 1

4 , then f is of the form f (r,x) =CNb(r,x).
iii) If ab < 1

4 , then there are infinity many nonzero f satisfying (3.20) and
(3.21).

4. Miyachi’s theorem for the Generalized Fourier transform

Theorem 3. Let f be a measurable function on R2
+ even with respect to the first

variable such that
E−1

a,β f ∈ Lp(dνα)+Lq(dνα) (4.22)

and ∫
R2

log+
E−1

b(1+β )
β

, 1
1+β

(µ,ξ )|Fα( f )(µ,ξ )|

λ
dµdξ < ∞, (4.23)

for some constants a > 0, b > 0 λ > 0, 1≤ p,q≤ ∞. Then
If ab > 1

4 , we have f = 0 almost everywhere.
If ab = 1

4 , we have f =CEb,β with |C| ≤ λ .
If ab < 1

4 , for all δ ∈ (b, 1
4a), the functions of the form f (x) =CEδ ,β , satisfy

(4.22) and (4.23).

To prove this result we need the following lemmas.
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Lemma 2. ([20]). Let h be an entire on C2 function such that

|h(z)| ≤ AeB||Rez||2 and
∫
R2

log+ |h(y)|dy < ∞, (4.24)

for some positive constants A,B. Then h is a constant on C2.

Lemma 3. Let r be in [1,∞]. We consider a function g in Lr(dνα). Then there
exists a positive constant C such that:

||E−1
aβ

1+β
,1+β

tRα(Ea,β g)||Lr(R2
+)
≤C||g||Lr(dνα ),

where || · ||Lr(R2
+)

is the norm of the usual Lebesgue space Lr(R2
+) and a > 0.

Proof. From the hypothesis it follows that E−1
a,β g belongs to L1(dνα). Then by

Proposition 2, the function tRα(E−1
a,β g) is defined almost everywhere on R2.

Now we consider two cases.
i) If r ∈ [1,∞), we have

||E−1
aβ

1+β
,1+β

tRα(Ea,β g)||rLr(R2
+)

=
∫
R2
+

E−r
aβ

1+β
,1+β

(s,y)|tRα(Ea,β g)(s,y|rdsdy.

By applying Hölder’s inequality we obtain

||E−1
aβ

1+β
,1+β

tRα(Ea,β g)||rLr(R2
+)
≤

∫
R2
+

E−r
aβ

1+β
,1+β

(s,y)
(
|tRα(|g|r)(s,y)|×(

|tRα(Er′
a,β )(s,y)|

)r/r′

dyds,

where r′ is the conjugate exponent of r. But from (2.4) we deduce that

||E−1
aβ

1+β
,1+β

tRα(Ea,β g)||rLr(R2
+)
≤C

∫
R2
+

tRα(|g|r)(s,y)dsdy.

Thus using the relation (2.7) we obtain

||E−1
aβ

1+β
,1+β

tRα(Ea,β g)||rLr(R2
+)
≤C

∫
R2
+

|g(s,y)|rdνα(s,y)< ∞.

ii) If r = ∞, we have

|E−1
aβ

1+β
,1+β

(s,y) tRα(Ea,β g)(s,y)| ≤ E−1
aβ

1+β
,1+β

(s,y) tRα(Ea,β )(s,y)||g||L∞(dνα ),

and from (2.4) we deduce that

|E−1
aβ

1+β
,1+β

(s,y) tRα(Ea,β g)(s,y)| ≤C||g||L∞(dνα ) < ∞.

This completes the proof.
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Lemma 4. Let p,q in [1,∞] and f a measurable function on R2
+ such that

E−1
a,β f ∈ Lp(dνα)+Lq(dνα), (4.25)

for some a > 0, β > 0. Then the function defined on C2 by

Fα( f )(µ,λ ) =
∫
R2
+

f (r,x)ϕ(µ,λ )(r,x)dνα(r,x), (4.26)

is well defined and entire on C2. Moreover there exists a positive constant C
such that for all ξ ,η , µ,θ ∈ R we have

|Fα( f )(µ + iθ ,ξ + iη)| ≤Ce
(1+β )η2+θ2

4aβ . (4.27)

Proof. The first assertion follows from the hypothesis on the function f and
Hölder’s inequality using (4.25) and the derivation theorem under the integral
sign. We want to prove (4.27).
The condition (4.25) implies that the function f belongs to L1(dνα). Hence we
deduce from (2.9) that for all ξ ,η , α,θ ∈ R, we have

|Fα( f )(µ + iθ ,ξ + iη)|= |
∫
R2
+

tRα( f )(s,y)e−iy(ξ+iη) cos(s(µ + iθ))dsdy|.

≤
∫
R2
+

∣∣∣ tRα( f )(s,y)
∣∣∣e〈y,η〉e|θ |sdsdy.

The integral of the second member can also be written in the form

c0E−1
1+β

4aβ
, 1

1+β

(θ ,η)
∫
R2

+

E−1
aβ

1+β
,1+β

(s,y) tRα (| f |)(s,y)E aβ

1+β
,1+β

(s− |θ |
2aβ

,y− 1+β

2aβ
η)dsdy

where c0 is a positive constant. On the follow we will to estimate∫
R2
+

E−1
aβ

1+β
,1+β

(s,y) tRα(| f |)(s,y)E aβ

1+β
,1+β

(s− |θ |
2aβ

,y− 1+β

2aβ
η)dsdy.

Indeed from (4.25) there exists u in Lp(dνα) and v in Lq(dνα) such that

f = Ea,β (u+ v).

Thus using the Lemma 3 and Hölder inequality we obtain∫
R2
+

E−1
aβ

1+β
,1+β

(s,y) tRα(| f |)(s,y)E aβ

1+β
,1+β

(s− |θ |
2aβ

,y− 1+β

2aβ
η)dsdy

≤C(||u||Lp(dνα )+ ||v||Lq(dνα ))< ∞.

Hence there exists a positive constant C such that

|F( f )(µ + iθ ,ξ + iη)| ≤Ce
(1+β )η2+θ2

4aβ .
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Proof. of Theorem 3.
We will divide the proof in several cases.

1 st case ab > 1
4 .

Consider the function h defined on C2 by

h(γ,ζ ) = E−1
1+β

4aβ
, 1

1+β

(γ,ζ )Fα( f )(γ,ζ ), (4.28)

with γ = µ + iθ ∈ C and ζ = ξ + iη ∈ C. This function is entire on C2 and
using (4.27) we obtain:

|h(γ,ζ )| ≤CE−1
1+β

4aβ
, 1

1+β

(µ,ξ ), (4.29)

for all ζ ,γ ∈ C. On the other hand we have∫
R2
+

log+ |h(µ,ξ )|dµdξ =
∫
R2
+

log+ |E−1
1+β

4aβ
, 1

1+β

(µ,ξ )Fα( f )(µ,ξ )|dµdξ ,

=
∫
R2
+

log+[
E−1

b(1+β )
β

, 1
1+β

(µ,ξ )|Fα( f )(µ,ξ )|

λ
]λE (1+β )(4ab−1)

4aβ
, 1

1+β

(µ,ξ )dµdξ

≤
∫
R2
+

log+[
E−1

b(1+β )
β

, 1
1+β

(µ,ξ )|Fα( f )(µ,ξ )|

λ
]dµdξ +∫

R2
+

λE (1+β )(4ab−1)
4aβ

, 1
1+β

(µ,ξ )dµdξ ,

because log+(cd) ≤ log+(c)+ d for all c,d > 0. Since ab > 1
4 , (4.23) implies

that ∫
R2
+

log+ |h(µ,ξ )|dµdξ < ∞. (4.30)

From the relations (4.29) and (4.30), it follows from Lemma 2 that there
exists a constant C such that

h(µ,ζ ) =C, (µ,ζ ) ∈ C2.

Thus
Fα( f ) =CE 1+β

4aβ
, 1

1+β

.

Using now the condition (4.23) and that ab> 1
4 , we deduce that C = 0 and hence

we obtain
∀ (µ,ζ ) ∈ Γ, Fα( f )(µ,ζ ) = 0.
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Then the injectivity of F implies the result of the theorem.
Second case ab = 1

4 .
The same proof as for the the first step give that

Fα( f ) =CE 1+β

4aβ
, 1

1+β

,

with |C| ≤ λ . Thus
f =CE b

4aβ
, 1

1+β

.

Third case ab < 1
4

In the sequel we will construct a family of nonzero functions which satisfy the
conditions (4.22),(4.23). By considering the family of functions cEδ ,β , we see
that

Fα( f ) = cE 1+β

4δβ
, 1

1+β

.

These functions clearly satisfy the conditions (4.22),(4.23) for all δ ∈ (b, 1
4a).

The proof of the Theorem is complete.

The following is an immediate corollary of Theorem 3.

Corollary 2. Let f be a measurable function on R2
+ such that

E−1
a,β f ∈ Lp(dνα)+Lq(dνα) (4.31)

and ∫
R2
+

E−r
b(1+β )

β
, 1

1+β

(µ,ξ )|Fα( f )(µ,ξ )|dµdξ < ∞, (4.32)

for some constants a > 0, b > 0, 1≤ p,q≤ ∞, 0 < r ≤ ∞. Then
If ab≥ 1

4 , we have f = 0 almost everywhere.
If ab < 1

4 , for all δ ∈ (b, 1
4a), the functions of the form CEδ ,β satisfy (4.31)

and (4.32).

5. Beurling’s theorem for the Generalized Fourier transform

Beurling’s theorem and Bonami, Demange, and Jaming’s extension are gener-
alized for the generalized Fourier transform as follows.

Theorem 4. Let N ∈ N, δ > 0 and f ∈ L2(dνα) satisfy

∫
R2
+

∫
R2
+

| f (r,x)||Fα( f )(t,y)||R(t,y)|δ

(1+ ||(r,x)||+ ||(t,y)||)N e||(r,x)|| ||(t,y)||dνα(r,x)dtdy < ∞, (5.33)
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where R is a polynomial of degree m. If N ≥ mδ +4, then

f (r,x) = ∑
|l|<N−mδ−2

2

as
lW̃

s
l (r,x) a.e., (5.34)

where s > 0, as
l ∈ C and W̃ s

l is given by (2.15 ). Otherwise, f (r,x) = 0 almost
everywhere.

Proof. We start the following lemma.

Lemma 5. We suppose that f ∈ L2(dνα) satisfies (5.33). Then f ∈ L1(dνα).

Proof. We may suppose that f is not negligible. (5.33) and the Fubini theorem
imply that for almost every (t,y) ∈ R2

+,

|Fα( f )(y)||R(t,y)|δ

(1+ ||(t,y)||)N

∫
R2
+

| f (r,x)|
(1+ ||(r,x)||)N e||(r,x)|| ||(t,y)||dνα(r,x)< ∞.

Since f and thus, Fα( f ) are not negligible, there exist (t0,y0) ∈ R2
+, (t0,y0) 6=

(0,0), such that
Fα( f )(t0,y0)R(t0,y0) 6= 0.

Therefore, ∫
R2
+

| f (r,x)|
(1+ ||(r,x)||)N e||(r,x)|| ||(t0,y0)||dνα(r,x)< ∞.

Since
e||(r,x)|| ||(t0,y0)||

(1+ ||(r,x)||)N ≥ 1 for large ||(r,x)||, it follows that
∫
R2
+

| f (r,x)|dνα(r,x)<

∞.

This lemma and Proposition 2 imply that tRα( f ) is well-defined almost every-
where on R2

+. By the same techniques used in [7], we can deduce that

∫
R2
+

∫
R2
+

e||(r,x)|| ||(t,y)|||tRα( f )(r,x)||F0(
tRα)( f )(t,y)||R(t,y)|δ

(1+ ||(r,x)||+ ||(t,y)||)N dνα(r,x)dtdy < ∞.

According to Theorem 2.3 in [25], we conclude that for all (r,x) ∈ R2
+,

tRα( f )(r,x) = P(r,x)e−
||(r,x)||2

4s ,

where s > 0 and P a polynomial of degree strictly lower than N−mδ−2
2 . Then by

(2.9),

Fα( f )(t,y) =F0 ◦ tRα( f )(t,y) =F0

(
P(r,x)e−

||(r,x)||2
4s

)
(t,y) = Q(t,y)e−s||(t,y)||2 ,
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where Q is a polynomial of degree degP. Then by using (2.15), we can find
constants as

l such that

Fα( f )(t,y) = Fα

(
∑

|l|<N−mδ−2
2

as
lW̃

s
l

)
(t,y).

By the injectivity of Fα the desired result follows.

As an application of Theorem 4, by using the same techniques in [19],
we can deduce the following Gelfand-Shilov type theorem for the generalized
Fourier transform.

Corollary 3. Let N,m ∈ N, δ > 0, a,b > 0 with ab≥ 1
4 , and 1 < p,q < ∞ with

1
p +

1
q = 1. Let f ∈ L2(dνα) satisfy

∫
R2
+

| f (r,x)|e
(2a)p

p ||(r,x)||
p

(1+‖(r,x)‖)N dνα(r,x)< ∞ (5.35)

and

∫
R2
+

|Fα( f )(t,y)|e
(2b)q

q ||(t,y)||
q
|R(t,y)|δ

(1+ ||(t,y)||)N dtdy < ∞ (5.36)

for some R ∈ Pm.
i) If ab > 1

4 or (p,q) 6= (2,2), then f (r,x) = 0 almost everywhere.
ii) If ab = 1

4 and (p,q) = (2,2), then f is of the form (5.34) whenever
N ≥ mδ

2 +2 and r = 2b2. Otherwise, f (x) = 0 almost everywhere.

Proof. Since

4ab‖(r,x)‖‖(t,y)‖ ≤ (2a)p

p
‖(r,x)‖p +

(2b)q

q
‖(t,y)‖q,

it follows from (5.35) and (5.36) that

∫
R2
+

∫
R2
+

| f (r,x)||Fα( f )(t,y)||R(t,y)|δ

(1+ ||(r,x)||+ ||(t,y)||)2N e4ab||(r,x)|| ||(t,y)||dνα(r,x)dtdy < ∞.

Then (5.33) is satisfied, because 4ab ≥ 1. Therefore, according to the proof of
Theorem 4, we can deduce that∫

R2
+

∫
R2
+

e4ab||(r,x)|| ||(t,y)|||tRα( f )(r,x)||F0(
tRα)( f )(t,y)||R(t,y)|δ

(1+ ||(r,x)||+ ||(t,y)||)2N dνα(r,x)dtdy < ∞,
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and tRα( f ) and f are of the forms

tRα( f )(r,x) = P(r,x)e−
||(r,x)||2

4s and Fα( f )(t,y) = Q(t,y)e−s||(t,y)||2 ,

where s > 0 and P,Q are polynomials of the same degree strictly lower than
2N−mδ−2

2 . Therefore, substituting these from, we can deduce that

∫
R2

+

∫
R2

+

e−(
√

s‖(t,y)‖− 1
2
√

s ‖(r,x)‖)
2
e(4ab−1)||(r,x)|| ||(t,y)|||P(r,x)||Q(r,x)||R(t,y)|δ

(1+ ||(r,x)||+ ||(t,y)||)2N dνα (r,x)dtdy < ∞.

When 4ab > 1, this integral is not finite unless f = 0 almost everywhere. More-
over, it follows from (5.35) and (5.36) that

∫
R2
+

|P(r,x)|e− 1
4s ‖(r,x)‖

2
e

(2a)p
p ||(r,x)||

p

(1+‖(r,x)‖)N dνα(r,x)< ∞

and

∫
R2
+

|Q(t,y)|e−s‖(t,y)‖2
e

(2b)q
q ||(t,y)||

q
|R(t,y)|δ

(1+ ||(t,y)||)N dtdy < ∞.

Hence, one of these integrals is not finite unless (p,q) = (2,2). When 4ab = 1
and (p,q) = (2,2), the finiteness of above integrals implies that r = 2b2 and the
rest follows from Theorem 4.

6. Quantitative Uncertainty Principle For the generalized Fourier trans-
form

We shall investigate the case where f and Fα( f ) are close to zero outside
measurable sets. Here the notion of ”close to zero” is formulated as follows.
If f ∈ Lp(dνα), 1 ≤ p ≤ 2, is ε-concentrated on a measurable set E ⊂ R2

+ if
there is a measurable function g vanishing outside E such that || f −g||Lp(dνα ) ≤
ε‖ f‖Lp(dνα ). Therefore, if we introduce a projection operator PE as

PE f (r,x) =

{
f (r,x) if (r,x) ∈ E
0 if (r,x) /∈ E,

then f is ε-concentrated on E if and only if || f −PE f ||Lp(dνα ) ≤ ε‖ f‖Lp(dνα ).
We define a projection operator QW as

QW f (r,x) = F−1
α

(
PW (Fα( f ))

)
(r,x).
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Similarly, we say that Fα( f ) is εW -concentrated to W in Lp′(dγα) if and only if

‖Fα( f )−Fα(QW f )‖Lp′ (dγα )
≤ εW‖Fα( f )‖Lp′ (dγα )

. (6.37)

We note that, for measurable set E ⊂ R2
+ and W ⊂ Γ,

QW PE f (r,x) =
∫
R2
+

q(t,y;r,x) f (t,y)dνα(t,y),

where

q(t,y;r,x) =


∫

W
ϕµ,λ (t,y)ϕµ,λ (r,x)dγα(µ,λ ) if (t,y) ∈ E

0 if (t,y) /∈ E.

Indeed, by the Fubini’s theorem we see that

QW PE f (r,x) =
∫

W
Fα(PE f )(µ,λ )ϕµ,λ (r,x)dγα(µ,λ )

=
∫

W

(∫
E

f (t,y)ϕµ,λ (t,y)dνα(t,y)
)

ϕµ,λ (r,x)dγα(µ,λ )

=
∫

E
f (t,y)

(∫
W

ϕµ,λ (t,y)ϕµ,λ (r,x)dγα(µ,λ )
)

dνα(t,y).

The Hilbert-Schmidt norm ‖QW PE‖HS is given by

||QW PE ||HS =
(∫

R2
+

∫
R2
+

|q(t,y;r,x)|2dνα(t,y)dνα(r,x)
) 1

2
.

We denote by ‖T‖2 the operator norm on L2(dνα). Since PE and QW are pro-
jections, it is clear that ‖PE‖2 = ‖QW‖2 = 1. Moreover, it follows that

||QW PE ||HS ≥ ||QW PE ||2. (6.38)

Lemma 6. If E and W are sets of finite measure, then

||QW PE ||HS ≤
√

mesνα
(E)mesγα

(W ),

where
mesνα

(E) :=
∫

E
dνα(r,x), mesγα

(W ) :=
∫

W
dγα(µ,λ ).

Proof. For (t,y) ∈ E, let gt,y(r,x) = q(t,y;r,x). (2.11) implies that

Fα(gt,y)(µ,λ ) = PW (ϕµ,λ (t,y)).
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Then by Parseval’s identity (2.12) and (2.1) it follows that∫
R2
+

|q(t,y;r,x)|2dνα(r,x) =
∫
R2
+

|gt,y(r,x)|2dνα(r,x)

=
∫

Γ

|Fα(gt,y)(µ,λ )|2dγα(µ,λ )≤ mesγα
(W )

Hence, integrating over (t,y) ∈ E, we see that ||QW PE ||2HS ≤ mesνα
(E)mesγα

(W ).

Proposition 6. Let E and W be measurable sets and suppose that

‖ f‖L2(dνα ) = ‖Fα( f )‖L2(dγα ) = 1.

Assume that εE + εW < 1, f is εE-concentrated on E and Fα( f ) is εW concen-
trated on W . Then

mesνα
(E)mesγα

(W )≥ (1− εE − εW )2.

Proof. Since || f ||L2(dνα ) = ‖Fα( f )‖L2(dνα ) = 1 and εE + εW < 1, the measures
of E and W must both be non-zero. Indeed, if not, then the εE-concentration of
f implies that

|| f −PE f ||L2(dνα ) = || f ||L2(dνα ) = 1≤ εE ,

which contradicts with εE < 1, likewise for Fα( f ). If at least one of mesνα
(E)

and mesγα
(W ) is infinity, then the inequality is clear. Therefore, it is enough

to consider the case where both E and W have finite positive measures. Since
||QW ||2 = 1, it follows that

|| f −QW PE f ||L2(dνα ) ≤ || f −QW f ||L2(dνα )+ ||QW f −QW PE f ||L2(dνα )

≤ εW + ||QW ||2|| f −PE f ||L2(dνα )

≤ εE + εW

and thus,

||QW PE f ||L2(dνα ) ≥ || f ||L2(dνα )−|| f −QW PE f ||L2(dνα ) ≥ 1− εE − εW .

Hence ||QW PE ||2≥ 1−εE−εW . (6.38) and Lemma 6 yields the desired inequal-
ity.

Let BLp(dνα )(T ), 1≤ p≤ 2, the subspace of all g∈ Lp(dνα) such that QT g=
g. We say that f is ε-bandlimited to T if there is a g ∈ BLp(dνα )(T ) with || f −
g||Lp(dνα ) < ε‖ f ||Lp(dνα ). Here we denote by ‖PE‖p the operator norm of PE

on Lp(dνα) and by ‖PE‖p,T the operator norm of PE : BLp(dνα )(T )→ Lp(dνα).
Corresponding to (6.38) and Lemma 6 in the L2(dνα) case, we can obtain the
following.
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Lemma 7. Let E and T be measurable sets of R2
+. For p ∈ [1,2], we have

‖PE‖p,T ≤
(

mesνα
(E)mesγα

(T )
) 1

p
.

Proof. For f ∈ BLp(dνα )(T ) we see that

f (t,y) =
∫

T
ϕµ,λ (t,y)Fα( f )(µ,λ )dγα(µ,λ ).

By (2.1), Hölder’s inequality and Proposition 4

| f (r,x)| ≤
(

mesγα
(T )
) 1

p ‖Fα( f )‖Lp′ (dγα )

≤
(

mesγα
(T )
) 1

p ‖ f‖Lp(dνα ).

Therefore

||PE f ||Lp(dνα ) =
(∫

E
| f (r,x)|pdνα(r,x)

) 1
p ≤
(

mesνα
(E)mesγα

(T )
) 1

p || f ||Lp(dνα ).

Then, it follows that for f ∈ BLp(dνα )(W ),

||PE f ||Lp(dνα )

|| f ||Lp(dνα )
≤
(

mesνα
(E)mesγα

(T )
) 1

p
,

which implies the desired inequality.

Proposition 7. Let f ∈ Lp(dνα). If f is εE-concentrated to E and εT bandlim-
ited to W , then (

mesνα
(E)mesγα

(T )
) 1

p ≥ 1− εE − εT

1+ εT
.

Proof. Without loss of generality, we may suppose that ‖ f‖Lp(dνα ) = 1. Since
f is εE-concentrated to E, it follows that ‖PE f‖Lp(dνα ) ≥ ‖ f‖Lp(dνα ) − ‖ f −
PE f‖Lp(dνα ) ≥ 1− εE . Moreover, since f is εT -bandlimited, there is a g ∈
BLp(dνα )(W ) with ||g− f ||Lp(dνα ) ≤ εT . Therefore, it follows that

||PE g||Lp(dνα ) ≥ ||PE f ||Lp(dνα )−||PE(g− f )||Lp(dνα ) ≥ ||PE f ||Lp(dνα )− εT ≥ 1− εE − εT

and ||g||Lp(dνα ) ≤ || f ||Lp(dνα )+ εT = 1+ εT . Then, we see that

||PEg||Lp(dνα )

||g||Lp(dνα )
≥ 1− εE − εT

1+ εT
.

Hence ‖PE‖p,W ≥ 1−εE−εT
1+εT

and Lemma 7 yields the desired inequality.
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Proposition 8. Let f ∈ L1(dνα)∩ L2(dνα) with ‖ f‖L2(dνα ) = 1. If f is εE-
concentrated to E in L1(dνα)-norm and Fα( f ) is εT -concentrated to T in
L2(dγα)-norm, then

mesνα
(E)≥ (1− εE)

2‖ f‖2
L1(dνα )

and mesγα
(T )‖ f‖2

L1(dνα )
≥ (1− ε

2
T ).

In particular,
mesνα

(E)mesγα
(T )≥ (1− εE)

2(1− ε
2
T ).

Proof. By the orthogonality of the projection operator PT , ‖ f‖L2(dνα ) =

‖Fα( f )‖L2(dγα ) = 1 and f is εT -concentrated to W in L2
γα

-norm, it follows that

‖PT (Fα( f ))‖2
L2(dγα )

= ‖Fα( f )‖2
L2(dγα )

−‖Fα( f )−PT (Fα( f ))‖2
L2(dγα )

≥ 1−ε
2
T ,

and thus,

1− ε
2
T ≤

∫
T
|Fα( f )(ξ )|2dγα(µ,λ )

≤ mesγα
(T )||Fα( f )||2L∞(dγα )

≤ mesγα
(T )|| f ||2L1(dνα )

.

Similarly, f is εE-concentrated to E in L1(dνα)-norm,

(1− εE)‖ f‖L1(dνα ) ≤
∫

E
| f (x)|dνα)(x)≤

√
mesνα

(E)

Here we used the Cauchy-Schwarz inequality and the fact that ‖ f‖L2(dνα ) =
1.

Proposition 9. Let E and T be measurable subsets of R2
+, and f ∈ Lp(dνα)

for p ∈ (1,2]. If f is εE-concentrated to E in Lp(dνα)-norm and Fα( f ) is εT -
concentrated to T in Lp′(dγα)-norm, then

(mesνα
(E)mesγα

(T ))
1
p′ ≥

(1− εE)‖Fα( f )‖Lp′ (dγα )
− εT || f ||Lp(dνα )

|| f ||Lp(dνα )
.

Proof. Let f ∈ Lp(dνα) for p ∈ (1,2]. As above

||Fα( f )−Fα(QT PE f )||Lp′ (dνα )
≤ ||Fα( f )−Fα(QT f )||Lp′ (dνα )

+ ||Fα(QT f )−Fα(QT PE f )||Lp′ (dνα )

≤ εT ||Fα( f )||Lp′ (dνα )
+ || f −PE f ||Lp(dνα )

≤ εT ||Fα( f )||Lp′ (dνα )
+ εE || f ||Lp(dνα )



194 H. Mejjaoli and Y. Othmani

and thus,

||Fα(QT PE f )||Lp′ (dνα )
≥ ||Fα( f )||Lp′ (dνα )

−||Fα( f )−Fα(QT PE f )||Lp′ (dνα )

≥ (1− εT )||Fα( f )||Lp′ (dνα )
− εE || f ||Lp(dνα ).

On the other hand, it is easy to obtain

||Fα(QT PE f )||Lp′ (dνα )

|| f ||Lp(dνα )
≤
(

mesνα
(E)mesγα

(T )
) 1

p′
.

Hence

(mesνα
(E)mesγα

(T ))
1
p′ || f ||Lp(dνα ) ≥ (1− εE)‖Fα( f )‖Lp′ (dγα )

− εT || f ||Lp(dνα ),

which gives the desired result.

Proposition 10. Let f ∈ L1(dνα)∩Lp(dνα), p ∈ (1,2]. If f is εE-concentrated
to E in L1(dνα)-norm and Fα( f ) is εT -concentrated to T in Lp′(dγα)-norm,
then

(mesνα
(E)mesγα

(T ))
1
p′ ≥ (1− εE)(1− εT )

‖Fα( f )‖Lp′ (dγα )

‖ f‖Lp(dνα )
.

Proof. Let f ∈ L1(dνα)∩Lp(dνα), p ∈ (1,2]. As Fα( f ) is εT -concentrated to
T in Lp′

γα
-norm, it follows that

‖Fα( f )‖Lp′ (dγα )
≤ εT‖Fα( f )‖Lp′ (dγα )

+
(∫

T
|Fα( f )(λ ,µ)|p′dγα)(λ ,µ)

) 1
p′

≤ εT‖Fα( f )‖Lp′ (dγα )
+(mesγα

(T ))
1
p′ ‖Fα( f )‖L∞(dγα ).

Thus from Proposition (2.9),

(1− εT )‖Fα( f )‖Lp′ (dγα )
≤ (mesγα

(T ))
1
p′ ‖ f‖L1(dνα ). (6.39)

Similarly, using f is εE-concentrated to E in L1(dνα)-norm, and Hölder in-
equality, we obtain

(1− εE)‖ f‖L1(dνα ) ≤ (mesγα
(E))

1
p′ ‖ f‖Lp(dνα ). (6.40)

Combining (6.39) and (6.40), we obtain the result.

Proposition 11. Let s > 0. Then there exists a constant C1(α,s) such that for
all
f ∈ L1(dνα)

⋂
L2(dνα)

|| f ||2+
4s

2α+3
L2(dνα )

≤C1(α,s)|| f ||
4s

2α+3
L1(dνα )

|| ||θ(λ ,µ)||sF( f )||2L2(dγα )
. (6.41)
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Proof. Let A > 0. From Plancherel’s theorem we have

‖ f‖2
L2(dνα )

= ‖Fα( f )‖2
L2(dγα )

= ||1θ−1(B+(0,A))Fα( f )||2L2(dγα )
+ ||(1−1θ−1(B+(0,A)))Fα( f )||2L2(dγα )

By (2.2) and (2.10)

||1θ−1(B+(0,A))Fα( f )||2L2(dγα )
≤ ‖ f‖2

L1(dνα )

∫
R2
+

1B+(0,A)(r,x)dνα(r,x).

By a simple calculations we find

||1θ−1(B+(0,A))Fα( f )||2L2(dγα )
≤ A2α+3

2α+ 3
2 Γ(α + 5

2)
‖ f‖2

L1(dνα )
.

On the other hand

||(1−1θ−1(B+(0,A)))Fα ( f )||2L2(dγα )
≤ A−2s||(1−1θ−1(B+(0,A))) ||θ(λ ,µ)||

sFα ( f )||2L2(dγα )

≤ A−2s|| ||θ(λ ,µ)||sFα ( f )||2L2(dγα )
.

It follows then

‖ f‖2
L2(dνα )

≤ A2α+3

2α+ 3
2 Γ(α + 5

2)
‖ f‖2

L1(dνα )
+A−2s|| ||θ(λ ,µ)||sFα( f )||2L2(dγα )

.

Minimizing the right hand side of that inequality over A > 0 gives

|| f ||2L2(dνα )
≤C(α,s)|| f ||

4s
2α+3+2s
L1(dνα )

|| ||θ(λ ,µ)||sF( f )||
2(2α+3)
2s+2α+3
L2(dγα )

. (6.42)

The desired result follows immediately from (6.42).

Proposition 12. Let s > 0. Then there exists a constant C2(α,s) such that for
all
f ∈ L1(dνα)

⋂
L2(dνα)

|| f ||1+
4s

2α+3
L1(dνα )

≤C2(α,s)|| f ||
4s

2α+3
L2(dνα )

|| ||(r,x)||2s f ||L1(dνα ). (6.43)

Proof. Let A > 0. We have

‖ f‖L1(dνα ) ≤ ||1B+(0,A) f ||L1(dνα )+ ||(1−1B+(0,A)) f ||L1(dνα ).

By Cauchy-Schwarz inequality we obtain

||1B+(0,A) f ||L1(dνα ) ≤
( A2α+3

2α+ 3
2 Γ(α + 5

2)

) 1
2 ‖ f‖L2(dνα ).
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On the other hand

||(1−1B+(0,A)) f ||L1(dνα ) ≤ A−2s|| ||(r,x)||2s(1−1B+(0,A)) f ||L1(dνα ).

It follows then

‖ f‖L1(dνα ) ≤
( A2α+3

2α+ 5
2 Γ(α + 5

2)

) 1
2 ‖ f‖L2(dνα )+A−2s|| ||(r,x)||2s f ||L1(dνα ).

Minimizing the right hand side of that inequality over A > 0 gives

|| f ||L1(dνα ) ≤C(α,s)|| f ||
4s

2α+3+4s
L2(dνα )

|| ||(r,x)||2s f ||
2α+3

4s+2α+3
L1(dνα )

. (6.44)

The desired result follows immediately from (6.44).

From the previous results we deduce the following variation on Heisenberg’s
uncertainty inequality for the generalized Fourier transform.

Theorem 5. Let s > 0. Then for all f ∈ L1(dνα)
⋂

L2(dνα)

|| f ||2L2(dνα )
|| f ||L1(dνα ) ≤C1(α,s)C2(α,s)|| ||(r,x)||2s f ||L1(dνα )|| ||θ(λ ,µ)||

sFα ( f )||2L2(dγα )
(6.45)

Proof. The result follows immediately by multiplying inequality (6.41) by (6.43)

Proposition 13. Let s> 0 and let W a measurable subset of Γ with 0<mesγα
(W )

< ∞. Then there exists a constant C(α,s) such that for all f ∈ L1(dνα)
⋂

L2(dνα)

||1WFα( f )||L2(dγα ) ≤C(α,s)
√

mesγα
(W )|| f ||

4s
4s+2α+3
L2(dνα )

|| ||(r,x)||2s f ||
2α+3

4s+2α+3
L1(dνα )

.

(6.46)

Proof. We have

||1WFα( f )||L2(dγα ) ≤
√

mesγα
(W )||Fα( f )||L∞(dγα ) ≤

√
mesγα

(W )|| f ||L1(dνα ).

The desired result follows from Carlson Inequality (6.44).

We adapt the method of Ghorbal-Jaming [13], we obtain.

Theorem 6. Let E,W be a pair of measurable subsets such that

0 < mesνα
(E),mesγα

(W )< ∞.

Then the following uncertainty principles hold.
1) Local uncertainty principle of Fα



Qualitative and quantitative uncertainty Principles ... 197

(i) For 0 < s < 2α+3
2 , there exists a constant C(α,s) such that for all

f ∈ L2(dνα)

||1WFα( f )||L2(dγα ) ≤C(α,s)(mesγα
(W ))

s
2α+3 || ||(r,x)||s f ||L2(dνα ). (6.47)

(ii) For s > 2α+3
2 , there exists a constant C(α,s) such that for all f ∈

L2(dνα)

||1WFα( f )||L2(dγα ) ≤C(α,s)
√

mesγα
(W )|| ||(r,x)||s f ||

2α+3
2s

L2(dνα )
|| f ||1−

2α+3
2s

L2(dνα )
.

(6.48)
2) Global uncertainty principle of Fα

For s, t > 0, there exists a constant C(α,s) such that for all f ∈ L2(dνα)

|| ||(r,x)||s f ||
2t

s+t
L2(dνα )

|| ||θ(λ ,µ)||tFα( f )||
2s

s+t
L2(dγα )

≥C(α,s)|| f ||2L2(dνα )
. (6.49)

We put
ht(λ ,µ) := e−t||θ(λ ,µ)||2 , forallλ ,µ ∈ R.

Lemma 8. Let 1≤ q < ∞. We have

||ht ||Lq(dγα ) ≤Ct−
2α+3

2q .

Proof. Let 1≤ q < ∞. Using the relation (2.2), we obtain the result.

Lemma 9. Let 1 < p ≤ 2 and 0 < a < 2α+3
p′ . Then for all f ∈ Lp(dνα) and

t > 0,

||e−t||θ(λ ,µ)||2Fα( f )||Lp′ (dγα )
≤Ct−

a
2 || ||(r,x)||a f ||Lp(dνα ). (6.50)

Proof. Inequality (6.50) holds if || ||(r,x)||a f ||Lp(dνα ) = ∞.
Assume that || ||(r,x)||a f ||Lp(dνα ) < ∞. For s > 0 let fs = f χB(0,s) and f s =

f − fs. Then since, | f s(r,x)| ≤ s−a| ||(r,x)||a f (r,x)|,

||e−t||θ(λ ,µ)||2Fα ( f χB(0,s)c)||Lp′ (dγα )
≤ ||e−t||θ(λ ,µ)||2 ||L∞(dγα ) ||Fα ( f χB(0,s)c)||Lp′ (dγα )

≤ || f χB(0,s)c ||Lp(dνα )

≤ s−a|| ||(r,x)||a f ||Lp(dνα ).

By Proposition 4 and Hölder’s inequality

||e−t||θ(λ ,µ)||2Fα ( f χB(0,s))||Lp′ (dγα )
≤ ||e−t||θ(λ ,µ)||2 ||Lp′ (dγα )

||Fα ( f χB(0,s))||L∞(dγα )

≤ ||e−t||θ(λ ,µ)||2 ||Lp′ (dγα )
|| f χB(0,s)||L1(dνα ).

On the other hand,

|| f χB(0,s)||L1(dνα ) ≤ || ||(r,x)||−aχB(0,s)||Lp′ (dνα )
|| ||(r,x)||a f ||Lp(dνα ).
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A simple calculation give that

|| ||(r,x)||−a
χB(0,s)||Lp′ (dνα )

=C(α)s
2α+3

p′ −a
.

So

||e−t||θ(λ ,µ)||2Fα ( f )||Lp′ (dγα )
≤ ||e−t||θ(λ ,µ)||2Fα ( fs)||Lp′ (dγα )

+ ||e−t||θ(λ ,µ)||2Fα ( f s)||Lp′ (dγα )

≤Cs−a(1+ ||e−t||θ(λ ,µ)||2 ||Lp′ (dγα )
s

2α+3
p′ )||(r,x)||a f ||Lp(dνα ).

Choosing s = t
1
2 , we obtain (6.50).

Theorem 7. Let 1 < p ≤ 2 and 0 < a < 2α+3
p′ and b > 0. Then for all f ∈

Lp(dνα)

||Fα( f )||Lp′ (dγα )
≤C|| ||(r,x)||a f ||

b
a+b
Lp(dνα )

|| ||θ(µ,λ )||bFα( f )||
a

a+b

Lp′ (dγα )
. (6.51)

Proof. Let 1 < p≤ 2 and 0 < a < 2α+3
p′ . Assume that b≤ 2. From the previous

lemma, for all t > 0

||Fα ( f )||Lp′ (dγα )
≤ ||e−t||θ(λ ,µ)||2Fα ( f )||Lp′ (dγα )

+ ||(1− e−t||θ(λ ,µ)||2)Fα ( f )||Lp′ (dγα )

≤Ct−
a
2 ||(r,x)||a f ||Lp(dνα )+ ||(1− e−t||θ(λ ,µ)||2)Fα ( f )||Lp′ (dγα )

.

On the other hand, ||(1−e−t||θ(λ ,µ)||2)Fα( f )||Lp′ (dγα )
= t

b
2 ||(t||θ(λ ,µ)||2)− b

2 (1

−e−t||θ(λ ,µ)||2)||θ(µ,λ )||bFα( f )||Lp′ (dγα )
. Since (1−e−t)t−

b
2 is bounded for t ≥

0 if b≤ 2. Then, we obtain

||Fα( f )||Lp′ (dγα )
≤C

(
t

a
2 ||(r,x)||a f ||Lp(dνα )+ t

b
2 || ||θ(λ ,µ)||bFα( f )||Lp′ (dγα )

)
.

from which, optimizing in t, we obtain (6.51) for 0 < a < 2α+2
p′ and b≤ 2.

If b > 2, let b′ ≤ 2. For u ≥ 0 and b′ < b, we have ub′ ≤ 1+ ub, which for
u = ||θ(λ ,µ)||

ε
gives the inequality ( ||θ(λ ,µ)||

ε
)b′ < 1+( ||θ(λ ,µ)||

ε
)b for all ε > 0.

It follows that

|| ||θ(λ ,µ)||b′Fα( f )||Lp′ (dγα )
)≤ ε

b′+ ε
b′−b|| ||θ(λ ,µ)||bFα( f )||Lp′ (dγα )

).

Optimizing in ε , we get the result for b > 2.

|| ||θ(λ ,µ)||b′Fα( f )||Lp′ (dγα )
≤ ||Fα( f )||

b−b′
b

Lp′ (dγα )
|| ||θ(λ ,µ)||bFα( f )||

b′
b

Lp′ (dγα )
.

Together with (6.51) for b > 2.
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Corollary 4. Let a,b > 0. For all f ∈ L2(dνα), we have

|| f ||L2(dνα ) ≤C|| ||(r,x)||a f ||
b

a+b
L2(dνα )

||θ(µ,λ )||bFα( f )||
a

a+b
L2(dγα )

. (6.52)

Proof. Using the previous theorem for p = 2, and applying Plancherel formula,
we obtain the result when 0 < a < 2α+3

2 . If a≥ 2α+3
2 , let a′ < 2α+3

2 . For u≥ 0,
ua′ ≤ 1+ua which for u = ||(r,x)||

ε
gives the inequality

(
||(r,x)||

ε
)a′ ≤ 1+(

||(r,x)||
ε

)a, forall ε > 0.

It follows that

|| ||(r,x)||a′ f ||L2(dνα ) ≤ ε
a′ || f ||L2(dνα )+ ε

a′−a|| ||(r,x)||a f ||L2(dνα ).

Optimizing in ε , we obtain

|| ||(r,x)||a′ f ||L2(dνα ) ≤C|| f ||
a−a′

a
L2(dνα )

|| ||(r,x)||a f ||
a′
a

L2(dνα )
. (6.53)

Then, by (6.52) for (a′ and b), and (6.53), we deduce that

|| f ||L2(dνα )
≤ C|| ||(r,x)||a′ f ||

b
a′+b
L2(dνα )

|| |λ |bFα( f )||
a′

a′+b
L2

ν (R)

≤ C|| f ||
b(a−a′)
a(a′+b)

L2(dνα )
|| ||(r,x)||a f ||

a′b
a(a′+b)

L2(dνα )
|| ||θ(µ,λ )||bFα( f )||

a′
a′+b
L2(dγα )

.

Thus

|| f ||
a′(a+b)
a(a′+b)

L2(dνα )
≤C|| ||(r,x)||a f ||

a′b
a(a′+b)

L2(dνα )
|| ||θ(µ,λ )||bFα( f )||

a′
a′+b
L2(dγα )

,

which gives the result for a≥ 2α+3
2 .

Remark 3. The previous corollary generalize the result proved in [26].

Let T be a measurable subset of R2
+. Let b > 0 and let f ∈ Lp(dνα), p ∈

[1,2]. We say that ||θ(µ,λ )||bFα( f ) is εT -concentrated to T in Lp′(dγα)-norm,
if there is a function h vanishing outside T such that

|| ||θ(µ,λ )||bFα( f )−h||Lp′ (dγα )
≤ εT || ||θ(µ,λ )||bFα( f )||Lp′ (dγα )

.

From (6.37), it follows that ||θ(µ,λ )||bFΛ( f ) is εT -concentrated to T in
Lp′(dγα)-norm, if and only if

|| ||θ(µ,λ )||bFα( f )−||θ(µ,λ )||bFα(QT f )||Lp′ (dγα )
≤ εT || ||θ(µ,λ )||bFα( f )||Lp′ (dγα )

.

(6.54)
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Corollary 5. Let T be a measurable subset of R2
+, and let 1 < p ≤ 2, f ∈

Lp(dνα) and b > 0. If ||θ(µ,λ )||bFα( f ) is εT -concentrated to T in Lp′(dγα)-
norm, then for 0 < a < 2α+3

p′

||Fα( f )||Lp′ (dγα )
≤ C

(1− εT )
a

a+b
|| ||(r,x)||a f ||

b
a+b
Lp(dνα )

|| ||θ(µ,λ )||bFα(QT f )||
a

a+b

Lp′ (dγα )
.

(6.55)

Proof. Let f ∈ Lp(dνα), 1< p≤ 2. Since ||θ(µ,λ )||bFα( f ) is εT -concentrated
to T in Lp′(dγα)-norm, then we have

|| ||θ(µ,λ )||bFα( f )||Lp′ (dγα )

≤ εT || ||θ(µ,λ )||bFα( f )||Lp′ (dγα )
+ || ||θ(µ,λ )||bFα(QT f )||Lp′ (dγα )

.

Thus

|| ||θ(µ,λ )||bFα( f )||
a

a+b

Lp′ (dγα )
≤ 1

(1− εT )
a

a+b
|| ||θ(µ,λ )||bFΛ(QT f )||

a
a+b

Lp′ (dγα )
.

Multiply this inequality by C|| ||(r,x)||a f ||
b

a+b
Lp(dνα )

and applying theorem 7 we
deduce the desired result.

We proceed as the previous corollary and using Corollary 4 we obtain the
following.

Corollary 6. Let T be a measurable subset of R2
+, and let f ∈ L2(dνα) and

a,b > 0.
If ||θ(µ,λ )||bFα( f ) is εT -concentrated to T in L2(dγα)-norm, then

|| f ||L2(dνα ) ≤
C

(1− εT )
a

a+b
|| ||(r,x)||a f ||

b
a+b
L2(dνα )

|| ||θ(µ,λ )||bFα(QT f )||
a

a+b
L2(dγα )

.

(6.56)
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