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QUALITATIVE AND QUANTITATIVE UNCERTAINTY
PRINCIPLES FOR THE GENERALIZED FOURIER
TRANSFORM ASSOCIATED WITH THE
RIEMANN-LIOUVILLE OPERATOR

HATEM MEJJAOLI - YOUSSEF OTHMANI

The aim of this paper is to establish an extension of qualitative and
quantitative uncertainty principles for the Fourier transform connected
with the Riemann-Liouville operator.

1. Introduction

Classical uncertainty principles give us information about a function and its
Fourier transform. If we try to limit the behavior of one we lose control of
the other. Uncertainty principles have implications in two main areas: quan-
tum physics and signal analysis. In quantum physics they tell us that a particles
speed and position cannot both be measured with infinite precision. In signal
analysis they tell us that if we observe a signal only for a finite period of time,
we will lose information about the frequencies the signal consists of. The math-
ematical equivalent is that a function and its Fourier transform cannot both be
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arbitrarily localized. There is two categories of uncertainty principles: Quanti-
tative uncertainty principles and Qualitative uncertainty principles.

Quantitative uncertainty principles is just another name for some special
inequalities. These inequalities give us information about how a function and
its Fourier transform relate. They are called uncertainty principles since they
are similar to the classical Heisenberg Uncertainty Principle, which has had
a big part to play in the development and understanding of quantum physics.
For example: Benedicks [3], Slepian and Pollak [29], Landau and Pollak [18],
and Donoho and Stark [10] paid attention to the supports of functions and gave
qualitative uncertainty principles for the Fourier transforms.

Qualitative uncertainty principles are not inequalities, but are theorems that
tell us how a function (and its Fourier transform) behave under certain circum-
stances. For example: Hardy [14], Morgan [23], Cowling and Price [8], Beurl-
ing [4], Miyachi [22] theorems enter within the framework of the quantitative
uncertainty principles.

The quantitative and qualitative uncertainty principles has been studied by
many authors for various Fourier transforms, for examples (cf. [6, 7, 12, 13, 19,
20, 30)).

In [2], the authors considered the singular partial differential operators de-
fined by

A = 2

% 2
Ay = L4220 (rx) e (0,00) xR, >0

and they associated to A; and A, the following integral transform, called the
Riemann-Liouville operator, defined on C,(R?) by

SIS

%/ / FlrsV1 =12, x+11)(1 -2 2 (1 — %)% Ldrds, ifa>0
—1J-1
1

%/ f(r\/lftz,errz)(lfzz)’%dt, ifa=0
—1

In addition, a convolution product and a Fourier transform J, connected with
the mapping R have been studied and many harmonic analysis results have
been established for the Fourier transform F, (Inversion formula, Plancherel
formula, Paley-Winer and Plancherel theorems, ...). Our purpose in this work is
to study the uncertainty principles for the Fourier transform JF,, connected with
Ra.

Our aim here is to consider quantitative and qualitative uncertainty princi-
ples when the transform under consideration is the Fourier transform connected
with the Riemann-Liouville operator .

The remaining part of the paper is organized as follows. In §2, we recall
the main results about the Riemann-Liouville operator. §3 is devoted to gen-
eralize Cowling-Price’s theorem for the generalized Fourier transform Fy. In

Ra(f)(r7x> =
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84 we generalize Miyachi’s theorem and in §5 Beurling’s theorem for Fy. §6
is devoted to Donoho-Stark’s uncertainty principle and variants of Heisenberg’s
inequalities for Fy.

2. Riemann-Liouville operator

In this section, we define and recall some properties of the Riemann-Liouville
operator. For more details see ([2, 21]). We denote by

e C.(IR?) the space of continuous functions on R?, even with respect to the
first variable.

e C..(RR?) the subspace of C.(IR?) formed by functions with compact sup-
port.

o £.(R?) the space of infinitely differentiable functions on R?, even with
respect to the first variable.

e S,.(R?) the Schwartz space of rapidly decreasing functions on R?, even
with respect to the first variable.

e S! the unit sphere in R?,

—{m.&)er:n+e2=1}.

. Ri:{(r,x)E]Rz: r>0}.

It is well known [2] that for all (u,4) € C?, the system

Awu(rx) = —idu(rx),
Aou(r,x) = —plu(rx)
u(0,00 = 1, 94(0,x)=0,Vx€R,

admits a unique solution @ ; , given by

Qua(rx) = ja(rv/ B2+ A2)e ™,

where j is the normalized Bessel function defined by

s k

Zk'F k+1—|—a

VzeC, ja(2)
k=0 )

(z/2)*.
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Definition 1. The Riemann-Liouville operator is defined on C..(R?) by: ¥(r,x) €
R}
/ / ForsV1=2 x+m)(1—2)% 2 (1= 5% Ydrds  ifa>0

Rof(rx) =
/) L[ /TR e -2 ifo=o0.

Remark 1. (i) The function @, 5, (1,A) € C?, can be written as
V(r,x) € Ri, Pua(rx) = Ra(cos(u.)e*il')(r,x).
(ii) For all v € N2, (r,x) € R? and z = (u,A) € C?,
DY @.(rx)] < 1](r)|| Y exp (2| (1) [Tmz]]), (2.1

where
v ol
DZ :W and |V|:V1+V2.
1 2

Now let I" be the set
F:RZU{(it,x);(t,x) e R |1 < |x|}.
I'; the subset of I, given by
T, :RZU{(it,x);(t,x) eR%,0<r< \x\}.
We have for all (u,A) €T,

su rx)| =1.
(r,x)6p]R2 ’(P;JJL( )l

In the following, we denote by

e dV,(r,x) the measure defined on R% by
dVe(r,x) = ker?* T dr @ dx,
with
o — 1
* T 20(a 4 1)(2m) /2

e LP(dVy),1 < p < oo, the space of measurable functions on R? , satisfying

Ifllrave) = </Rz

+

Flisave) = ess sup LF(x)] <o, p=oe.
(rx)eRZL

1/p
\f(r,X)I”dva(r,x)> coo 1< p<om
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e Br. the o-algebra defined on I'y by

+

Br :{Q*I(B): BGBBor(Ri)},

where 0 defined on the set 'y by 0(A,u) = (/u2+12,1).

e dY, the measure defined on Br, by

VACBr,, 7Yu(A)=va(6(A)).

o L[7(dvy),1 < p < oo, the space of measurable functions on I';, satisfying

/p
o = ([ 1f@aPanui) <o 1<p<e

oo = ,)L <oo7 — oo,
£l 2= (dyee) ess sup |f(u,A)] p

We have the following properties.

Proposition 1. i) For every nonnegative measurable function g on I';, we have

[ P2 2) = ka| [ | F0.2)08 + A7) ndpda
Jr, R2

_*_/]Rz /OMf(i‘u,l)(lz—,uz)aududl]'

i1) For every nonnegative measurable function f on Ri (resp. integrable on
R%r with respect to the measure dVv), f o 8 is a measurable nonnegative function
on Iy, (resp. integrable on I'; with respect to the measure dy,) and we have

/fo (1, A)d Yo (u /frxdva(rx) (2.2)

In the following we recall some results on the dual of the Riemann-Liouville
operator R q.

Definition 2. The dual "R, of the Riemann-Liouville operator R, is defined by
:VY(s,y) €R?,

IS

w B
R / ; 2f(u x+v) (W v =) (1 =) ududv if o >0

a Jr \/Ll —r
/ ),¥)dy, ifoa=0

(2.3)
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Example 1. Let p € [1,0). Foralla >0, B > 0 we have

V(S,y) eRza tRa(EZﬁ)(svy):C(a7ﬁ7p)Epaﬁ

5,y), (24
1+ﬁ71+ﬁ( y)

with E, g is the Gauss kernel associated with the Riemann-Liouville operator
R defined by

v(l’,x) c RZj Ea,ﬁ (r,x) _ k(a’ﬁ)efa(ﬁrbrﬂ)’ (25)
where
2 20+3 o Clat1 14 B)p-1q 2
k<a,ﬁ>=£"+l)(g) Lt = "D [0EE

Proposition 2. The function "R (f) defined almost everywhere on R? , by re-
lation (2.3), is Lebesgue integrable on Ri. Moreover for all bounded function
g € C.(R?), we have the formula

[, Ra(£)(s.3)8(s:)dsdy = [ Ra(e)(0f ()P drdv. (26)

Remark 2. Let f be in L' (dvy). By taking g = 1 in the relation (2.6) we deduce

that .
J

We consider the generalized Fourier transform F,, associated with the Rie-
mann Liouville operator R and we recall its main properties.

"Ra(f)(s,y)dsdy = /ﬂle? f(r,x)r** drdx. 2.7)

2
T

Definition 3. The Fourier transform associated with the Riemann Liouville
mean operator is defined on L' (dvy) by

V(2 €T FalNp2) = [ Fr00ua(ridvalnn).  28)

Example 2. Let a,3 > 0. The Fourier transform of Gauss kernel associated
with Riemann-Liouville operator is given by

v (“71) el ‘FOC(Ea,B)(nuvl) :C(a,B,OC)EHﬁ

1
4af ' 1+

(1),

where )
Cla @) =2 (a+1)(aB) 3 (1 5) ™
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Proposition 3. For all f in L!(dVv), we have the relation

V(u,A) €T, Fo(f)(1,A) = Foo "Ra(f) (1, 4), (2.9)

where Fy is the Fourier-cosine transform on R? defined for f in S, (R?) by
Y (,2) € R Fo(f)d) = [ f(rx)e H cos(rp)drd.
R+

In the follow we recall some properties on the Fourier transform Fy,.
For all f € L'(dvy),

Fa (= ara) < 11121 (ave)- (2.10)

For f € L'(dvy) such that o (f) € L'(d7y), we have the inversion formula for
Fo : for almost every (r,x) € Ri,

f(r,x): Fa(f)(u,k)(pwl(r,x)dya(u,l). (2.11)

T,
Theorem 1. (Plancherel formula). For every f in S.(R?), we have

JIFa Pz = [ 1760 dva(re). @12)
r R

+

In particular, the Fourier transform F can be extended to an isometric isomor-
phism from L?(dv,) onto L?(d7y).

Proposition 4. Let f be in L”(dvy), p € [1,2]. Then F(f) belongs to L” (dyy)
with £ + 1 =1, and we have
p P
||‘Fa(f)|’Ll’/(d'ya) < HfHLl’(dva)‘
For (r,x) € R?,5 > 0, we note Ny(r,x), by
Ny(r,x) 1= 507+, (2.13)
We have

(?4+2y%)

‘FOC (NY(r7x)) (tvy) = C(S>67 4
We define the following functions W}, Wf ,1eN2, >0 by

V(rx) €R%, Wi(rx) = e S = (k,m), (2.14)
and
V(nx) €R:, W (rx) = Fo (A ume W) (), 1= (km), (2.15)

Notation. We denote by P,,(R?) the set of homogeneous polynomials of degree
m.
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Proposition 5. ([26]). Let [ € N2. For all s > 0, there exists a homogeneous
Q € P;(R?) such that

V(rx) €R2, Fo(W)(rx) = O(r,x)e a7 420, (2.16)

3. Generalized Cowling-Price theorem for the Generalized Fourier trans-
form

Theorem 2. Let f be a measurable function on Rﬁ such that

/ P10 £, ) P
r. (1+[l(nx)l])"

AV (r,x) < o (3.17)

and

RIS I 19
for some constants @ > 0, b > 0, 1 < p,q < o, and for any n € 20t + 3,20 +
3+ p]andm € (2,2+g]. Then

i) Ifab > }L, we have f = 0 almost everywhere.

ii) If ab = , we have f = CNj,.

iii) If ab < 1, for all § €]b, 1|, the functions of the form f(r,x) = N5(rx),
where P € P, satisfy (3.17) and (3.18).
Proof. We shall show that F(f)(z) exists and is an entire function in z € C?
and

\}"a(f)(z)|SCeéHe(l’"Z)Hz(l—i-HlmzH)S, forallz € C?, for some s> 0.

(3.19)
The first assertion follows from the hypothesis on the function f and Holder’s
inequality using (3.17) and the derivation theorem under the integral sign. We
want to prove (3.19). Actually, it follows from (2.8) and (2.1) that for all z =

(z1,22) = (u+iA, & +in) € C2,

[Fa(f)(u+id,&+in)| < /R2 ) Peuri & +im) (rX)|dVa (rx)

/ a0 L)) 7o () (1, )9
R}

2 all(r)l]? n .
Se‘(l:m /7 ¢ ‘f(r-,xﬂﬂ(1+‘|(r7x)||);e—a(H(r«X)H—||(la")ll)zdva(r,x)
R (1+[l(nx)ll)»

Then by using the Holder inequality, (3.17) we can obtain that

FalD+idE+im) <= ([ -+l

2
T

@*.n)

e WEDI-IEE " gy (1))

np!
P

1
o

g [ np! A
<Ce s (/ (1+t)%+2“+2e*“"’(’*”(7")”)zdr) "
JO

llo.m)|?

ny 2042
<Ce @ (14|l "7

— Cet UM (| 1 1mz||) 555
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Thus (3.19) is proved.
o Ifub= %, then

Hz n_ 2042

[Fa(f)(2)] < €U (1 4 || Tme )7

Therefore, if we let g(z) = ¢*@+22) Fi,(£)(z), then

200+2

1g(2)] < Ce*PlIOREI (1 4| mg|))2 ™0

Hence it follows from (3.18) that

g, )] )
Jo G nas <

Here we use the following lemma.

Lemma 1. ([28]) Let 4 be an entire function on C? such that
[h(z)] < CeIPReNF (1 4 [ Ime] )"

for some m > 0, a > 0 and

[ ()|

T ans1@X)ldx < eo
/ 2 (L+{lI(n )1

for some ¢ > 1, s > 1 and Q € Py (R?).

Then £ is a polynomial with degh < min{m, S*A;I*z} and, if s < g+ M +2, then

h is a constant.

Hence by this lemma g is a polynomial, we say P,, with deghP, :=d <
min{ +2°‘+2 m 2} Then

Falf)(Au) = o2, e 3247,
Thus, by using (2.16), we can find constants c¢; such that

f(rx)= Z Wi (r,x) forall (r,x) € R%.
1<

Therefore, nonzero f satisfies (3.17) provided that

i

200+2 m—2}
)24 q

n>2a—|—3+pmin{ﬁ+
p

Furthermore, if m < g+ 2, then g is a constant by the Lemma 1 and thus

Fa(f)(A,p) = Ce P42 and - f(r,x) = Cpe= @I,
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When n > 2o+ 3 and m > 2, these functions satisfy (3.18) and (3.17) respec-
tively. This proves ii).

o If ab > %, then we can choose positive constants, ay,b; such that a >
a1 = g > g35- Then f and Fy(f) also satisty (3.17) and (3.18) with @ and b
replaced by a; and b; respectively. Therefore, it follows that Fy (f)(A, 1) =
Py (A, p)e 4 (A*+20%) " But then Fy (f) cannot satisfy (3.18) unless P,, =0,
which implies f = 0. This proves i).

e If ab < 1, then for all § € (b, 1), the functions of the form f(r,x) =
Wf(r,x), where P € P, satisfy (3.17) and (3.18). This proves iii). O

The following is an immediate consequence of Theorem 2.

Corollary 1. Let f be a measurable function on Ri such that

Lf(rx)] < Me @l (14 [(r20)| )™ ace. (3.20)

and for all (u,&) € R%,

II?

| Fal(f) (. E)| < Me=*I160:S) (3.21)

for some constants a,b > 0, r > 0 and M > 0.

i) If ab > }L, then f = 0 almost everywhere.

ii) If ab = 7, then f is of the form f(r,x) = CN,(r,x).

iii) If ab < %, then there are infinity many nonzero f satisfying (3.20) and
(3.21).

4. Miyachi’s theorem for the Generalized Fourier transform

Theorem 3. Let f be a measurable function on ]Ri even with respect to the first
variable such that
E,3f € LP(dvq) +LI(dVa) (4.22)

and

Eyly | (1,8 Fa(f)(u,8)]
/R 21og+ LR 7l dudé < oo, (4.23)

for some constants @ > 0,5 >0A >0, 1 < p,g < . Then

If ab > 1, we have f = 0 almost everywhere.

If ab = i, we have f = CE,, g with |C| < A.

Ifab < 1, forall § € (b, 1-), the functions of the form f(x) = CE;, g, satisfy
(4.22) and (4.23).

To prove this result we need the following lemmas.
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Lemma 2. ([20]). Let & be an entire on C? function such that

h(z)| < AeBIREIP and /2log+ h(y)|dy < oo, (4.24)
R

for some positive constants A, B. Then £ is a constant on C2.

Lemma 3. Let r be in [1,0]. We consider a function g in L"(dV,). Then there
exists a positive constant C such that:

1E s

t
liﬁBJJrﬁ Ra(Ea,Bg)HU(Ri) < C||g||L’(dva)7

where || - || (g2 is the norm of the usual Lebesgue space L'(R%) and a > 0.

Proof. From the hypothesis it follows that E _I; g belongs to L!(dvy). Then by

Proposition 2, the function "Ry (E - o f l¢) is defined almost everywhere on R2.
Now we consider two cases.
i) If r € [1,00), we have

t r _ —-r t r
1828 1o R Bap®llasy = [ Eoh | (00 RalEapg) s dsdy.

By applying Holder’s inequality we obtain

RaBapllipee) < [ E 00 (MRallel)s)] x

1) 1
2 1+13’ +B

1+/3 A+B
r/r
(IRa(Eqg)(s:)]) " dyds.
where 7’ is the conjugate exponent of r. But from (2.4) we deduce that

HE tRa(Eaﬁg)Hz,-(Ri) < C/]Rz "Ra(lg]")(s,y)dsdy.
T

5148
Thus using the relation (2.7) we obtain
188 15 RaEap®lue) <C [, a0 dvals) <
1+ﬁ

i) If r = oo, we have

E g8 RalEaps)(s,y)| <E 5 15 8Y) Ra(Eap)(s:3)l18]le=(ave)
1+ﬁ B>
and from (2.4) we deduce that

E s 5 (5:9) Ra(Eapg)(s.9)| < Cllgllim(avy) < e

i1+

This completes the proof. O
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Lemma 4. Let p,q in [1,o] and f a measurable function on R? such that
E 3f € LP(dvq) +LI(dVa), (4.25)

for some a > 0, B > 0. Then the function defined on C? by
Fal D) w2) = [ | 0905 3)dva (1), (426)
+

is well defined and entire on C2. Moreover there exists a positive constant C
such that for all £,m, i, 0 € R we have

(1+8)n%+02

|Fa(f)(L+i0,8+in)| <Ce  *F . 4.27)

Proof. The first assertion follows from the hypothesis on the function f and
Holder’s inequality using (4.25) and the derivation theorem under the integral
sign. We want to prove (4.27).

The condition (4.25) implies that the function f belongs to L!(dv). Hence we
deduce from (2.9) that for all £,1, o, 0 € R, we have

[ Fa(f)(1+i6,8+in)| = |/Rz “Ra(f)(s5,3)e M cos(s(u +i6))dsdyl.

</,
B2

The integral of the second member can also be written in the form

gl -1 t - 7& 1+ﬁ
WFiy O [ E S ) RalD6IE a6~ 5507~ 5,5 Misdy

where ¢ is a positive constant. On the follow we will to estimate

: ol 148
L Eh g RallA60)E (5= 50y My

Indeed from (4.25) there exists u in L”(dVvy) and v in L9(dVvy) such that

f=E,g(ut+v).
Thus using the Lemma 3 and Holder inequality we obtain
_ 6| 148
E 1 t E u _ |7
Jor Eab g0 RaWD60IE 5= 5 o= sy
< Cl[uller@ve) + 1Vl La(ave)) < o

Hence there exists a positive constant C such that

"Ra(f)(s,y) ‘e@’me‘e'sdsdy-

(1+B)n+62

\F(f)(u+i6,E+in)| < Ce 4
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Proof. of Theorem 3.

We will divide the proof in several cases.
1 st case ab > %.
Consider the function / defined on C? by

WO =Evy  (nEFalNr8), (4.28)

with y=pu +i0 € C and { = & +in € C. This function is entire on C? and
using (4.27) we obtain:

W, OI<CELy | (1.8), (4.29)
for all £,y € C. On the other hand we have

Jtoxt w8l = [ oL L (.8)Falf) (1) ldudt,

Eyip o (1.8)[Fa(f)(1,8)l

= /2 log™[ £ 1 JAE iippea—n 1 (U, &)dudé
]R+ 4aB '1+B
E, . L(N,éﬂfa(f)(ﬂ,éﬂ
< 1og{ —— Jdudé +

/ AE () (dab-1) 4ah 1 i (1,8)dudg,

because log* (cd) <log"(c) +d for all ¢,d > 0. Since ab > 1, (4.23) implies
that

[, 108" (. £)ldudg < (430)

From the relations (4.29) and (4.30), it follows from Lemma 2 that there
exists a constant C such that

h(.ua C) =C, (“7@) eC.

Thus

4aB 0 T+B

Using now the condition (4.23) and that ab > %, we deduce that C = 0 and hence
we obtain

V(u, Q) el Fa(f) (1, 8) =0
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Then the injectivity of F implies the result of the theorem.
Second case ab = Alf.
The same proof as for the the first step give that

Fa(f) :CE1+ﬁ 1
4aB 1+
with |C| < A. Thus
f =y

Third case ab < %

In the sequel we will construct a family of nonzero functions which satisfy the
conditions (4.22),(4.23). By considering the family of functions cEs g, we see
that

Fa(f)=cEiyp
45p

T
These functions clearly satisfy the conditions (4.22),(4.23) for all d € (b, ﬁ)
The proof of the Theorem is complete. O

The following is an immediate corollary of Theorem 3.
Corollary 2. Let f be a measurable function on Ri such that
E,3f € LP(dvq) +LI(dVa) (4.31)

and

E 1+p) (U, 8) | Fa(f) (1, 8)]dudé < oo, (4.32)

Tp
for some constants a > 0,5 >0, 1 < p,q < o0, 0 < r < oo, Then
Ifab > %, we have f = 0 almost everywhere.

If ab < J, for all § € (b, ﬁ), the functions of the form CE; g satisfy (4.31)
and (4.32).

5. Beurling’s theorem for the Generalized Fourier transform

Beurling’s theorem and Bonami, Demange, and Jaming’s extension are gener-
alized for the generalized Fourier transform as follows.

Theorem 4. Let N € N, § > 0 and f € L*(dvg) satisfy

FEFa A EDREN o6
e INdvy (r,x)dtdy < oo, (5.33
/R/R T alrx)didy <=, (5.33)
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where R is a polynomial of degree m. If N > md + 4, then

f(rx) = Z aW; (r,x) a.e., (5.34)

N-m§—2
< =5

where s > 0, a; € C and VT/IS is given by (2.15 ). Otherwise, f(r,x) =0 almost
everywhere.
Proof. We start the following lemma.

Lemma 5. We suppose that f € L?(dV,) satisfies (5.33). Then f € L' (dvy).

Proof. We may suppose that f is not negligible. (5.33) and the Fubini theorem
imply that for almost every (¢,y) € R2,

[ Fa(£)O)IIR(,y)[° I sl gy, (o < o
(T )IDY /Rg (1+[(nx)|)V Pdve(rx) <

Since f and thus, F(f) are not negligible, there exist (f9,y0) € R?, (f0,y0) #
(0,0), such that

Fa(f)(thJ’O)R([OJO) 7é 0.
Therefore,

Sl el ool
_ WAL (s YOldvy (r,x) < oo
/Rg TSI o)

S el 0,y0)l Lforl ()l it foll N ()] ()
ince ——— —— > 1 for large ||(r,x)||, it follows t at/ f(rx)|dve(rx) <
(L+ ()Y Y ¢ .

This lemma and Proposition 2 imply that "Ry (f) is well-defined almost every-
where on ]R_zi_. By the same techniques used in [7], we can deduce that

/ / eH(r’x)HH<t"y)H|tRoc(f)(ryx)|\]:O(tRa)(f)(fv)’)||R(f,y)|6dva(rx)dtdy<oo
R2 JR2 ’ ‘

(L[l + 1 EIDY
According to Theorem 2.3 in [25], we conclude that for all (r,x) € R2,

"Ra(f)(rx) = P(r,x)e—w'ﬁ”z

where s > 0 and P a polynomial of degree strictly lower than meféfz. Then by
(2.9),

ll(r0) |2

Falf)(t,y) =Foo 'Ra(f)(t,y) = Fo (P(r,x)e* % )(tjy) — 0(1,y)e NI,
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where Q is a polynomial of degree degP. Then by using (2.15), we can find
constants @; such that

FaNen=Fa( L aW)e).

M< N—;25—2
By the injectivity of F the desired result follows. O

As an application of Theorem 4, by using the same techniques in [19],
we can deduce the following Gelfand-Shilov type theorem for the generalized
Fourier transform.

Corollary 3. LetN,m € N, 8 >0, a,b >0 withab > }, and 1 < p,q < e with
%—l—é = 1. Let f € L*(dvy) satisfy

F(rx) e 7 NI
rnx)e »r ’
/Rz Ty velrn) <= (5.35)
and
(@)1 q
FalH)(t)le s IR, y)|9
/. I drdy < (-3

for some R € Pm.

i)Ifab> 1 or (p,q) # (2,2), then f(r,x) = 0 almost everywhere.

ii) If ab = § and (p,q) = (2,2), then f is of the form (5.34) whenever
N> ’%‘S +2 and r = 2b?. Otherwise, f(x) = 0 almost everywhere.

Proof. Since

(2a)? (2b)1
4ab||(r,x)|[[|(z, )] < ()7 +—=—(&.») ]|,
p q
it follows from (5.35) and (5.36) that

FENFaAEN RO it
abll N ENN gy, (7, x)dtdy < oo
/R/R T+ [N+ DD alr )iy

Then (5.33) is satisfied, because 4ab > 1. Therefore, according to the proof of
Theorem 4, we can deduce that

/ / IR o (f) (10| Fo(‘Ra) (f) (6,9 [1R(2, )|
R2 JR2 (L [0l 1D

dvg(r,x)dtdy < eo,
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and "Ry (f) and f are of the forms

(o) 2

"R (f)(rx) = P(rnx)e” & and Fo(f)(t,y) = Q(t,y)e *IEMIF

where s > 0 and P,Q are polynomials of the same degree strictly lower than
%. Therefore, substituting these from, we can deduce that

~(VSIE =57 101 (dab—1)] ()] 110)]] 5
Joo Ji© 2 ¢ PEDICERRED | s <

L+ M+ DY

When 4ab > 1, this integral is not finite unless f = 0 almost everywhere. More-
over, it follows from (5.35) and (5.36) that

IP(r, ) [~ 10 P o 5101
.

T Aoy eln) <

and

(20)1 q
£ ) eI DI Ry 18
/2 ’Q( ’y)|e - | (7y)| dldy<oo.
RS

(1+ @DV

Hence, one of these integrals is not finite unless (p,q) = (2,2). When 4ab = 1
and (p,q) = (2,2), the finiteness of above integrals implies that r = 2b and the
rest follows from Theorem 4. O

6. Quantitative Uncertainty Principle For the generalized Fourier trans-
form

We shall investigate the case where f and Fq(f) are close to zero outside
measurable sets. Here the notion of “close to zero” is formulated as follows.
If feLP(dvy), 1 < p <2, is e-concentrated on a measurable set E C R%r if
there is a measurable function g vanishing outside E such that ||f — g]| Lr(dve) <
€ fllzr(av,)- Therefore, if we introduce a projection operator Pr as

) f(rx) if(nx) €E
Peflr) = {0 if (x) ¢ E,

then f is e-concentrated on E if and only if || f — Pe f||1r(avy) < €l f | (ava)-
We define a projection operator Qw as

Ow f(1x) = Fo' (P (Fa(1))) ().
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Similarly, we say that Fy (f) is &w-concentrated to W in L (d,) if and only if
1Falf) ~ Fal@u )l priay < W FaDlrany 63D

We note that, for measurable set E C R%r and W CT,
Owref(rx) = [ | qlt.ysna) fle)dva(e.y).
+

where

. / (p%,l(t,y)¢”7,1(r,x)dya(u,l) if (tay) €E
q(t7y’r7x) = JW
0 if (7,y)

Indeed, by the Fubini’s theorem we see that

OwPef (13) = [ FalPef)(1,2)0uarX)d¥a (i, 2)
= [, (L A09)00a(r3)dve(r.)) 0 (i)l 2)
= [ (] 003 0.9)0ua (0)ralie. 1)) dva(e.y)

The Hilbert-Schmidt norm ||Qw Pk || gs is given by

1

lowPellus = ( [, [, lattyirn) Pavat.y)dva(rn) )
T+ IR

We denote by ||T'||, the operator norm on L?(dVy). Since Pr and Qy are pro-
jections, it is clear that || Pg||» = ||Ow||» = 1. Moreover, it follows that

||Ow Pe||us > ||OwPE|2- (6.38)

Lemma 6. If E and W are sets of finite measure, then

10w PElius < y/mes, (Eymesy, (W),

where

mesy, (E) = / Ava(r,x), mesy, (W) := / AV, ).
E w
Proof. For (t,y) € E, let g ,(r,x) = q(t,y;r,x). (2.11) implies that

}—Ot(gtyy)(!iﬂ) = PW(‘I)[JJL(tvy))'
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Then by Parseval’s identity (2.12) and (2.1) it follows that

[ lateyirn)Pava(rx) = [Ty (r0)Pdva(r)
R2 R2

+

— [ 1 Falon) (2 PaYa(,2) < mesy, (W)

Hence, integrating over (¢,y) € E, we see that ||QwPg||%5 < mesy, (E)mesy, (W).
Ul

Proposition 6. Let E and W be measurable sets and suppose that

£l 22(ave) = 1Fa(F)ll 2@y = 1-

Assume that € + &y < 1, f is gg-concentrated on E and Fy(f) is &y concen-
trated on W. Then

mesy, (E)mesy, (W) > (1 — &g — ew)*.

Proof. Since || f||2(avy) = 1Fa(F)ll2(avy) = 1 and €¢ + &w < 1, the measures
of E and W must both be non-zero. Indeed, if not, then the €g-concentration of
f implies that
I1f = Pefll2ave) = If |2 (ave) = 1 < €,

which contradicts with €g < 1, likewise for Fy(f). If at least one of mesy,, (E)
and mesy, (W) is infinity, then the inequality is clear. Therefore, it is enough
to consider the case where both £ and W have finite positive measures. Since
||Ow||2 = 1, it follows that

1f = OwPEfIlr2(ave) < IIf = Ow flli2(avy) + 11O f — OwPE fll12(ave)
<ew +1Qwll2llf — Peflli2(avy)
<& +é&w

and thus,

OWPE fll 2(ave) = N2 (ave) = IIf = OWPES |2 (ave) = 1 — €6 — €W

Hence ||QwPe||2 > 1 — &g —&w. (6.38) and Lemma 6 yields the desired inequal-
ity. OJ

Let By (4v,)(T), 1 < p <2, the subspace of all g € L”(d V) such that Qrg =
g. We say that f is e-bandlimited to T if there is a g € Byy(gy,)(T) with |[f —
gllr(ave) < €NfllLr(avy)- Here we denote by ||Pgl|, the operator norm of Pg
on L7(dVvq) and by ||Pg||, 7 the operator norm of Pg : Bry(gy,)(T) — LP(dVa).
Corresponding to (6.38) and Lemma 6 in the L?(dVv,) case, we can obtain the
following.
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Lemma 7. Let E and T be measurable sets of R? . For p € [1,2], we have

1

I1Pellpir < (mesv, (Eymesy, (T))".

Proof. For f € Byp(ay,)(T) we see that

1) = [ et Falh) (w2 )dralit, ).

By (2.1), Holder’s inequality and Proposition 4

19 < (mesy (1)) 1)

1

< (meSYa(T)>p||fHLp(dVa)'

L (dYa)

Therefore

1

Pelurtany = ([ 1907 dva(r0)) " < (mess, (E)mesy (1)) "1 us(avs)

Then, it follows that for f € By (ay,) (W),

P

P
1Pz /1L (ave) < (mesva(E)mesm(T)) )

£ 11zr ave)
which implies the desired inequality. O

Proposition 7. Let f € LP(dvy). If f is gg-concentrated to E and &7 bandlim-
ited to W, then
1—€eg—¢€r

1
(mesva (E)mesya(T)) "> e

Proof. Without loss of generality, we may suppose that || f||.»(4v,) = 1. Since
f is €g-concentrated to E, it follows that ||Pgf||zr(avy) > [Ifllzr(ave) — IIf —
Pefllir(avy) = 1 — €6. Moreover, since f is €r-bandlimited, there is a g €
By (avy) (W) with ||g — f||1r(av,) < €r. Therefore, it follows that

P8I Lo (avy) = [1PES Lo (dve) = I1PE(§ = F)lLr(ave) = IPES Lo (avy) — €7 = 1 — €E — €7

and |[g|zr(avy) < |fllzr(avy) +€r = 1+ €r. Then, we see that

I|PEgl|Lr(avy) _ 1 — € —€r
gllr@avey —  1ter

Hence ||Pgl|pw > l_ffis_TST and Lemma 7 yields the desired inequality. O
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Proposition 8. Let f € L!(dvy) NL*(dvy) with 1fll2@ve) = 1. If fis €g-
concentrated to E in L' (dvg)-norm and F(f) is €r-concentrated to T in
L?(dYy)-norm, then

mesu,(E) > (1= €6) /Py and  mesy, (D)f121a0,) > (1 €3):

In particular,
mesy, (E)mesy, (T) > (1 — er)?(1—g2).

Proof. By the orthogonality of the projection operator Pr, || f|2(av,) =
| Fa ()l 12(ay) = 1 and f is er-concentrated to W in Ly, -norm, it follows that

1P (Fal D)y = 1Fal ) oany = 1 FaF) = Pr(Fal ) 2o agey > 1 — 82,

and thus,

1_g2 < /T ol £)(E) P (1, 4)

< mesy, ()| Fa(F) Beary < mesy (DA ave)-

Similarly, f is eg-concentrated to E in L' (d v )-norm,

(1= &) fllz1 (ave) < /E [f(0)]dve)(x) < y/mesy, (E)

Here we used the Cauchy-Schwarz inequality and the fact that || f|;2(4v,) =
1. 0

Proposition 9. Let E and T be measurable subsets of R2, and f € LP(dvy)
for p € (1,2]. If f is gg-concentrated to E in LP(dVvy)-norm and Fy(f) is er-
concentrated to T in L” (d7, )-norm, then

(mesy, (E)mes (T))# > (1= &)1 Fa ()l g — Erllfllerave)
Va Yo .

1 2r (ave)

Proof. Let f € LP(dvy) for p € (1,2]. As above

1 Fa(f) = FalQrPe )l 1r (avy) < IFalf) = FalQr)I1r (avy)
+ [ FalQrf) = FalQrPe /i (avy)
< gTH]:a(f)HLp’(dva) H1f = Peflleravy)
< 8T‘|~7:oc(f)‘|Lp/(dvoc) +£EHfHL1’(dva)
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and thus,

||]:05(QTPEf)||L1"(dVa) > ||]:a(f)||LP/(dva)_||]:a(f)_]:a(QTPEf)HLpl(dva)
> (1= en) Pl gy~ 2 i

On the other hand, it is easy to obtain

|| Fa(QrPES)|,» (dve)

A lr ave)

N

< (mesva (E)mesy, (T))
Hence

1
(mesy, (E)mesy, (T)) 7 || fl|1r(ava) = (1= €£)1Fa ()l 1 (ay,) — 71 1| Lr (@va)
which gives the desired result. O

Proposition 10. Let f € L' (dvy) NLP(dvy), p € (1,2]. If f is gg-concentrated
to E in L'(dvg)-norm and Fy(f) is er-concentrated to T in L” (dy)-norm,
i 7]

(mesvy (E)mesy, (T))7 > (1 gg) (1 — ) - 1),
£l e (ave)

Proof. Let f € L(dvy) NLP(dVy), p € (1,2]. As Fo(f) is €r-concentrated to
T in L}, -norm, it follows that

IN

er | Fa )l g+ ( [ 1FalHAas)l dre) o))"
er|Fal Pl gy + (Mesre (D)7 | Fal Dl i)

||]:a(f)HLp’(dya)

IN

Thus from Proposition (2.9),

(1= &) | Fa (N1 (ay,) < (mesy (T)7 1111 (ava)- (6.39)

Similarly, using f is €z-concentrated to E in L'(dVvg)-norm, and Holder in-
equality, we obtain

1
(1= ee)lf |zt (avy) < (mesy, (E)7 | fll 1 (ave)- (6.40)
Combining (6.39) and (6.40), we obtain the result. ]

Proposition 11. Let s > 0. Then there exists a constant C; (¢, s) such that for
all
feLY (dve) NL*(dVe)

24 gy ;
/112 if;” <Ci(a, S)Ilfl\,f?‘*jva 18, ) F A2y, (6.41)



Qualitative and quantitative uncertainty Principles ... 195
Proof. Let A > 0. From Plancherel’s theorem we have

1172 0av) = 1 Fa (72
= |[1o-1(8, (0.4)) Fa(f )Hiz(dm +{I(1 - 19*'(B+(0,A)))]:oc(f)H%z(dya)
By (2.2) and (2.10)

o158, 0.4 Fal D 72(ar) < Hinl(dVa)/Rz 1 (0.4)(rX)dVe(r.x).
¥

By a simple calculations we find
A2(x+3

m”f”u (dvg)*

||1971(B+(07A))]:(x(f)|‘iz(dya) =

On the other hand

A1 =19 (B, (0,4)) HG(/I W Fa(f )H%Z(dya)

H(] — 1971(B+(0,A)))]:(X(f)||12‘2(d'}’a> 2
A7Y||]10(A, )| Falf)

IN A

‘ |L2 d Yoc)
It follows then

A2(x+3

2s K 2
mllflly (@ve) TA IO I Fa (2070 -

112 <

Minimizing the right hand side of that inequality over A > 0 gives

2(2043)
11122 (avq) < Clr,9)] If!\,f‘f‘*;x;\! 164, 1) I[P F(f )Hiz*f;;“ (6.42)
The desired result follows immediately from (6.42). [l

Proposition 12. Let s > 0. Then there exists a constant C; (¢, s) such that for
all
feL (dve) NLA(dVe)

1+ o o S
A1 f,v” <G(a, S)HfHZz*jv 1 112 ave)- (6.43)

Proof. Let A > 0. We have

£ (ave) < 1B, 0.4 L (@ve) T 11 =18, 0.4) F1lLt (@ve)-
By Cauchy-Schwarz inequality we obtain
A2(X+3

M)> £ 1l 22(ave)-

1B, 0.4 1L @vy) < (



196 H. Mejjaoli and Y. Othmani
On the other hand

N =15, 0u)fi@vey < ATZINNEZ =15, 04)f 1L (@ve)-

It follows then
A20H-3

1
2 —2s 2s
sririard) Ml = A

e avey < (
Minimizing the right hand side of that inequality over A > 0 gives

A1l ave) < €@, )17 \Zi‘tﬁj [H](rx) 112 £1 I,‘f‘.*if‘v” (6.44)

The desired result follows immediately from (6.44). ]

From the previous results we deduce the following variation on Heisenberg’s
uncertainty inequality for the generalized Fourier transform.

Theorem 5. Let s > 0. Then for all f € L' (dvy)NL*(dVe)

1172 ave) 1111 (ave) < Cr(0t,8)Co (e, )P F 1L (avg T A I Foc (I
(6.45)

Proof. The result follows immediately by multiplying inequality (6.41) by (6.43)
O

Proposition 13. Let s > 0 and let W a measurable subset of I" with 0 < mes,, (W)
< oo. Then there exists a constant C(a,s) such that for all f € L' (dvg) NL*(dVe)

[ Tw Fa(F)lr2(ay,) < Cet;5)y/mesy, (W )Ilf\lﬁ?ﬁ,“vf 1, X)Hchllzi*if‘vf
(6.46)

Proof. We have

1w Fa(Nlr2ay,) < \/mesy, W Fa(Hl= @) < \/mesy (WISl avy)-

The desired result follows from Carlson Inequality (6.44). O
We adapt the method of Ghorbal-Jaming [13], we obtain.
Theorem 6. Let E, W be a pair of measurable subsets such that
0 < mesy, (E),mesy, (W) < co.

Then the following uncertainty principles hold.
1) Local uncertainty principle of Fy
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(1) For 0 <s < 20‘; 3 there exists a constant C(ct,s) such that for all
ferl*(dvy)

11w Fa ()l 2y < Cletss) (mesy, (W) ||| (50 fll 2avg)- - (6:47)

(i) For s > 2% there exists a constant C(e,s) such that for all f €
L*(dve)

1w Fa(F)lr2ay,) < Cletss)y/mesy, W [|(nx0)[[ f”Lz (dva) ||fHLz

(6 48)
2) Global uncertainty principle of Fy
For s,¢ > 0, there exists a constant C(«,s) such that for all f € L?(dVg)

I in}’dva 84, )| Falf )I!E’dy C(e,9)|If 12z, (6:49)

We put
(A, ) = NIEAWIP - forall A, p € R.

Lemma 8. Let 1 < g < . We have
_ 2043
|| a(ayg) S Ct™ 20
Proof. Let 1 < g < oo. Using the relation (2.2), we obtain the result. 0

Lemma 9. Let ] <p<2and0<a< 2‘;%3. Then for all f € LP(dvy) and
t>0,

e eI 7, (£)]

2ty < CE AN f 1 o (v (6.50)

Proof. Inequality (6.50) holds if || [|(r,)[|*f]|r(av,) = -
Assume that || [|(r,)||* f||r(av,) < o For s >0 let fy = fxp(,) and f* =
[ = fs- Thensince, [ f*(r,x)| <s™[[|(nx)[|*f (rx)],

—t[e(A.w)II?

A

‘|971H9(/1’“)”2]:a(fXB(OVs)C)‘|Ln’(dya) [le

i) | Fa 200,90 |7

< lfxBo,s) e ave)
< S_”HH(W)H”f”u(dva)~

By Proposition 4 and Holder’s inequality

e 1R Fo(fapoallir ey < N R 11 Fa(F 2500l

e ORIy g 1 X0, 121 (i)

INIA

On the other hand,

1 xs0s)lei@ave) < G Xs0.5) | (@ve) TN F 2o (ava) -
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A simple calculation give that

1 L0 s (0 = Cla0)s 7~
So

_ 2 - B ’ s
||l 1eEmIP £, (f i (aye) < lle tll6(A.mIP FalF)lw ay,) +le Aol Fa(F) ' (ay)

2 20+3
< Cs (14 IOABITY Ly s TN F Lo (ave)-
Choosing s = ¢2, we obtain (6.50). 0

Theorem 7. Let1<p§23nd0<a<2°;773andb>0. Then for all f €
LP(dvy)

1Fel P gy < U A 100 P Fa(DIEE, - (651)

Proof. Letl <p<2and0<a< 201‘%3. Assume that b < 2. From the previous
lemma, for allr > 0

Iy

H‘FOC (f)HLl)’(d'ya) < ‘|671H9(17H)||2]_—a (f)HLI’/(d’ya) + H(l 7e*t‘|9(l u) ) ( )HLI (dve)

"y

< G liptavgy + 111 =IO Ea () -

On the other hand, [|(1— ¢~ /19G401) Fo ()4, = 14110102 IP) 21

—e 1Ay |6 (1, )| [P Fo(f PN (ayy)- Since (1—e ™)1~ 2 is bounded for ¢ >
0 if b < 2. Then, we obtain

a a b
1Fa ey < (NI lriave) + IO P Fal ) g )

from which, optimizing in ¢, we obtain (6.51) for 0 < a < 20;—,” and b < 2.

Ifb>2, let b’ <2. Foru>0and b’ < b, we have u” < 1+ u®, which for
u = L0 ’“)H gives the inequality (”9(/187’”)“)1’/ <1+ (”9(17’”)“)1’ for all € > 0.
It follows that

110G Fal )l agy) < € + € PIOA M Fal )l )

Optimizing in €, we get the result for b > 2.

/

/ b=t
8P Fa )l gy < I3 g 11O Fa ) s

Together with (6.51) for b > 2. ]
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Corollary 4. Leta,b > 0. For all f € L*(dVg), we have
122 (ave) <C\|H("X)H“fHZ§bdv& 16 (1, A)|I"Falf )HZ?ZY (6.52)

Proof. Using the previous theorem for p = 2, and applying Plancherel formula,
we obtain the result when 0 < a < M fa> M Jletad < %. Foru >0,

u® < 1+ u® which for u = H( 21l gives the 1nequahty

( )¢ < 14( )¢, forall € > 0.

It follows that

1)1 A2 vy < €N 2ave) + € TNED N2 av)-

Optimizing in €, we obtain

HH(rax)Ha,fHLz(dva)SCHfHZ o X[ fHLz dve) (6.53)

Then, by (6.52) for (a’ and b), and (6.53), we deduce that

fll2gave) < CIIH(H)II“fHZz*Zva|||/1|bfa( )II"”

bla—d) db

< CIIfIILz“,}Vh HII(M)H“fIIZ(z"jv“ 1116w, M)I]" Fa(f )Ilzzﬁ’}y
Thus
a(a+b) db b
a'+b) a(a"+b a
11175 vy < CUTEN AU g 16, DIP Fal f )HLZ*ZY
which gives the result for a > %. O

Remark 3. The previous corollary generalize the result proved in [26].

Let T be a measurable subset of R2. Let b > 0 and let f € LF(dvy), p €
[1,2]. We say that || (i, A)|[? Fy(f) is e7-concentrated to T in L” (dg )-norm,
if there is a function % vanishing outside 7 such that

1118, M Fa(f) = bl gy < er 118 )1 Fal )l (-

From (6.37), it follows that || (i, A)||”FA(f) is er-concentrated to T in
L” (dg)-norm, if and only if

1116 (1, )P Fa(f) =118, M Fo(Qr )] 1 4y < €110 (1 NI Fal N1 4
(6.54)
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Corollary 5. Let T be a measurable subset of R%, and let 1 < p <2, f €
LP(dvy) and b > 0. If ||0(, A)||P Fo(f) is er-concentrated to T in L¥ (dYy)-

norm, then for 0 < a < 20;”
F < C a+b 6 l bJT_' ﬁ
IFaDl iy < g NN 110068 NPT @r D,

(6.55)

Proof. Let f € LP(dvg), 1 < p<2. Since ||6(u,A)||>Fu(f) is er-concentrated
to T in L” (d7y )-norm, then we have

I |fe(u,l)f‘bfa(f)‘|L1’/(d7/a)

< erl[ 100, )P Fal Pl iy + 110G AN Fal Dl -

Thus
1 a_
o(u,A)|° ath < ——|Ile(u,A)|? at
1116 (e, V1" Fa(f )HL,? ) = 1 ep)s 16w WP FAQRT N 4y
Multiply this inequality by C||||(r,x)||*f]]| Z;b (dvy) and applying theorem 7 we
deduce the desired result. O

We proceed as the previous corollary and using Corollary 4 we obtain the
following.

Corollary 6. Let 7 be a measurable subset of R2, and let f € L?>(dvy) and
a,b>0.
If ||6(1, A)| [P Fo(f) is €r-concentrated to T in L?(d7,)-norm, then

C a a a
1 lle2avy < 7~z N0l fHLI”dva 1116 (1, 2)[|” Fa( QTf)HLf’dY

(1—gr)a
(6.56)
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