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R-PARTS AND MODULES DERIVED FROM STRONGLY
U-REGULAR RELATIONS ON HYPERMODULES

S. M. ANVARIYEH - S. MIRVAKILI - B. DAVVAZ

This paper concerns a new relationship between hypermodules and
modules. We generalize the notion of complete parts and θ -parts by the
notion of ℜ-parts on hypermodules and then ℜ-closures of hypermodules
as a generalization of θ -closures are defined. In addition, we give the
notion of a strongly U-regular relation on hypermodules and investigate
some properties of it.

1. Introduction

If M is an R-hypermodule [1] and ρ ⊆M×M is an equivalence relation, then
for all pairs (A,B) of non-empty subsets of M, we set AρB if and only if aρb
for all a ∈ A, b ∈ B. The relation ρ is said to be strongly regular to the right if
xρy implies x+ a ρ y+ a and r · x ρ r · y for all x,y,a ∈ H and r ∈ R. Analo-
gously, we can define strongly regular to the left. Moreover ρ is called strongly
regular if it is strongly regular to the right and to the left. Let M be a hyper-
module and ρ an equivalence relation on M. Let ρ(a) be the equivalence class
of a with respect to ρ and set M/ρ = {ρ(a) | a ∈ M}. The hyperoperations
⊕ are � are defined on M/ρ by ρ(a)⊕ρ(b) = {ρ(x) | x ∈ ρ(a)+ρ(b)} and
r�ρ(a) = {ρ(z)|z ∈ r ·ρ(a)}. If ρ is strongly regular then it readily follows
that ρ(a)⊕ρ(b) = {ρ(x) | x ∈ a+b} and r�ρ(a) = {ρ(x)|x ∈ r ·a} It is well
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known for ρ strongly regular that (M/ρ,⊕,�) is an R-hypermodule. That is
ρ(a)⊕ρ(b) = ρ(c) for all c ∈ a+b and r�ρ(a) = ρ(x) for all x ∈ r ·a [1].

Several relations have been studied in hypergroups, hyperrings and hyper-
modules such β ,γ,ε,θ etc., for example see Anvariyeh et al. [1–4], Corsini and
Leoreanu [6], Davvaz et al. [8, 9], Freni [10, 11], Koskas [12] and Vougiouklis
[15–17]. Complete parts were introduced by Koskas [12] and studied then by
Corsini [5], Davvaz and Karimian [7], Miglirato [13], Mousavi et al. [14], and
others.

Let M be an R-hypermodule. We consider the relation ε on M as follows
[16]:

xεy ⇔ x,y ∈
n

∑
i=1

m′i; m′i = mi or m′i =
ni

∑
j=1

(
ki j

∏
k=1

xi jk)zi,

mi ∈M, xi jk ∈ R, zi ∈M.

The fundamental relation ε∗ on M can be considered as the smallest equiv-
alence relation such that the quotient M/ε∗ be a module over the corresponding
fundamental ring such that M/ε∗ as a group is not abelian [1, 16]. Now, we
recall the following definition from [1].

Definition 1.1. [1]. Let M be an R-hypermodule. We define the relation θ as
follows:

xθy ⇐⇒ ∃ n ∈ N, ∃(m′1, . . . ,m′n), ∃(k1,k2, . . . ,kn) ∈ Nn, ∃σ ∈ Sn,

∃(xi1,xi2, . . . ,xiki) ∈ Rki , ∃σi ∈ Sni , ∃σi j ∈ Ski j ,

such that

x ∈
n

∑
i=1

m′i; m′i = mi or m′i =
ni

∑
j=1

(
ki j

∏
k=1

xi jk)mi

and

y ∈
n

∑
i=1

m′
σ(i),

where
m′

σ(i) = mσ(i) if m′i = mi and

m′
σ(i) = Bσ(i)mσ(i) if m′i =

ni

∑
j=1

(
ki j

∏
k=1

xi jk)mi,

with

Bi =
ni

∑
j=1

Aiσi( j), Ai j =
ki j

∏
k=1

xi jσi j(k).
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If θ ∗ is the transitive closure of θ , then θ ∗ is a strongly regular relation on M
as an R-hypermodule [1]. The fundamental relation θ is not transitive in general
[2]. The following theorem gives the sufficient conditions, that the relation θ is
transitive.

Theorem 1.2. [3]. Let R be a commutative hyperring. If M is an R-hypermodule
and for every m ∈M, R ·m = M, then the fundamental relation θ is transitive
on hypermodules.

2. θ -parts and ℜ-parts of hypermodules

In this section, we begin with the definition of θ−parts of hypermodules which
are valid in every hypermodule [3]. In the following m′i is the notation that
defined in Definition 1.1.

Definition 2.1. [3]. Let M be an R−hypermodule and H be a non-empty subset
of M. We say that H is a θ -part of M if for every n ∈ N, for every σ ∈ Sn and
for every (m′1, . . . ,m

′
p)

p

∑
i=1

m′i∩H 6= /0⇒
p

∑
i=1

m′
σ(i) ⊆ H.

H is said to be a complete part of M, if σ is identity.

Now, we generalize the notion of complete parts and θ -parts and by the
notion of ℜ-parts and then we study ℜ-closures in hypermodules. Recently,
R-parts in (semi)-hypergroups introduced by Mousavi, Leoreanu-Fotea and Ja-
farpour [14].

Let M be an R-hypermodule and U be the set of finite sums of ∑
p
i=1 m′i and

ℜ be a relation on M.

Definition 2.2. For a nonempty subset A of M, we say that A is a left ℜ-part of
M with respect to U (or briefly in LℜU -part) if for all ∑

p
i=1 m′i and ∑

q
i=1 z′i in U

the following implication is valid(
p

∑
i=1

m′i∩A 6= /0 and
q

∑
i=1

z′i ℜ

p

∑
i=1

m′i

)
⇒

q

∑
i=1

z′i ⊆ A.

Similarly, we can define a right ℜ-part of M with respect to U (or briefly in
RℜU -part). A is an ℜ-part on M with respect to U (or briefly in ℜU -part) if it
is an LℜU -part and anRℜU -part.
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Remark 2.3. By Definition 2.2, it is straightforward for any nonempty subset
A of a hypermodule M, A is an Lℜ

−1
U -part (Rℜ

−1
U -part) if and only if A is an

RℜU -part (LℜU -part).

Now, we recall that a KM-semihypergroup is the semihypergroup construct-
ed from a semihypergroup (M,+) and a family {A(x)}x∈M of nonempty and
mutually disjoint subsets of M. Set KM =

⋃
x∈M A(x) and consider the hyperop-

eration ∗ on KM as follows:

∀(a,b) ∈ K2
M; a ∈ A(x), b ∈ A(y), a∗b =

⋃
z∈x+y A(z).

Then, (M,+) is a hypergroup if and and only if (KM,∗) is a hypergroup (see
Theorem 375 [5]).

Theorem 2.4. Let (M,+, ·) be an R-hypermodule. Then, the (KM,∗,◦) is an
R-hypermodule.

Proof. We define the scalar hyperoperation ◦ as follows:

r ∈ R, a ∈ A(x); r ◦a :=
⋃

z∈r·x A(z).

Suppose that r,s ∈ R and a ∈ A(x), b ∈ A(y). Then,
(1)

(r+ s)◦a =
⋃

z∈(r+s)·x A(z) =
⋃

z∈r·x+s·x A(z)
=
⋃

m1∈r·x,m2∈s·x
⋃

z∈m1+m2
A(z)

and

(r ◦a)∗ (s◦a) = (
⋃

k∈r·x A(k))∗ (
⋃

t∈s·x A(t))
=
⋃

k∈r·x,t∈s·x
⋃

w∈k+t A(w).

(2)

r ◦ (a∗b) = r ◦ (
⋃

z∈x+y A(z)) =
⋃

z∈x+y r ◦A(z)
=
⋃

z∈x+y
⋃

u∈r·z A(u) =
⋃

u∈r·(x+y) A(u)

and

(r ◦a)∗ (r ◦b) = (
⋃

k∈r·a A(k))∗ (
⋃

t∈r·b A(t))
=
⋃

k∈r·a,t∈r·b
⋃

w∈k+t A(w) =
⋃

u∈(r·x+r·y) A(u).

(3)

r ◦ (s◦a) = r ◦ (
⋃

z∈s·x A(z)) =
⋃

z∈s·x
⋃

u∈r·z A(u)
=
⋃

u∈r(s·x) A(u) =
⋃

z∈(rs)·x A(z) = (rs)◦a.

Therefore, KM is an R-hypermodule.
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For all P ∈℘∗(H), set A(P) =
⋃

x∈P A(x).

Theorem 2.5. If ℜ is a relation on U , then P is an LℜU -part of hypermodule
M if and only if A(P) is an Lℜ̂U -part of KM, where the relation ℜ̂ is defined as
follows: ⋃

v∈∑
p
i=1 m′i

A(v) ℜ̂
⋃

u∈∑
q
i=1 z′i

A(u)⇔
p

∑
i=1

m′i ℜ

q

∑
i=1

z′i

Proof. Suppose that A(P) is an Lℜ̂U -part of KM, and
(
∑

p
i=1 m′i,∑

q
i=1 z′i

)
∈ ℜ is

such that ∑
q
i=1 z′i∩P 6= /0. So,⋃

v∈∑
p
i=1 m′i

A(v) ℜ̂
⋃

u∈∑
q
i=1 z′i

A(u)

and
q

∑
i=1

z′i∩P 6= /0 =⇒ ∃p ∈ P, such that p ∈
q

∑
i=1

z′i

=⇒∃p ∈ P, such that A(p)⊆
⋃

u∈∑
q
i=1 z′i

A(u)

=⇒
⋃

u∈∑
q
i=1 z′i

A(u)∩A(P) 6= /0.

=⇒
⋃

u∈∑
p
i=1 m′i

A(v)⊆ A(P), because A(P) is a Lℜ̂U −part.

For all t ∈∑
p
i=1 m′i, A(t)⊆ A(P), so there exists q ∈ P such that A(t)∩A(q) 6= /0.

Thus, t = q and hence t ∈ P. Therefore, ∑
p
i=1 m′i ⊆ P.

Conversely, suppose that ∗∑
p
i=1 m′i∩A(P) 6= /0, where ∗∑ denotes a hyper-

sum of KM. Suppose that ∗∑
q
i=1 z′i ℜ̂ ∗∑

p
i=1 m′i. Then, there exists (x1, . . . ,xp)

such that for any ti ∈ m′i (1≤ i≤ q), ti ∈ A(xi). Now, if

u ∈
⋃

y∈∑
p
i=1 xi

A(y)∩A(P),

then u ∈ A(y0) for some y0 ∈ ∑
p
i=1 xi. Since u ∈ A(P), there exists y1 ∈ P such

that u ∈ A(y1). So, A(y0)∩A(y1) 6= /0, which implies that y0 = y1 ∈ ∑
p
i=1 xi∩P.

Since P is an LℜU -part of M and ∑
q
i=1 vi ℜ ∑

p
i=1 xi, where ui ∈ z′i, ui ∈ A(vi) for

all 1≤ i≤ q. It follows that ∑
q
i=1 vi ⊆ P. Therefore,

q

∑
i=1

z′i =
⋃

w∈∑
q
i=1 vi

A(w)⊆
⋃
l∈P

A(l) = A(P).
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3. ℜ-closure and ℜ-parts of hypermodules

Let M be an R-hypermodule and U be the set of finite sums of ∑
p
i=1 m′i andR be

the relation on M. The intersection of all LℜU -parts (or RℜU -parts, ℜ-parts)
which contain A is called LℜU -closure (orRℜU -closure, ℜ-closure) of A in M
and it is denoted by LℜU (A) (orRℜU (A),ℜU (A)).

Remark 3.1. By Remark 2.3, for any nonempty subset A of a hypermodule M,
A is an Lℜ

−1
U -part (LℜU -part) if and only if A is an RℜU -part (Rℜ

−1
U -part).

So, immediately, we obtain

Lℜ
−1
U (A) =RℜU (A)

(
Rℜ

−1
U (A) = LℜU (A)

)
.

For a nonempty subset A of M, we define:

A∑
U :=

{
ℜ⊆ U ×U | LℜU (A) = A

}
and

∑
U
A :=

{
ℜ⊆ U ×U | RℜU (A) = A

}
.

Lemma 3.2. If A∑
U 6= /0 (or ∑

U
A 6= /0), then (A∑

U 6= /0,◦) (or (∑
U
A 6= /0,◦)) is

closed under the composition ◦ of relations.

Proof. Suppose that ℜ,ℜ′ ∈ A∑
U and

(
∑

p
i=1 m′i,∑

q
i=1 z′i

)
∈ U ×U are given.

Also, let ∑
p
i=1 m′i∩A 6= /0 and ∑

p
i=1 z′i ℜ◦ℜ′ ∑

p
i=1 m′i. So, there exists (y′1, . . . ,y

′
k)

such that ∑
k
i=1 y′i ℜ ∑

p
i=1 m′i and ∑

q
i=1 z′i ℜ′ ∑

k
i=1 y′i. From ∑

k
i=1 y′i ℜ ∑

p
i=1 m′i and

ℜ∈ A∑
U it follows that ∑

k
i=1 y′i⊆A. Since ℜ′ ∈ A∑

U and ∑
q
i=1 z′i ℜ ∑

k
i=1 y′i, we

obtain that ∑
q
i=1 z′i ⊆ A. Hence, A∑

U and so (∑
U
A 6= /0,◦) is a semigroup.

Theorem 3.3. Let ℜ be a permutation of finite order in SU . If A is LℜU -part,
then A isRℜU -part.

Proof. Since A is LℜU -part, LℜU (A) = A and hence ℜ ∈ A∑
U . Since ℜ is

a permutation of finite order in SU , < ℜ >= {ℜn | n ∈ N} is a subgroup of

A∑
U and so ℜ−1 ∈ A∑

U . By Remark 3.1, A = Lℜ
−1
U (A) =RℜU (A). Thus,

ℜ ∈ ∑
U
A and hence A is aRℜU -part.

In the following, we determine the sets LℜU (A), RℜU (A) and ℜU (A)),
where ℜ⊆ U ×U and A is a nonempty subset of M. Set KL

1,ℜ(A) = A and

KL
t+1,ℜ(A) =

{
x ∈M | ∃

(
p

∑
i=1

m′i,
q

∑
i=1

z′i

)
∈ℜ, x ∈

p

∑
i=1

m′i,
q

∑
i=1

z′i∩KL
t,ℜ(A) 6= /0

}
.
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Denote KL
ℜ
(A) =

⋃
n≥1 KL

n,ℜ(A). Similarly, set KR
1,ℜ(A) = A and

KR
t+1,ℜ(A) =

{
x ∈M | ∃

(
q

∑
i=1

z′i,
p

∑
i=1

m′i

)
∈ℜ, x ∈

p

∑
i=1

m′i,
q

∑
i=1

z′i∩KR
t,ℜ(A) 6= /0

}
.

Denote KR
ℜ
(A) =

⋃
n≥1 KR

n,ℜ(A). Finally, set K1,ℜ(A) = A and

Kt+1,ℜ(A)

=

{
x ∈M | ∃

(
p

∑
i=1

m′i,
q

∑
i=1

z′i

)
∈ℜ∪ℜ−1,x ∈

p

∑
i=1

m′i,
q

∑
i=1

z′i∩Kt,ℜ(A) 6= /0

}
.

Denote Kℜ(A) =
⋃

n≥1 Kn,ℜ(A).

Theorem 3.4. Let A be a nonempty subset of hypermodule M. Then, Kℜ(A) =
ℜU (A).

Proof. It is necessary to prove:

(i) KL
ℜ
(A) is a LℜU -part;

(ii) if A⊆ B and B is a LℜU -part, then KL
ℜ
(A)⊆ B.

In order to prove (i), suppose that ∑
p
i=1 m′i ∩KL

ℜ
(A) 6= /0 and ∑

q
i=1 z′i ℜ∑

p
i=1 m′i.

So, there exists t ∈ N such that ∑
p
i=1 m′i ∩KL

t,ℜ(A) 6= /0, which it follows that

∑
q
i=1 z′i ⊆ KL

t+1,ℜ(A)⊆ KL
ℜ
(A).

Now, we prove (ii) by induction on t. We have KL
1,ℜ(A) = A ⊆ B. Suppose

that KL
t,ℜ(A) ⊆ B. We prove that KL

t+1,ℜ(A) ⊆ B. If z ∈ KL
t+1,ℜ(A), then there

exists
(
∑

p
i=1 m′i,∑

q
i=1 z′i

)
∈ U ×U such that z ∈ ∑

p
i=1 m′i, ∑

p
i=1 m′i ℜ ∑

q
i=1 z′i and

∑
q
i=1 z′i ∩KL

t,ℜ(A) 6= /0. Hence, ∑
q
i=1 z′i ∩B 6= /0 and so z ∈ ∑

p
i=1 m′i ⊆ B. Then,

KL
t+1,ℜ(A) ⊆ B. Hence, KL

ℜ
(A) = LℜU (A). Also, by Remark 3.1, we have

KR
ℜ
(A) = KR

ℜ−1(A) = Lℜ
−1
U (A) =RℜU (A). Therefore, Kℜ(A) = ℜU (A).

Proposition 3.5. Let A be a nonempty subset of hypermodule M and ℜ be a
relation on U . Then, ℜU (A) =

⋃
a∈A ℜU (a).

Proof. It is clear that for all a ∈ A, LℜU (a) ⊆ LℜU (A). By Theorem 3.4, we
have LℜU (A) =

⋃
n≥1 KL

n,ℜ(A) and KL
1,ℜ(A) = A =

⋃
a∈A{a} =

⋃
a∈A KL

1,ℜ(a).
We prove the proposition by induction on n. Supposing it true for n, we prove
that KL

n+1,ℜ(A)⊆
⋃

a∈A KL
n+1,ℜ(a).

If z ∈ KL
n+1,ℜ(A), then there exists

(
∑

p
i=1 m′i,∑

q
i=1 z′i

)
∈ℜ such that

z ∈ ∑
p
i=1 m′i and ∑

q
i=1 z′i∩KL

n,ℜ(A) 6= /0.
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By the hypothesis of induction, ∑
q
i=1 z′i∩

(⋃
a∈A KL

n,ℜ(a)
)
6= /0 and so there exists

a′ ∈A such that ∑
q
i=1 z′i∩KL

n,ℜ(a
′) 6= /0. Hence, z∈KL

n+1,ℜ(a
′), where LℜU (A)⊆⋃

a∈ALℜU (a). By the similar way, we can prove thatRℜU (A)=
⋃

a∈ARℜU (a).
Therefore, ℜU (A) =

⋃
a∈A ℜU (a).

Theorem 3.6. If ℜ⊆ U ×U , then the following relation KL
ℜ

(
KR

ℜ

)
on a hyper-

module M:
x KL

ℜ
y⇔ x ∈ KL

ℜ
(y)

(
x KR

ℜ
y⇔ x ∈ KR

ℜ
(y)
)
.

where KL
ℜ
(y) = KL

ℜ
({y}) (where KR

ℜ
(y) = KR

ℜ
({y}) ) is a preorder. Further-

more, if ℜ is symmetric, then KL
ℜ

(KR
ℜ

respectively) is an equivalence relation.

Proof. It is easy to see that KL
ℜ

is reflexive. Now, suppose that xKL
ℜ

y and yKL
ℜ

z.
So, x ∈ KL

ℜ
(y) and y ∈ KL

ℜ
(z). By Theorem 3.4, KL

ℜ
(z) is an LℜU -part. Thus,

KL
ℜ
(y) ⊆ KL

ℜ
(z) and hence x ∈ KL

ℜ
(z). Therefore, KL

ℜ
is preorder. Now, if ℜ is

symmetric, then we prove that KL
ℜ

is symmetric as well. We check that:

(i) for all n≥ 2 and x ∈M, KL
n,ℜ(K

L
2,ℜ(x)) = KL

n+1,ℜ(x);

(ii) x ∈ KL
n,ℜ(y) if and only if y ∈ KL

n,ℜ(x).

We prove (i) by induction on n. Suppose that z ∈ KL
2,ℜ(K

L
2,ℜ(x)), so there exists(

∑
p
i=1 m′i,∑

q
i=1 z′i

)
∈ ℜ such that z ∈ ∑

p
i=1 m′i and ∑

q
i=1 z′i ∩KL

2,ℜ(x) 6= /0. Thus,
z ∈ KL

3,ℜ. If KL
t,ℜ(K

L
2,ℜ(x)) = KL

t+1,ℜ(x), then

z ∈ KL
t+1,ℜ

(
KL

2,ℜ(x)
)

⇔∃

(
p

∑
i=1

m′i,
q

∑
i=1

z′i

)
∈ℜ, z ∈

p

∑
i=1

m′i,
q

∑
i=1

z′i∩KL
t,ℜ(K

L
2,ℜ(x)) 6= /0

⇔∃

(
p

∑
i=1

m′i,
q

∑
i=1

z′i

)
∈ℜ, z ∈

p

∑
i=1

m′i,
q

∑
i=1

z′i∩KL
t+1,ℜ(x) 6= /0

⇔ z ∈ KL
t+2,ℜ(x).

Hence, for all t ≥ 2 and x ∈M, KL
t,ℜ

(
KL

2,ℜ(x)
)
= KL

t+1,ℜ(x).

We prove (ii) by induction on n, too. It is clear that x ∈ KL
2,ℜ(y) if and

only if y ∈ KL
2,ℜ(x). Suppose that x ∈ KL

t,ℜ(y) if and only if y ∈ KL
t,ℜ(x). If

x ∈ KL
t+1,ℜ(y), then there exists

(
∑

p
i=1 m′i,∑

q
i=1 z′i

)
∈ℜ such that x ∈ ∑

p
i=1 m′i and

∑
q
i=1 z′i ∩KL

t,ℜ(y) 6= /0. Therefore, there exists b ∈ ∑
q
i=1 z′i ∩KL

t,ℜ(y) 6= /0, hence
y ∈ KL

t,ℜ(b). Since ℜ is symmetric
(
∑

q
i=1 z′i,∑

p
i=1 m′i

)
∈ℜ. From b ∈ ∑

q
i=1 z′i and

∑
p
i=1 m′i∩KL

1,ℜ(x), it follows that b ∈ KL
2,ℜ(x) and so KL

t,ℜ(K
L
2,ℜ)(x) = KL

t+1,ℜ(x).
Similarly, we can show that if y ∈ KL

t+1,ℜ(x), then x ∈ y ∈ KL
t+1,ℜ(y).
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Proposition 3.7. Let ℜ be a relation on U and A be a nonempty subset of hy-
permodule M. Then, the following conditions are equivalent:

(1) A is an LℜU -part (LℜU -part) of M;

(2) x ∈ A, zKL
ℜ

x =⇒ z ∈ A (xKL
ℜ

z =⇒ z ∈ A, respectively).

Proof. (1)⇒(2): Let x ∈ A and z ∈ M be such that zKL
ℜ

x. Then, there exists(
∑

p
i=1 m′i,∑

q
i=1 z′i

)
∈ℜ such that z∈∑

p
i=1 m′i∩KL

t,ℜ(A) 6= /0 for some t ∈N. Since
A is a LℜU -part, according to Theorem 3.4, KL

t,ℜ(A)⊆ A, and so ∑
q
i=1 z′i∩A 6= /0.

Therefore, ∑
p
i=1 m′i ⊆ A and hence z ∈ A.

(2)⇒(1): Let ∑
p
i=1 m′i ∩A 6= /0 and ∑

q
i=1 z′i ℜ ∑

p
i=1 m′i. So, there exists x ∈

∑
p
i=1 m′i∩A and so ∑

q
i=1 z′i∩KL

1,ℜ(A) 6= /0. Set z ∈ ∑
q
i=1 z′i. Hence,

q

∑
i=1

z′i ℜ

p

∑
i=1

m′i, z ∈
p

∑
i=1

m′i⇒ z ∈ KL
2,ℜ(x)⇒ z KL

ℜ
x⇒ z ∈ A, because x ∈ A.

Therefore,
q

∑
i=1

z′i ⊆ A and A is an LℜU -part of M.

4. Modules derived from strongly U-regular relations

In this section, we give the notion of a strongly U-regular relation and investigate
some properties of it.

Definition 4.1. Let ℜ⊆U ×U . For all (x,y) ∈M2, we define the relation ρL,ℜ,
as follows:

x ρL,ℜ y⇔ x = y or ∃

(
p

∑
i=1

m′i,
q

∑
i=1

z′i

)
∈ℜ such that x ∈

p

∑
i=1

m′i and y ∈
q

∑
i=1

z′i.

We denote ρ∗L,ℜ the transitive closure of ρL,ℜ. Similarly, we can define the
relation ρR,ℜ. We denote ρ∗R,ℜ the transitive closure of ρR,ℜ. For all (x,y) ∈
M2, we define the relation ρℜ, as follows:

x ρℜ y⇔ x = y or ∃

(
q

∑
i=1

z′i,
p

∑
i=1

m′i

)
∈ℜ∪ℜ

−1 such that x∈
p

∑
i=1

m′i and y∈
q

∑
i=1

z′i.

We denote ρ∗
ℜ

the transitive closure of ρℜ.

Theorem 4.2. Let ℜ ⊆ U ×U . Then, for all (x,y) ∈M2, x KL
ℜ

y if and only if
x ρ∗

ℜ
y.
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Proof. It is easy to see that ρ∗L,ℜ ⊆ KL
ℜ

.
Conversely, suppose that x KL

ℜ
y. Then, so by Theorem 3.6, x ∈ KL

t+1,ℜ for

some t ∈N. So, there exists
(

∑
p1
i=1 m′1,i,∑

q1
i=1 z′1,i

)
∈ℜ such that x∈∑

p1
i=1 m′1,i and

∑
q1
i=1 z′1,i∩KL

t,ℜ(y) 6= /0. Thus, there exists x1 ∈ ∑
q1
i=1 z′1,i∩KL

t,ℜ(y) which implies

that xρL,ℜ x1. Since x1 ∈ KL
t,ℜ(y), there exists

(
∑

p2
i=1 m′2,i,∑

q2
i=1 z′2,i

)
∈ ℜ such

that x1 ∈ ∑
p2
i=1 m′2,i and ∑

q2
i=1 z′2,i ∩KL

t−1,ℜ(y) 6= /0. Therefore, x1 ρL,ℜ x2, where
x2 ∈ ∑

q2
i=1 z′2,i ∩KL

t−1,ℜ(y). After t steps, we obtain there exists xt ∈ ∑
qt
i=1 z′t,i ∩

KL
t−(t−1),ℜ(y) such that xt−1 ρL,ℜ xt . Thus, we have:

x ρL,ℜ x1 ρL,ℜ x2 . . .xt ρL,ℜ y

and from this it follows that KL
ℜ
⊆ ρ∗L,ℜ. By the similar way, we obtain x KR

ℜ
y

if and only if x ρ∗R,ℜ y. Therefore, x Kℜ y if and only if x ρ∗
ℜ

y.

Proposition 4.3. If ℜ is a permutation of finite order in SU , then ρ∗L,ℜ = ρ∗R,ℜ.

Proof. By Theorem 3.4, KL
ℜ
(y) is an LℜU -part and so by Theorem 3.3, KL

ℜ
(y)

is an RℜU -part and hence KR
ℜ
(y) ⊆ KL

ℜ
(y). Analogously, KL

ℜ
(y) ⊆ KR

ℜ
(y) and

this completes the proof.

Definition 4.4. Let (M,+) be an R-hypermodule. A relation ℜ on U is called

(1) compatible on the left (on the right), if for all P1,P2,P ∈ U and r ∈ R from
P1 ℜ P2 it follows P+P1 ℜ P+P2 (P1 +P ℜ P2 +P) and r ·P1 ℜ r ·P2
(P1 · r ℜ P2 · r). ℜ is compatible if it is compatible on the left and on the
right;

(2) regular if for all x ∈M, implies KL
ℜ
(x) = KR

ℜ
(x);

(3) a regular relation ℜ on U is called strongly regular on the left (on the
right) if ρ∗L,ℜ (ρ∗R,ℜ) is strongly regular on the left (on the right, respec-
tively);

(4) a regular relation ℜ on U is called strongly regular if ρ∗
ℜ

is strongly reg-
ular.

Proposition 4.5. Let ℜ be a regular relation on U . Then,

(1) ℜ−1 is regular;

(2) ρ∗L,ℜ = ρ∗R,ℜ = ρ∗
ℜ

is an equivalence relation.

Proof. The proof follows from Remark 3.1 and Theorem 4.2.
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Let ℜ⊆ U ×U . For any element x of an R-hypermodule M, set

Pn
L,ℜ(x) =

⋃{ q

∑
i=1

z′i |
q

∑
i=1

z′i ℜ

p

∑
i=1

m′i and x ∈
p

∑
i=1

m′i

}
;

PL,ℜ(x) =
⋃

n≥1 Pn
L,ℜ(x)∪{x};

ρ∗L,ℜ(x) = {y ∈M | y ρ∗L,ℜ x}.

In the next theorem we find the necessary and sufficient conditions for the
transitivity of the relation ρL,ℜ.

Theorem 4.6. Let ℜ be a relation on U and M be an R-hypermodule. Then, the
following conditions are equivalent:

(1) ρL,ℜ is transitive;

(2) for every x ∈M, ρ∗L,ℜ(x) = PL,ℜ(x);

(3) for every x ∈M, PL,ℜ(x) is an LℜU -part of M.

Proof. (1)⇒ (2): For any pair (x,y) ∈M2, we have

y ∈ ρ
∗
L,ℜ(x)⇔ y ρ

∗
L,ℜ x⇔ y ρL,ℜ x⇔ y ∈ PL,ℜ(x).

(2)⇒ (3): Suppose that
(
∑

q
i=1 z′i,∑

p
i=1 m′i

)
∈ℜ such that ∑

p
i=1 m′i∩PL,ℜ(x) 6= /0.

Then, ∑
p
i=1 m′i ∩ ρ∗L,ℜ(x) 6= /0 and so there exists z ∈ ∑

p
i=1 m′i and z ∈ ρ∗L,ℜ(x).

Thus, by Theorem 4.2, z ∈ KL
ℜ
(x). On the other hand, z ∈ KL

ℜ
(x), so ∑

p
i=1 m′i∩

KL
ℜ
(x) 6= /0. Hence, ∑

q
i=1 z′i ⊆ KL

ℜ
(z), because ∑

q
i=1 z′iℜ∑

p
i=1 m′i and KL

ℜ
(z) is an

LℜU -part of M. Now, suppose that t ∈∑
q
i=1 z′i is an arbitrary element. Thus, t ∈

KL
ℜ
(x) and t ρ∗L,ℜ x. Therefore, t ∈ ρ∗L,ℜ(x) = PL,ℜ(x) and so ∑

q
i=1 z′i ⊆ PL,ℜ(x).

(3) ⇒(1): Suppose that x,y,z ∈ M such that x ρL,ℜ y and y ρL,ℜ z. Since
x ρL,ℜ y, there exists

(
∑

p
i=1 m′i,∑

q
i=1 z′i

)
∈ℜ such that x∈∑

p
i=1 m′i and y∈∑

q
i=1 z′i.

So, ∑
q
i=1 z′i∩PL,ℜ(y) 6= /0 and since PL,ℜ(y) is an LℜU -part, ∑

p
i=1 m′i ⊆ PL,ℜ(y),

whence x ∈ PL,ℜ(y). We can easily check that PL,ℜ(y) ⊆ PL,ℜ(z). Similarly,
from y ρL,ℜ z we obtain y ∈ PL,ℜ(z), then we use that PL,ℜ(z) is a LℜU -part of
M. Therefore, x ∈ PL,ℜ(z) and hence x ρL,ℜ z.

A hypermodule M is said to be regular, if as a hypergroup is regular [4].

Theorem 4.7. Let M be a regular hypermodule and ℜ be a compatible relation
on U , Then, ρL,ℜ is transitive.
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Proof. According to the previous theorem, it is enough to check that for any
x ∈M, PL,ℜ(x) is an LℜU -part of M. Suppose that

(
∑

q
i=1 z′i,∑

p
i=1 m′i

)
∈ℜ such

that ∑
p
i=1 m′i∩PL,ℜ(x) 6= /0. We check that ∑

q
i=1 z′i⊆PL,ℜ(x). Since M is a regular

hypermodule, there exists an identity e in M. Moreover, there exist u,v ∈ M
such that e ∈ u+x and x ∈ t +v, where t ∈∑

p
i=1 m′i∩PL,ℜ(x). Hence, there exist

P1,P2 ∈ U such that t ∈ P1,x ∈ P2 and P1ℜP2. We obtain

x ∈ t + v ⊆
p

∑
i=1

m′i + v⊆
p

∑
i=1

m′i + e+ v

⊆
p

∑
i=1

m′i +u+ x+ v⊆
p

∑
i=1

m′i +u+P2 + v = P3,

and
q

∑
i=1

z′i ⊆
q

∑
i=1

z′i + e⊆
q

∑
i=1

z′i +u+ t + v⊆
q

∑
i=1

z′i +u+P1 + v = P4.

Since ∑
p
i=1 m′i ℜ ∑

q
i=1 z′i, P1ℜP2 and ℜ is regular, it follows that P3ℜP4. There-

fore,
q

∑
i=1

z′i ⊆ PL,ℜ(x) and so, ρL,ℜ is transitive.

Similarly, we can prove that if M is a regular hypermodule and ℜ is a com-
patible relation on U , then ρℜ is transitive.

Theorem 4.8. Let M be an R-hypermodule and K =
⋃

n≥1 An, where An is the al-
ternating subgroup of the symmetric group Sn of order n or K = {I}, the identity
of Sn. We define the relation ℜK on U as follows: for all

(
∑

p
i=1 m′i,∑

q
i=1 z′i

)
∈U2,

p

∑
i=1

m′i ℜ
K

q

∑
i=1

z′i⇔∃τ ∈ K,
q

∑
i=1

z′i =
p

∑
i=1

m′
τ(i).

Then,

ρℜK = ρ
∗
ℜK =

{
ε∗ if K = {I}

θ ∗ if K =
⋃

n≥1 An.

Proof. It is straightforward that ρℜK is a strongly relation on U . If K = {I}, the
proof is obvious (see [3]). Now, suppose that K =

⋃
n≥1 An. Then, ρ∗

ℜK ⊆ θ ∗.
Conversely, we prove that M

ρ∗
ℜK

is an abelian group. Let x1,x2 ∈M. From M =

x2 +M, it follows that there exists x3 ∈M such that x2 ∈ x2 +x3. Thus, we have
x1+x2 ⊆ x1+x2+x3 and x2+x1 ⊆ x2+x3+x1. We have ∑

3
i=1 xi ℜK

∑
3
i=1 xτ(i),

where τ(1) = 2, τ(2) = 3, τ(3) = 1 and τ ∈ A3. We conclude that ρ∗
ℜK (x1)+

ρ∗
ℜK (x2) = ρ∗

ℜK (x2) + ρ∗
ℜK (x1) and hence M

ρ∗
ℜK

is abelian. Suppose that r ∈ R

and x ∈M. Since ρ∗
ℜK is a strongly regular, r◦ρ∗

ℜK (x) = ρ∗
ℜK (z) for any z ∈ r ·x.
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Since M is an R-hypermodule, the properties of M as an R-hypermodule, grantee
that the abelian group M

ρ∗
ℜK

is an R-hypermodule.

Theorem 4.9. Let M be an R-hypermodule. The relation ℜ on U is defined as
follows: for all m,n ∈ N and for all

(
∑

p
i=1 m′i,∑

q
i=1 z′i

)
∈ U2,

p

∑
i=1

m′i ℜ

q

∑
i=1

z′i⇔

(∣∣∣∣∣ p

∑
i=1

m′i−
q

∑
i=1

z′i

∣∣∣∣∣< ∞ or

∣∣∣∣∣ q

∑
i=1

z′i−
p

∑
i=1

m′i

∣∣∣∣∣< ∞

)
and

p

∑
i=1

m′i∩
q

∑
i=1

z′i 6= /0,

where |A| is the cardinal number of the set A. Then, ρ∗
ℜ
= ε∗.

Proof. Since ℜ regular, by Proposition 4.5(2), ρ∗
ℜ

is an equivalence relation.
Suppose that (x,y) ∈ ρℜ. Then, there exists

(
∑

p
i=1 m′i,∑

q
i=1 z′i

)
∈ ℜ such that

x ∈ ∑
p
i=1 m′i and y ∈ ∑

q
i=1 z′i. Without the loss of generality, suppose that∣∣∣∣∣ p

∑
i=1

m′i−
q

∑
i=1

z′i

∣∣∣∣∣< ∞,

so ∑
p
i=1 m′i−∑

q
i=1 z′i = {b1,b2, . . . ,bt}. Set z′q = ∑

qi
j=1

(
∏

ki j
k=1 ri jk

)
zq. Since M

is a hypermodule, there exists (c1,d1) ∈M2 such that zq ∈ c1 +b1,b1 ∈ a+d1,

where a ∈
p

∑
i=1

m′i∩
q

∑
i=1

z′i. Thus, we have

q

∑
i=1

z′i ⊆
q−1

∑
i=1

z′i +
qi

∑
j=1

ki j

∏
k=1

ri jk(c1 +b1)

⊆
q−1

∑
i=1

z′i +
qi

∑
j=1

ki j

∏
k=1

ri jk(c1 +a+d1)

⊆
q−1

∑
i=1

z′i +
qi

∑
j=1

ki j

∏
k=1

ri jk(c1 +
p

∑
i=1

m′i +d1) = P.

On the other hand,

b1 ∈ a+d1 ⊆
q−1

∑
i=1

z′i + z′q +d1

⊆
q−1

∑
i=1

z′i +
qi

∑
j=1

ki j

∏
k=1

ri jk(c1 +b1)+d1

⊆
q−1

∑
i=1

z′i +
qi

∑
j=1

ki j

∏
k=1

ri jk(c1 +
p

∑
i=1

m′i +d1) = P.
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Denote ∑
k1
i=1 v′1,i := ∑

q−1
i=1 z′i +∑

qi
j=1 ∏

ki j
k=1 ri jk(c1 +∑

p
i=1 m′i)+ d1. Thus, {b1}∪

∑
q
i=1 z′i ⊆ ∑

k1
i=1 v′1,i. Using again that M is a hypermodule, there exists (c2,d2) ∈

M2 such that v′1,k1
= ∑

qi
j=1 ∏

ki j
k=1 si jkv1,k1 ⊆∑

qi
j=1 ∏

ki j
k=1 si jk(c2+b2) and b2 ∈ b1+

d2. Suppose that ∑
k2
i=1 v′2,i = ∑

k1−1
i=1 v′1,i + c2 +∑

p
i=1 m′i +d2. Similarly, we obtain

{b2}∪∑
k1
i=1 v′1,i ⊆ ∑

k2
i=1 v′2,i and so {b1,b2} ⊆ ∑

q
i=1 z′i ⊆ ∑

k2
i=1 v′2,i. After t steps,

we obtain ∑
kt
i=1 z′t,i such that {b1,b2, . . . ,bt}∪∑

q
i=1 z′i ⊆∑

k2
i=1 v′t,i. Thus, ∑

p
i=1 m′i∪

∑
q
i=1 z′i ⊆ ∑

kt
i=1 v′t,i, which implies that (x,y) ∈ ε∗ and ρℜ ⊆ ε∗. Therefore, ρ∗

ℜ
⊆

ε∗. Now, suppose that (x,y) ∈ ε∗. Then, there exists ∑
p
i=1 m′i such that x,y ∈

∑
p
i=1 m′i. Since ∑

p
i=1 m′i−∑

p
i=1 m′i = /0, (x,y) ∈ ρℜ, hence ε∗ ⊆ ρ∗

ℜ
. Therefore,

ε∗ = ρ∗
ℜ

.

Remark 4.10. The relation
↪→
R on U defined by

p

∑
i=1

m′i
↪→
R

q

∑
i=1

z′i⇔
p

∑
i=1

m′i ⊆
q

∑
i=1

z′i

is not symmetric and the induced strongly regular relation ρ∗↪→
R

coincides with th

induced strongly regular relation ρ∗
ℜ

of Theorem 4.6.

Theorem 4.11. Let (M,+) be an R-hypermodule and ℜ be a strongly relation
on U . Then, an R-hypermodule (with ordinary group) structure can be defined
on M

ρ∗
ℜ

with respect to the following two operations

ρ∗
ℜ
(x)⊕ρ∗

ℜ
(y) = ρ∗

ℜ
(z), where z ∈ x+ y,

r ◦ρ∗
ℜ
(x) = ρ∗

ℜ
(z), where z ∈ r · x, r ∈ R.

Proof. We prove that the operations ⊕ and ◦ are well defined. Set ρ∗
ℜ
(x0) =

ρ∗
ℜ
(x1) and ρ∗

ℜ
(y0) = ρ∗

ℜ
(y1). It is enough to verify that ρ∗

ℜ
(x0)⊕ ρ∗

ℜ
(y0) =

ρ∗
ℜ
(x1)⊕ρ∗

ℜ
(y1).

By hypothesis m,n ∈ N, (z0,z1, . . . ,zm) ∈ Hm+1 and (t0, t1, . . . , tn) ∈ Hm+1

exist such that z0 = x0, zm = x1, t0 = y0 and tn = y1 for all 1≤ i≤ m, zi−1 ρℜ zi

and for all 1≤ j≤ n, t j−1 ρℜ t j. Since ℜ is strongly regular, for all u∈ zs−1+ts−1
and v ∈ zs + ts, where 1≤ s≤ k and k = min{m,n}, we have uρ∗

ℜ
v. Hence,

ρ∗
ℜ
(x0)⊕ρ∗

ℜ
(y0) = ρ∗

ℜ
(z1)⊕ρ∗

ℜ
(t1) = . . .= ρ∗

ℜ
(zk)⊕ρ∗

ℜ
(tk)

= ρ∗
ℜ
(ak+i)⊕ρ∗

ℜ
(bk+i),

where k+1≤ k+ i≤max{m,n} and

(ak+i,bk+i) =

{
(x1, tk+i) if k = m

(zk+i,y1) if k = n.
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Therefore, ⊕ is well defined. Now, suppose that ρ∗
ℜ
(x1) = ρ∗

ℜ
(x2). Then, there

exists (z1, . . . ,zt) such that x1 = z1, x2 = zt and for all 1≤ j≤ t, t j−1 ρℜ t j. Since
ℜ is a strongly relation, ρ∗

ℜ
is a strongly relation and so for any u ∈ r ◦ρ∗

ℜ
(x1)

and v ∈ r ◦ρ∗
ℜ
(x2), we have ρ∗

ℜ
(u) = ρ∗

ℜ
(v). Hence, r ◦ρ∗

ℜ
(x1) = r ◦ρ∗

ℜ
(z2) =

. . . = r ◦ρ∗
ℜ
(zt−1) = r ◦ρ∗

ℜ
(zt). Therefore, ◦ is well defined. Since M is an R-

hypermodule, the properties of M as an R-hypermodule, grantee that the abelian
group M

ρ∗
ℜ

is an R-hypermodule.

Theorem 4.12. Let M be an R-hyperring and p be a prime number. If the
relation ℜ+,p on U is defined as follows:

ℜ+,p =

{(
n

∑
i=1

(
ki

∏
j=1

ri j)(s ·mi),
n

∑
i=1

(
ki

∏
j=1

ri j)(t ·mi)

)
| s, t ∈ {1, p+1}

}
.

Then, M/ρ∗
ℜ+,p

is an R-hypermodule such that (M/ρ∗
ℜ+,p

,⊕) is a p-elementary
group.

Proof. It is clear that the relation ℜ+,p on U is strongly regular. Now, by Theo-
rem 4.11, the proof is completed.

By the similar way, we have the following Theorem.

Theorem 4.13. Let R be a hyperring and p be a prime number. If the relation
ℜσ

+,p on U is defined as follows:

ℜ
σ
+,p =

{(
n

∑
i=1

(
ki

∏
j=1

ri j)(s ·mi),
n

∑
i=1

(

kσ(i)

∏
j=1

xσ(i) j)(t ·mσ(i))

)
| s, t ∈ {1, p+1}

}
.

Then, M/ρ∗
ℜσ

+,p
is an R-hypermodule such that (M/ρ∗

ℜσ
+,p
,⊕) is a p-elementary

abelian group.

Example 4.14. Let p be a prime. Consider M := Z× . . .×Z︸ ︷︷ ︸
n

as a Z-module.

Then, the relation ℜ+,p in Theorem 4.12 is of the form

ℜ+,p = {(
n

∑
i=1

tni,
n

∑
i=1

tni)| s, t ∈ {1, p+1},ni ∈ Z}.

Therefore, M/ℜ+,p is a Z-module such that M/ℜ+,p ∼= Zp× . . .×Zp︸ ︷︷ ︸
n

.
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Example 4.15. Let p= 2 and R be a ring. Set M := S3×S3, where S3 is the per-
mutation group of order 3, i.e., S3 = {(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)}. Let
K1 and K2 be two subgroups of S3. Define the scalar hyperoperation r · (σ ,τ) =
(K1,K2) for any r ∈ R and σ ,τ ∈ S3. Then, M/ℜσ

+,p is an R-hypermodule such
that M/ℜσ

+,p
∼= Z2×Z2.

Definition 4.16. Let M be an R-hypermodule and ρ : M−→ M
ρ∗

ℜ

be the canonical

projection. Denote by 0 the zero element of the group M
ρ∗

ℜ

. The set ρ−1(0) is
called the ℜ-heart of M and it is denoted by ωℜ,M.

Notice that if ℜ is the diagonal relation of U , then the ℜ-heart is just the
heart of the hypermodule M.

Theorem 4.17. Let M be a regular R-hypermodule and ℜ be a compatible rela-
tion with + and · on U . Then, ωℜ,M is the smallest subhypermodule of M, which
is also an ℜ-part.

Proof. First, we check that ωℜ,M is a subhypermodule of M. If x,y ∈ ωℜ,M
and z ∈ x+ y, then ρ∗

ℜ
(z) = ρ∗

ℜ
(x)⊕ ρ∗

ℜ
(y) = 0, the identity of the group M

ρ∗
ℜ

.
Hence, z ∈ ωℜ,M. On the other hand, there exists u ∈ M, such that x ∈ u+ y,
whence ρ∗

ℜ
(x) = ρ∗

ℜ
(u)⊕ρ∗

ℜ
(y), so ρ∗

ℜ
(u) = 0 and u ∈ ωℜ,M. This means that

ωℜ,M = ωℜ,M + y and similarly we obtain that ωℜ,M = y+ωℜ,M.
Now, suppose that x ∈ ωℜ,M and r ∈ R. Then, for any z ∈ r ◦ x, we have

ρ∗
ℜ
(z) ⊆ ρ∗

ℜ
(r ◦ x) = r ◦ρ∗

ℜ
(x) = r ◦ 0 = 0 by strongly regularity of ρ∗

ℜ
. Since

M is an R-hypermodule, the properties of M as an R-hypermodule, follows that
ωℜ,M is a subhypermodule of M. By Theorems 4.6, 4.7 and Proposition 4.5, for
all x ∈ ωℜ,M, PU ,ℜ(x) = ρ∗U ,ℜ(x) = ρℜ(x), which represents the zero element
of M

ρ∗
ℜ

. On the other hand, ρ∗
ℜ
(x) represents the ℜ-heart ωℜ,M, as a subset

of M. So, for all x ∈ ωℜ,M, according to Theorems 4.6, 4.7, ωℜ,M = PU ,ℜ(x),
which is an LℜU -part of M. In fact, by Proposition 4.5, PU ,ℜ(x) is also an
RℜU -part of M, hence it is an ℜ-part of M. Moreover, ωℜ,M is the smallest
subhypermodule which is an ℜ-part of M. Indeed, if K is a subhypermodule
and an ℜ-part of M, then for all k ∈ K, there is e ∈ K such that k ∈ e + k,
whence ρ∗

ℜ
(k) = ρ∗

ℜ
(e)⊕ρ∗

ℜ
(k), so e ∈ωℜ,M. Since K is an ℜ-part of M, hence

PU ,ℜ(e) = ωℜ,M ⊆ K.

Theorem 4.18. For every non-empty subset A of hypermodule M, if A is an
ℜ-part of M, then ρ−1(ρ(A)) = A.

Proof. It is obvious that A⊆ ρ−1(ρ(A)). Moreover, if x∈ ρ−1(ρ(A)), then there
exists an element a∈A such that ρ(x) = ρ(a). Since A is an ℜ-part, x∈ ρ∗

ℜ
(x) =

ρ∗
ℜ
(a)⊆ A. Therefore, ρ−1(ρ(A))⊆ A.
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Theorem 4.19. Let A be a non-empty subset of a hypermodule M. The following
condition are equivalent:

(1) A is a ℜU - part of M.

(2) x ∈ A,xρℜy⇒ y ∈ A.

(3) x ∈ A,xρ∗
ℜ

y⇒ y ∈ A.

Proof. (1)⇒(2): If x,y ∈M is a pair such that x ∈ A and xρℜy, then there exists(
∑

p
i=1 m′i,∑

q
i=1 z′i

)
∈ℜU ∪ℜ

−1
U such that x ∈∑

p
i=1 m′i and y∈∑

q
i=1 z′i. Since A is a

ℜU -part of R, we obtain ∑
p
i=1 m′i∩A 6= /0 and ∑

p
i=1 m′i ℜU ∑

q
i=1 z′i which implies

that ∑
q
i=1 z′i ⊆ A. Then, y ∈ A.

(2)⇒(3) Suppose that x,y ∈ R, such that x ∈ A and x ∈ ρ∗
ℜ
(y). Obviously,

there exist s ∈ N and (w0 = x,w1, . . . ,ws−1,ws = y) ∈ Rs+1 such that

x = w0ρℜw1 . . .ρℜws−1ρℜws = y.

Since x ∈ A, applying (2) s times, we obtain y ∈ A.
(3)⇒(1) Suppose that ∑

p
i=1 m′i∩A 6= /0 and x ∈ ∑

p
i=1 m′i∩A.

If
(
∑

p
i=1 m′i,∑

q
i=1 z′i

)
∈ ℜU ∪ℜ

−1
U , where ∑

q
i=1 z′i ∈ U , then for every y ∈

∑
q
i=1 z′i, we obtain yρℜx and by (3) we have y ∈ A.

Corollary 4.20. Let R be a hyperring and A be a nonempty subset of M. If ℜ is
a relation on U then A is an ℜU - part of R if and only if A =

⋃
x∈A ρ∗

ℜ
(x).

Theorem 4.21. Let R be a commutative hyperring, M a regular R-hypermodule
and for every m∈M, R.m=M. Let ℜC be the set of all reflexive and compatible
relations with + and · on U . Then, the heart of the hypermodule M is ωM =⋂

ℜ∈RC ωℜ,M.

Proof. Notice that if (x,y) ∈ ε , then x,y ∈ ∑
p
i=1 m′i, where i ∈ {1,2 . . . ,n}. So,

ε ⊆
⋂

ℜ∈RC ρ∗
ℜ

. Conversely, it is enough to remark that
⋂

ℜ∈RC ρ∗
ℜ
⊆ ε . By

Theorem 1.2, ε = ε∗. So, ε = ε∗ = ρ∗Id , where Id is the diagonal relation on U .
Hence, ε =

⋂
ℜ∈RC ρ∗

ℜ
. From here it follows that, ωM =

⋂
ℜ∈RC ωℜ,M, since for

all x ∈M, ε(x) = 0 if and only if x ∈ ωM, while for all ℜ ∈ RC, ρ∗
ℜ
(x) = 0 if

and only if x ∈ ωℜ,M.
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