\mathcal{R}-PARTS AND MODULES DERIVED FROM STRONGLY \mathcal{U}-REGULAR RELATIONS ON HYPERMODULES

S. M. ANVARIYEH - S. MIRVAKILI - B. DAVVAZ

This paper concerns a new relationship between hypermodules and modules. We generalize the notion of complete parts and θ-parts by the notion of \mathfrak{R}-parts on hypermodules and then \mathfrak{R}-closures of hypermodules as a generalization of θ-closures are defined. In addition, we give the notion of a strongly \mathcal{U}-regular relation on hypermodules and investigate some properties of it.

1. Introduction

If M is an R-hypermodule [1] and $\rho \subseteq M \times M$ is an equivalence relation, then for all pairs (A, B) of non-empty subsets of M, we set $A \overline{\bar{\rho}} B$ if and only if $a \rho b$ for all $a \in A, b \in B$. The relation ρ is said to be strongly regular to the right if $x \rho y$ implies $x+a \overline{\bar{\rho}} y+a$ and $r \cdot x \rho r \cdot y$ for all $x, y, a \in H$ and $r \in R$. Analogously, we can define strongly regular to the left. Moreover ρ is called strongly regular if it is strongly regular to the right and to the left. Let M be a hypermodule and ρ an equivalence relation on M. Let $\rho(a)$ be the equivalence class of a with respect to ρ and set $M / \rho=\{\rho(a) \mid a \in M\}$. The hyperoperations \oplus are \odot are defined on M / ρ by $\rho(a) \oplus \rho(b)=\{\rho(x) \mid x \in \rho(a)+\rho(b)\}$ and $r \odot \rho(a)=\{\rho(z) \mid z \in r \cdot \rho(a)\}$. If ρ is strongly regular then it readily follows that $\rho(a) \oplus \rho(b)=\{\rho(x) \mid x \in a+b\}$ and $r \odot \rho(a)=\{\rho(x) \mid x \in r \cdot a\}$ It is well
known for ρ strongly regular that $(M / \rho, \oplus, \odot)$ is an R-hypermodule. That is $\rho(a) \oplus \rho(b)=\rho(c)$ for all $c \in a+b$ and $r \odot \rho(a)=\rho(x)$ for all $x \in r \cdot a[1]$.

Several relations have been studied in hypergroups, hyperrings and hypermodules such $\beta, \gamma, \varepsilon, \theta$ etc., for example see Anvariyeh et al. [1-4], Corsini and Leoreanu [6], Davvaz et al. [8, 9], Freni [10, 11], Koskas [12] and Vougiouklis [15-17]. Complete parts were introduced by Koskas [12] and studied then by Corsini [5], Davvaz and Karimian [7], Miglirato [13], Mousavi et al. [14], and others.

Let M be an R-hypermodule. We consider the relation ε on M as follows [16]:

$$
\begin{gathered}
x \varepsilon y \Leftrightarrow x, y \in \sum_{i=1}^{n} m_{i}^{\prime} ; \quad m_{i}^{\prime}=m_{i} \quad \text { or } \quad m_{i}^{\prime}=\sum_{j=1}^{n_{i}}\left(\prod_{k=1}^{k_{i j}} x_{i j k}\right) z_{i} \\
m_{i} \in M, \quad x_{i j k} \in R, \quad z_{i} \in M
\end{gathered}
$$

The fundamental relation ε^{*} on M can be considered as the smallest equivalence relation such that the quotient M / ε^{*} be a module over the corresponding fundamental ring such that M / ε^{*} as a group is not abelian [1, 16]. Now, we recall the following definition from [1].

Definition 1.1. [1]. Let M be an R-hypermodule. We define the relation θ as follows:

$$
\begin{aligned}
& x \theta y \Longleftrightarrow \exists n \in \mathbb{N}, \exists\left(m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right), \exists\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}, \exists \sigma \in \mathbb{S}_{n} \\
& \exists\left(x_{i 1}, x_{i 2}, \ldots, x_{i k_{i}}\right) \in R^{k_{i}}, \exists \sigma_{i} \in \mathbb{S}_{n_{i}}, \exists \sigma_{i j} \in \mathbb{S}_{k_{i j}}
\end{aligned}
$$

such that

$$
x \in \sum_{i=1}^{n} m_{i}^{\prime} ; \quad m_{i}^{\prime}=m_{i} \quad \text { or } \quad m_{i}^{\prime}=\sum_{j=1}^{n_{i}}\left(\prod_{k=1}^{k_{i j}} x_{i j k}\right) m_{i}
$$

and

$$
y \in \sum_{i=1}^{n} m_{\sigma(i)}^{\prime}
$$

where

$$
\begin{gathered}
m_{\sigma(i)}^{\prime}=m_{\sigma(i)} \quad \text { if } \quad m_{i}^{\prime}=m_{i} \quad \text { and } \\
m_{\sigma(i)}^{\prime}=B_{\sigma(i)} m_{\sigma(i)} \quad \text { if } \quad m_{i}^{\prime}=\sum_{j=1}^{n_{i}}\left(\prod_{k=1}^{k_{i j}} x_{i j k}\right) m_{i}
\end{gathered}
$$

with

$$
B_{i}=\sum_{j=1}^{n_{i}} A_{i \sigma_{i}(j)}, \quad A_{i j}=\prod_{k=1}^{k_{i j}} x_{i j \sigma_{i j}(k)}
$$

If θ^{*} is the transitive closure of θ, then θ^{*} is a strongly regular relation on M as an R-hypermodule [1]. The fundamental relation θ is not transitive in general [2]. The following theorem gives the sufficient conditions, that the relation θ is transitive.

Theorem 1.2. [3]. Let R be a commutative hyperring. If M is an R-hypermodule and for every $m \in M, R \cdot m=M$, then the fundamental relation θ is transitive on hypermodules.

2. θ-parts and \Re-parts of hypermodules

In this section, we begin with the definition of θ-parts of hypermodules which are valid in every hypermodule [3]. In the following m_{i}^{\prime} is the notation that defined in Definition 1.1.

Definition 2.1. [3]. Let M be an R-hypermodule and H be a non-empty subset of M. We say that H is a θ-part of M if for every $n \in \mathbb{N}$, for every $\sigma \in \mathbb{S}_{n}$ and for every $\left(m_{1}^{\prime}, \ldots, m_{p}^{\prime}\right)$

$$
\sum_{i=1}^{p} m_{i}^{\prime} \cap H \neq \emptyset \Rightarrow \sum_{i=1}^{p} m_{\sigma(i)}^{\prime} \subseteq H
$$

H is said to be a complete part of M, if σ is identity.
Now, we generalize the notion of complete parts and θ-parts and by the notion of \mathfrak{R}-parts and then we study \mathfrak{R}-closures in hypermodules. Recently, \mathcal{R}-parts in (semi)-hypergroups introduced by Mousavi, Leoreanu-Fotea and Jafarpour [14].

Let M be an R-hypermodule and \mathcal{U} be the set of finite sums of $\sum_{i=1}^{p} m_{i}^{\prime}$ and \Re be a relation on M.

Definition 2.2. For a nonempty subset A of M, we say that A is a left \mathfrak{R}-part of M with respect to \mathcal{U} (or briefly in $\mathcal{L \Re _ { \mathcal { U } } \text { -part) if for all } \sum _ { i = 1 } ^ { p } m _ { i } ^ { \prime } \text { and } \sum _ { i = 1 } ^ { q } z _ { i } ^ { \prime } \text { in } \mathcal { U } , ~}$ the following implication is valid

$$
\left(\sum_{i=1}^{p} m_{i}^{\prime} \cap A \neq \emptyset \text { and } \sum_{i=1}^{q} z_{i}^{\prime} \Re \sum_{i=1}^{p} m_{i}^{\prime}\right) \Rightarrow \sum_{i=1}^{q} z_{i}^{\prime} \subseteq A .
$$

Similarly, we can define a right \mathfrak{R}-part of M with respect to \mathcal{U} (or briefly in $\mathcal{R} \Re_{\mathcal{U}}$-part). A is an \Re-part on M with respect to \mathcal{U} (or briefly in $\Re_{\mathcal{U}}$-part) if it is an $\mathcal{L} \Re_{\mathcal{U}}$-part and an $\mathcal{R} \Re_{\mathcal{U}}$-part.

Remark 2.3. By Definition 2.2, it is straightforward for any nonempty subset A of a hypermodule M, A is an $\mathcal{L} \Re_{\mathcal{U}}^{-1}$-part $\left(\mathcal{R} \mathfrak{R}_{\mathcal{U}}^{-1}\right.$-part $)$ if and only if A is an $\mathcal{R} \mathfrak{R}_{\mathcal{U}}$-part ($\mathcal{L} \Re_{\mathcal{U}}$-part).

Now, we recall that a K_{M}-semihypergroup is the semihypergroup constructed from a semihypergroup $(M,+)$ and a family $\{A(x)\}_{x \in M}$ of nonempty and mutually disjoint subsets of M. Set $K_{M}=\bigcup_{x \in M} A(x)$ and consider the hyperoperation $*$ on K_{M} as follows:

$$
\forall(a, b) \in K_{M}^{2} ; a \in A(x), b \in A(y), a * b=\bigcup_{z \in x+y} A(z)
$$

Then, $(M,+)$ is a hypergroup if and and only if $\left(K_{M}, *\right)$ is a hypergroup (see Theorem 375 [5]).

Theorem 2.4. Let $(M,+, \cdot)$ be an R-hypermodule. Then, the $\left(K_{M}, *, \circ\right)$ is an R-hypermodule.

Proof. We define the scalar hyperoperation \circ as follows:

$$
r \in R, a \in A(x) ; \quad r \circ a:=\bigcup_{z \in r \cdot x} A(z)
$$

Suppose that $r, s \in R$ and $a \in A(x), b \in A(y)$. Then, (1)

$$
\begin{aligned}
(r+s) \circ a & =\bigcup_{z \in(r+s) \cdot x} A(z)=\bigcup_{z \in r \cdot x+s \cdot x} A(z) \\
& =\bigcup_{m_{1} \in r \cdot x, m_{2} \in s \cdot x} \bigcup_{z \in m_{1}+m_{2}} A(z)
\end{aligned}
$$

and

$$
\begin{aligned}
(r \circ a) *(s \circ a) & =\left(\bigcup_{k \in r \cdot x} A(k)\right) *\left(\bigcup_{t \in s \cdot x} A(t)\right) \\
& =\bigcup_{k \in r \cdot x, t \in s \cdot x} \bigcup_{w \in k+t} A(w) .
\end{aligned}
$$

(2)

$$
\begin{aligned}
r \circ(a * b) & =r \circ\left(\bigcup_{z \in x+y} A(z)\right)=\bigcup_{z \in x+y} r \circ A(z) \\
& =\bigcup_{z \in x+y} \bigcup_{u \in r \cdot z} A(u)=\bigcup_{u \in r \cdot(x+y)} A(u)
\end{aligned}
$$

and

$$
\begin{aligned}
(r \circ a) *(r \circ b) & =\left(\bigcup_{k \in r \cdot a} A(k)\right) *\left(\bigcup_{t \in r \cdot b} A(t)\right) \\
& =\bigcup_{k \in r \cdot a, t \in r \cdot b} \bigcup_{w \in k+t} A(w)=\bigcup_{u \in(r \cdot x+r \cdot y)} A(u)
\end{aligned}
$$

(3)

$$
\begin{aligned}
r \circ(s \circ a) & =r \circ\left(\bigcup_{z \in s \cdot x} A(z)\right)=\bigcup_{z \in s \cdot x} \bigcup_{u \in r \cdot z} A(u) \\
& =\bigcup_{u \in r(s \cdot x)} A(u)=\bigcup_{z \in(r s) \cdot x} A(z)=(r s) \circ a .
\end{aligned}
$$

Therefore, K_{M} is an R-hypermodule.

For all $P \in \wp \wp^{*}(H)$, set $A(P)=\bigcup_{x \in P} A(x)$.
Theorem 2.5. If \mathfrak{R} is a relation on \mathcal{U}, then P is an $L \mathfrak{R}_{\mathcal{U}}$-part of hypermodule M if and only if $A(P)$ is an $L \widehat{\Re}_{\mathcal{U}}$-part of K_{M}, where the relation $\widehat{\mathfrak{R}}$ is defined as follows:

$$
\bigcup_{v \in \sum_{i=1}^{p} m_{i}^{\prime}} A(v) \widehat{\Re} \bigcup_{u \in \sum_{i=1}^{q} z_{i}^{\prime}} A(u) \Leftrightarrow \sum_{i=1}^{p} m_{i}^{\prime} \Re \sum_{i=1}^{q} z_{i}^{\prime}
$$

Proof. Suppose that $A(P)$ is an $L \widehat{\mathfrak{R}}_{\mathcal{U}}$-part of K_{M}, and $\left(\sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime}\right) \in \mathfrak{R}$ is such that $\sum_{i=1}^{q} z_{i}^{\prime} \cap P \neq \emptyset$. So,

$$
\bigcup_{v \in \sum_{i=1}^{p} m_{i}^{\prime}} A(v) \widehat{\mathfrak{R}} \bigcup_{u \in \sum_{i=1}^{q} z_{i}^{\prime}} A(u)
$$

and

$$
\begin{aligned}
\sum_{i=1}^{q} z_{i}^{\prime} \cap P \neq \emptyset & \Longrightarrow \exists p \in P, \text { such that } p \in \sum_{i=1}^{q} z_{i}^{\prime} \\
& \Longrightarrow \exists p \in P, \text { such that } A(p) \subseteq \bigcup_{u \in \sum_{i=1}^{q} z_{i}^{\prime}} A(u) \\
& \Longrightarrow \bigcup_{u \in \sum_{i=1}^{q} z_{i}^{\prime}} A(u) \cap A(P) \neq \emptyset \\
& \Longrightarrow \bigcup_{u \in \sum_{i=1}^{p} m_{i}^{\prime}} A(v) \subseteq A(P), \text { because } A(P) \text { is a } L \widehat{\Re_{\mathcal{U}}}-\text { part. }
\end{aligned}
$$

For all $t \in \sum_{i=1}^{p} m_{i}^{\prime}, A(t) \subseteq A(P)$, so there exists $q \in P$ such that $A(t) \cap A(q) \neq \emptyset$. Thus, $t=q$ and hence $t \in P$. Therefore, $\sum_{i=1}^{p} m_{i}^{\prime} \subseteq P$.

Conversely, suppose that $* \sum_{i=1}^{p} m_{i}^{\prime} \cap A(P) \neq \emptyset$, where $* \sum$ denotes a hypersum of K_{M}. Suppose that $* \sum_{i=1}^{q} z_{i}^{\prime} \widehat{\Re} * \sum_{i=1}^{p} m_{i}^{\prime}$. Then, there exists $\left(x_{1}, \ldots, x_{p}\right)$ such that for any $t_{i} \in m_{i}^{\prime}(1 \leq i \leq q), t_{i} \in A\left(x_{i}\right)$. Now, if

$$
u \in \bigcup_{y \in \sum_{i=1}^{p} x_{i}} A(y) \cap A(P)
$$

then $u \in A\left(y_{0}\right)$ for some $y_{0} \in \sum_{i=1}^{p} x_{i}$. Since $u \in A(P)$, there exists $y_{1} \in P$ such that $u \in A\left(y_{1}\right)$. So, $A\left(y_{0}\right) \cap A\left(y_{1}\right) \neq \emptyset$, which implies that $y_{0}=y_{1} \in \sum_{i=1}^{p} x_{i} \cap P$. Since P is an $L \Re_{\mathcal{U}}$-part of M and $\sum_{i=1}^{q} v_{i} \Re \sum_{i=1}^{p} x_{i}$, where $u_{i} \in z_{i}^{\prime}, u_{i} \in A\left(v_{i}\right)$ for all $1 \leq i \leq q$. It follows that $\sum_{i=1}^{q} v_{i} \subseteq P$. Therefore,

$$
\sum_{i=1}^{q} z_{i}^{\prime}=\bigcup_{w \in \sum_{i=1}^{q} v_{i}} A(w) \subseteq \bigcup_{l \in P} A(l)=A(P)
$$

3. \mathfrak{R}-closure and \Re-parts of hypermodules

Let M be an R-hypermodule and \mathcal{U} be the set of finite sums of $\sum_{i=1}^{p} m_{i}^{\prime}$ and \mathcal{R} be the relation on M. The intersection of all $\mathcal{L} \Re_{\mathcal{U}}$-parts (or $\mathcal{R} \Re_{\mathcal{U}}$-parts, \mathfrak{R}-parts) which contain A is called $\mathcal{L} \Re_{\mathcal{U}}$-closure (or $\mathcal{R} \Re_{\mathcal{U}}$-closure, \mathfrak{R}-closure) of A in M and it is denoted by $\overline{\mathcal{L} \Re_{\mathcal{U}}}(A)$ (or $\overline{\mathcal{R} \Re_{\mathcal{U}}}(A), \overline{\Re_{\mathcal{U}}}(A)$).

Remark 3.1. By Remark 2.3, for any nonempty subset A of a hypermodule M, A is an $\mathcal{L} \Re_{\mathcal{U}}^{-1}$-part $\left(\mathcal{L} \Re_{\mathcal{U}}\right.$-part) if and only if A is an $\mathcal{R} \Re_{\mathcal{U}}$-part $\left(\mathcal{R} \Re_{\mathcal{U}}^{-1}\right.$-part). So, immediately, we obtain

$$
\overline{\mathcal{L} \Re_{\mathcal{U}}^{-1}}(A)=\overline{\mathcal{R} \Re_{\mathcal{U}}}(A)\left(\overline{\mathcal{R} \Re_{\mathcal{U}}^{-1}}(A)=\overline{\mathcal{L} \Re_{\mathcal{U}}}(A)\right)
$$

For a nonempty subset A of M, we define:

$$
{ }_{A} \Sigma^{\mathcal{U}}:=\left\{\mathfrak{R} \subseteq \mathcal{U} \times \mathcal{U} \mid \overline{\mathcal{L} \Re_{\mathcal{U}}}(A)=A\right\}
$$

and

$$
\sum_{A}^{\mathcal{U}}:=\left\{\mathfrak{R} \subseteq \mathcal{U} \times \mathcal{U} \mid \overline{\mathcal{R} \mathfrak{R}_{\mathcal{U}}}(A)=A\right\}
$$

Lemma 3.2. If ${ }_{A} \sum^{\mathcal{U}} \neq \emptyset\left(\operatorname{or} \sum_{A}^{\mathcal{U}} \neq \emptyset\right)$, then $\left({ }_{A} \sum^{\mathcal{U}} \neq \emptyset, \circ\right)\left(\operatorname{or}\left(\sum_{A}^{\mathcal{U}} \neq \emptyset, \circ\right)\right)$ is closed under the composition \circ of relations.

Proof. Suppose that $\mathfrak{R}, \mathfrak{R}^{\prime} \in{ }_{A} \sum^{\mathcal{U}}$ and $\left(\sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime}\right) \in \mathcal{U} \times \mathcal{U}$ are given. Also, let $\sum_{i=1}^{p} m_{i}^{\prime} \cap A \neq \emptyset$ and $\sum_{i=1}^{p} z_{i}^{\prime} \Re \circ \mathfrak{R}^{\prime} \sum_{i=1}^{p} m_{i}^{\prime}$. So, there exists $\left(y_{1}^{\prime}, \ldots, y_{k}^{\prime}\right)$ such that $\sum_{i=1}^{k} y_{i}^{\prime} \Re \sum_{i=1}^{p} m_{i}^{\prime}$ and $\sum_{i=1}^{q} z_{i}^{\prime} \Re^{\prime} \sum_{i=1}^{k} y_{i}^{\prime}$. From $\sum_{i=1}^{k} y_{i}^{\prime} \Re \sum_{i=1}^{p} m_{i}^{\prime}$ and $\mathfrak{R} \in{ }_{A} \sum^{\mathcal{U}}$ it follows that $\sum_{i=1}^{k} y_{i}^{\prime} \subseteq A$. Since $\mathfrak{R}^{\prime} \in{ }_{A} \sum^{\mathcal{U}}$ and $\sum_{i=1}^{q} z_{i}^{\prime} \Re \sum_{i=1}^{k} y_{i}^{\prime}$, we obtain that $\sum_{i=1}^{q} z_{i}^{\prime} \subseteq A$. Hence, ${ }_{A} \sum^{\mathcal{U}}$ and so $\left(\sum_{A}^{\mathcal{U}} \neq \emptyset, \circ\right)$ is a semigroup.
Theorem 3.3. Let \mathfrak{R} be a permutation of finite order in $\mathbb{S}_{\mathcal{U}}$. If A is $\mathcal{L} \Re_{\mathcal{U}}$-part, then A is $\mathcal{R} \mathfrak{R}_{\mathcal{U}}$-part.
 a permutation of finite order in $\mathbb{S}_{\mathcal{U}},<\mathfrak{R}>=\left\{\mathfrak{R}^{n} \mid n \in \mathbb{N}\right\}$ is a subgroup of ${ }_{A} \sum^{\mathcal{U}}$ and so $\mathfrak{R}^{-1} \in{ }_{A} \Sigma^{\mathcal{U}}$. By Remark 3.1, $A=\overline{\mathcal{L} \Re_{\mathcal{U}}^{-1}}(A)=\overline{\mathcal{R} \Re_{\mathcal{U}}}(A)$. Thus, $\mathfrak{R} \in \sum_{A}^{\mathcal{U}}$ and hence A is a $\mathcal{R} \Re_{\mathcal{U}}$-part.

In the following, we determine the sets $\overline{\mathcal{L} \Re_{\mathcal{U}}}(A), \overline{\mathcal{R}_{\mathcal{U}}}(A)$ and $\left.\overline{\Re_{\mathcal{U}}}(A)\right)$, where $\mathfrak{R} \subseteq \mathcal{U} \times \mathcal{U}$ and A is a nonempty subset of M. Set $K_{1, \mathfrak{R}}^{\mathcal{L}}(A)=A$ and

$$
K_{t+1, \mathfrak{R}}^{\mathcal{L}}(A)=\left\{x \in M \mid \exists\left(\sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime}\right) \in \Re, x \in \sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime} \cap K_{t, \Re}^{\mathcal{L}}(A) \neq \emptyset\right\} .
$$

Denote $K_{\mathfrak{R}}^{\mathcal{L}}(A)=\bigcup_{n \geq 1} K_{n, \mathfrak{R}}^{\mathcal{L}}(A)$. Similarly, set $K_{1, \mathfrak{R}}^{\mathcal{R}}(A)=A$ and
$K_{t+1, \mathfrak{R}}^{\mathcal{R}}(A)=\left\{x \in M \mid \exists\left(\sum_{i=1}^{q} z_{i}^{\prime}, \sum_{i=1}^{p} m_{i}^{\prime}\right) \in \Re, x \in \sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime} \cap K_{t, \mathfrak{R}}^{\mathcal{R}}(A) \neq \emptyset\right\}$.
Denote $K_{\mathfrak{R}}^{\mathcal{R}}(A)=\bigcup_{n \geq 1} K_{n, \mathfrak{R}}^{\mathcal{R}}(A)$. Finally, set $K_{1, \mathfrak{R}}(A)=A$ and

$$
\begin{aligned}
& K_{t+1, \mathfrak{R}}(A) \\
& =\left\{x \in M \mid \exists\left(\sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime}\right) \in \mathfrak{R} \cup \mathfrak{R}^{-1}, x \in \sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime} \cap K_{t, \mathfrak{R}}(A) \neq \emptyset\right\} .
\end{aligned}
$$

Denote $K_{\mathfrak{R}}(A)=\bigcup_{n \geq 1} K_{n, \Re}(A)$.
Theorem 3.4. Let A be a nonempty subset of hypermodule M. Then, $K_{\mathfrak{R}}(A)=$ $\overline{\mathfrak{R}_{\mathcal{U}}}(A)$.

Proof. It is necessary to prove:
(i) $K_{\mathfrak{R}}^{\mathcal{L}}(A)$ is a $\mathcal{L} \Re_{\mathcal{U}}$-part;
(ii) if $A \subseteq B$ and B is a $\mathcal{L} \Re_{\mathcal{U}}$-part, then $K_{\mathfrak{R}}^{\mathcal{L}}(A) \subseteq B$.

In order to prove (i), suppose that $\sum_{i=1}^{p} m_{i}^{\prime} \cap K_{\mathfrak{R}}^{\mathcal{L}}(A) \neq \emptyset$ and $\sum_{i=1}^{q} z_{i}^{\prime} \Re \sum_{i=1}^{p} m_{i}^{\prime}$. So, there exists $t \in \mathbb{N}$ such that $\sum_{i=1}^{p} m_{i}^{\prime} \cap K_{t, \mathfrak{R}}^{\mathcal{L}}(A) \neq \emptyset$, which it follows that $\sum_{i=1}^{q} z_{i}^{\prime} \subseteq K_{t+1, \mathfrak{R}}^{\mathcal{L}}(A) \subseteq K_{\mathfrak{R}}^{\mathcal{L}}(A)$.

Now, we prove (ii) by induction on t. We have $K_{1, \Re}^{\mathcal{L}}(A)=A \subseteq B$. Suppose that $K_{t, \mathfrak{R}}^{\mathcal{L}}(A) \subseteq B$. We prove that $K_{t+1, \Re}^{\mathcal{L}}(A) \subseteq B$. If $z \in K_{t+1, \Re}^{\mathcal{L}}(A)$, then there exists $\left(\sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime}\right) \in \mathcal{U} \times \mathcal{U}$ such that $z \in \sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{p} m_{i}^{\prime} \Re \sum_{i=1}^{q} z_{i}^{\prime}$ and $\sum_{i=1}^{q} z_{i}^{\prime} \cap K_{t, \mathfrak{R}}^{\mathcal{L}}(A) \neq \emptyset$. Hence, $\sum_{i=1}^{q} z_{i}^{\prime} \cap B \neq \emptyset$ and so $z \in \sum_{i=1}^{p} m_{i}^{\prime} \subseteq B$. Then, $K_{t+1, \mathfrak{R}}^{\mathcal{L}}(A) \subseteq B$. Hence, $K_{\mathfrak{R}}^{\mathcal{L}}(A)=\overline{\mathcal{L} \Re_{\mathcal{U}}}(A)$. Also, by Remark 3.1, we have $K_{\mathfrak{R}}^{\mathcal{R}}(A)=K_{\mathfrak{R}^{-1}}^{\mathcal{R}}(A)=\overline{\mathcal{L} \Re_{\mathcal{U}}^{-1}}(A)=\overline{\mathcal{R} \Re_{\mathcal{U}}}(A)$. Therefore, $K_{\mathfrak{R}}(A)=\overline{\Re_{\mathcal{U}}}(A)$.

Proposition 3.5. Let A be a nonempty subset of hypermodule M and \Re be a relation on \mathcal{U}. Then, $\overline{\Re_{\mathcal{U}}}(A)=\bigcup_{a \in A} \overline{\Re_{\mathcal{U}}}(a)$.

Proof. It is clear that for all $a \in A, \overline{\mathcal{L} \Re_{\mathcal{U}}}(a) \subseteq \overline{\mathcal{L} \Re_{\mathcal{U}}}(A)$. By Theorem 3.4, we have $\overline{\mathcal{L} \Re_{\mathcal{U}}}(A)=\bigcup_{n \geq 1} K_{n, \mathfrak{R}}^{\mathcal{L}}(A)$ and $K_{1, \mathfrak{R}}^{\mathcal{L}}(A)=A=\bigcup_{a \in A}\{a\}=\bigcup_{a \in A} K_{1, \mathfrak{R}}^{\mathcal{L}}(a)$. We prove the proposition by induction on n. Supposing it true for n, we prove that $K_{n+1, \mathfrak{R}}^{\mathcal{L}}(A) \subseteq \bigcup_{a \in A} K_{n+1, \mathfrak{R}}^{\mathcal{L}}(a)$.

If $z \in K_{n+1, \mathfrak{R}}^{\mathcal{L}}(A)$, then there exists $\left(\sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime}\right) \in \mathfrak{R}$ such that

$$
z \in \sum_{i=1}^{p} m_{i}^{\prime} \text { and } \sum_{i=1}^{q} z_{i}^{\prime} \cap K_{n, \mathcal{R}}^{\mathcal{L}}(A) \neq \emptyset
$$

By the hypothesis of induction, $\sum_{i=1}^{q} z_{i}^{\prime} \cap\left(\bigcup_{a \in A} K_{n, \Re}^{\mathcal{L}}(a)\right) \neq \emptyset$ and so there exists $a^{\prime} \in A$ such that $\sum_{i=1}^{q} z_{i}^{\prime} \cap K_{n, \mathfrak{R}}^{\mathcal{L}}\left(a^{\prime}\right) \neq \emptyset$. Hence, $z \in K_{n+1, \mathfrak{R}}^{\mathcal{L}}\left(a^{\prime}\right)$, where $\overline{\mathcal{L} \Re_{\mathcal{U}}}(A) \subseteq$ $\bigcup_{a \in A} \overline{\mathcal{L} \Re_{\mathcal{U}}}(a)$. By the similar way, we can prove that $\overline{\mathcal{R} \Re_{\mathcal{U}}}(A)=\bigcup_{a \in A} \overline{\mathcal{R} \Re_{\mathcal{U}}}(a)$. Therefore, $\overline{\Re_{\mathcal{U}}}(A)=\bigcup_{a \in A} \overline{\Re_{\mathcal{U}}}(a)$.

Theorem 3.6. If $\mathfrak{R} \subseteq \mathcal{U} \times \mathcal{U}$, then the following relation $K_{\mathfrak{R}}^{\mathcal{L}}\left(K_{\mathfrak{R}}^{\mathcal{R}}\right)$ on a hypermodule M:

$$
x K_{\mathfrak{R}}^{\mathcal{L}} y \Leftrightarrow x \in K_{\mathfrak{R}}^{\mathcal{L}}(y) \quad\left(x K_{\mathfrak{R}}^{\mathcal{R}} y \Leftrightarrow x \in K_{\mathfrak{R}}^{\mathcal{R}}(y)\right)
$$

where $K_{\mathfrak{R}}^{\mathcal{L}}(y)=K_{\mathfrak{R}}^{\mathcal{L}}(\{y\})$ (where $K_{\mathfrak{R}}^{\mathcal{R}}(y)=K_{\mathfrak{R}}^{\mathcal{R}}(\{y\})$) is a preorder. Furthermore, if \mathfrak{R} is symmetric, then $K_{\mathfrak{R}}^{\mathcal{L}}$ ($K_{\mathfrak{R}}^{\mathcal{R}}$ respectively) is an equivalence relation.

Proof. It is easy to see that $K_{\Re}^{\mathcal{L}}$ is reflexive. Now, suppose that $x K_{\mathfrak{R}}^{\mathcal{L}} y$ and $y K_{\mathfrak{R}}^{\mathcal{L}} z$. So, $x \in K_{\mathfrak{R}}^{\mathcal{L}}(y)$ and $y \in K_{\mathfrak{R}}^{\mathcal{L}}(z)$. By Theorem 3.4, $K_{\mathfrak{R}}^{\mathcal{L}}(z)$ is an $\mathcal{L} \Re_{\mathcal{U}}$-part. Thus, $K_{\mathfrak{R}}^{\mathcal{L}}(y) \subseteq K_{\mathfrak{R}}^{\mathcal{L}}(z)$ and hence $x \in K_{\mathfrak{R}}^{\mathcal{L}}(z)$. Therefore, $K_{\mathfrak{R}}^{\mathcal{L}}$ is preorder. Now, if \mathfrak{R} is symmetric, then we prove that $K_{\mathfrak{R}}^{\mathcal{L}}$ is symmetric as well. We check that:
(i) for all $n \geq 2$ and $x \in M, K_{n, \mathfrak{R}}^{\mathcal{L}}\left(K_{2, \mathfrak{R}}^{\mathcal{L}}(x)\right)=K_{n+1, \mathfrak{R}}^{\mathcal{L}}(x)$;
(ii) $x \in K_{n, \mathfrak{R}}^{\mathcal{L}}(y)$ if and only if $y \in K_{n, \mathfrak{R}}^{\mathcal{L}}(x)$.

We prove (i) by induction on n. Suppose that $z \in K_{2, \Re}^{\mathcal{L}}\left(K_{2, \Re}^{\mathcal{L}}(x)\right)$, so there exists $\left(\sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime}\right) \in \Re$ such that $z \in \sum_{i=1}^{p} m_{i}^{\prime}$ and $\sum_{i=1}^{q} z_{i}^{\prime} \cap K_{2, \mathfrak{R}}^{\mathcal{L}}(x) \neq \emptyset$. Thus, $z \in K_{3, \Re}^{\mathcal{L}}$. If $K_{t, \mathfrak{R}}^{\mathcal{L}}\left(K_{2, \Re}^{\mathcal{L}}(x)\right)=K_{t+1, \Re}^{\mathcal{L}}(x)$, then

$$
\begin{aligned}
& z \in K_{t+1, \mathfrak{R}}^{\mathcal{L}}\left(K_{2, \mathfrak{R}}^{\mathcal{L}}(x)\right) \\
& \Leftrightarrow \exists\left(\sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime}\right) \in \mathfrak{R}, z \in \sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime} \cap K_{t, \mathfrak{R}}^{\mathcal{L}}\left(K_{2, \mathfrak{R}}^{\mathcal{L}}(x)\right) \neq \emptyset \\
& \Leftrightarrow \exists\left(\sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime}\right) \in \mathfrak{R}, z \in \sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime} \cap K_{t+1, \mathfrak{R}}^{\mathcal{L}}(x) \neq \emptyset \\
& \Leftrightarrow z \in K_{t+2, \mathfrak{R}}^{\mathcal{L}}(x) .
\end{aligned}
$$

Hence, for all $t \geq 2$ and $x \in M, K_{t, \Re}^{\mathcal{L}}\left(K_{2, \mathfrak{R}}^{\mathcal{L}}(x)\right)=K_{t+1, \mathfrak{R}}^{\mathcal{L}}(x)$.
We prove (ii) by induction on n, too. It is clear that $x \in K_{2, \Re}^{\mathcal{L}}(y)$ if and only if $y \in K_{2, \mathfrak{R}}^{\mathcal{L}}(x)$. Suppose that $x \in K_{t, \mathfrak{R}}^{\mathcal{L}}(y)$ if and only if $y \in K_{t, \mathfrak{R}}^{\mathcal{L}}(x)$. If $x \in K_{t+1, \mathfrak{R}}^{\mathcal{L}}(y)$, then there exists $\left(\sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime}\right) \in \mathfrak{R}$ such that $x \in \sum_{i=1}^{p} m_{i}^{\prime}$ and $\sum_{i=1}^{q} z_{i}^{\prime} \cap K_{t, \mathfrak{R}}^{\mathcal{L}}(y) \neq \emptyset$. Therefore, there exists $b \in \sum_{i=1}^{q} z_{i}^{\prime} \cap K_{t, \mathfrak{R}}^{\mathcal{L}}(y) \neq \emptyset$, hence $y \in K_{t, \mathfrak{R}}^{\mathcal{L}}(b)$. Since \mathfrak{R} is symmetric $\left(\sum_{i=1}^{q} z_{i}^{\prime}, \sum_{i=1}^{p} m_{i}^{\prime}\right) \in \mathfrak{R}$. From $b \in \sum_{i=1}^{q} z_{i}^{\prime}$ and $\sum_{i=1}^{p} m_{i}^{\prime} \cap K_{1, \mathfrak{R}}^{\mathcal{L}}(x)$, it follows that $b \in K_{2, \mathfrak{R}}^{\mathcal{L}}(x)$ and so $K_{t, \mathfrak{R}}^{\mathcal{L}}\left(K_{2, \mathfrak{R}}^{\mathcal{L}}\right)(x)=K_{t+1, \mathfrak{R}}^{\mathcal{L}}(x)$. Similarly, we can show that if $y \in K_{t+1, \Re}^{\mathcal{L}}(x)$, then $x \in y \in K_{t+1, \Re}^{\mathcal{L}}(y)$.

Proposition 3.7. Let \Re be a relation on \mathcal{U} and A be a nonempty subset of hypermodule M. Then, the following conditions are equivalent:

(2) $x \in A, z K_{\mathfrak{R}}^{\mathcal{L}} x \Longrightarrow z \in A\left(x K_{\mathfrak{R}}^{\mathcal{L}} z \Longrightarrow z \in A\right.$, respectively)

Proof. (1) \Rightarrow (2): Let $x \in A$ and $z \in M$ be such that $z K_{\mathfrak{R}}^{\mathcal{L}} x$. Then, there exists $\left(\sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime}\right) \in \mathfrak{R}$ such that $z \in \sum_{i=1}^{p} m_{i}^{\prime} \cap K_{t, \mathfrak{R}}^{\mathcal{L}}(A) \neq \emptyset$ for some $t \in \mathbb{N}$. Since A is a $\mathcal{L} \Re_{\mathcal{U}}$-part, according to Theorem $3.4, K_{t, \mathfrak{R}}^{\mathcal{L}}(A) \subseteq A$, and so $\sum_{i=1}^{q} z_{i}^{\prime} \cap A \neq \emptyset$. Therefore, $\sum_{i=1}^{p} m_{i}^{\prime} \subseteq A$ and hence $z \in A$.
(2) $\Rightarrow(1)$: Let $\sum_{i=1}^{p} m_{i}^{\prime} \cap A \neq \emptyset$ and $\sum_{i=1}^{q} z_{i}^{\prime} \Re \sum_{i=1}^{p} m_{i}^{\prime}$. So, there exists $x \in$ $\sum_{i=1}^{p} m_{i}^{\prime} \cap A$ and so $\sum_{i=1}^{q} z_{i}^{\prime} \cap K_{1, \Re}^{\mathcal{L}}(A) \neq \emptyset$. Set $z \in \sum_{i=1}^{q} z_{i}^{\prime}$. Hence,

$$
\sum_{i=1}^{q} z_{i}^{\prime} \Re \sum_{i=1}^{p} m_{i}^{\prime}, z \in \sum_{i=1}^{p} m_{i}^{\prime} \Rightarrow z \in K_{2, \mathfrak{R}}^{\mathcal{L}}(x) \Rightarrow z K_{\mathfrak{R}}^{\mathcal{L}} x \Rightarrow z \in A, \text { because } x \in A
$$

Therefore, $\sum_{i=1}^{q} z_{i}^{\prime} \subseteq A$ and A is an $\mathcal{L} \Re_{\mathcal{U}}$-part of M.

4. Modules derived from strongly \mathcal{U}-regular relations

In this section, we give the notion of a strongly \mathcal{U}-regular relation and investigate some properties of it.

Definition 4.1. Let $\Re \subseteq \mathcal{U} \times \mathcal{U}$. For all $(x, y) \in M^{2}$, we define the relation $\rho_{\mathcal{L}, \mathfrak{R}}$, as follows:

$$
x \rho_{\mathcal{L}, \mathfrak{R}} y \Leftrightarrow x=y \text { or } \exists\left(\sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime}\right) \in \mathfrak{R} \text { such that } x \in \sum_{i=1}^{p} m_{i}^{\prime} \text { and } y \in \sum_{i=1}^{q} z_{i}^{\prime} \text {. }
$$

We denote $\rho_{\mathcal{L}, \Re}^{*}$ the transitive closure of $\rho_{\mathcal{L}, \Re}$. Similarly, we can define the relation $\rho_{\mathcal{R}, \Re}$. We denote $\rho_{\mathcal{R}, \mathfrak{R}}^{*}$ the transitive closure of $\rho_{\mathcal{R}, \Re}$. For all $(x, y) \in$ M^{2}, we define the relation ρ_{\Re}, as follows:
$x \rho_{\mathfrak{K}} y \Leftrightarrow x=y$ or $\exists\left(\sum_{i=1}^{q} z_{i}^{\prime}, \sum_{i=1}^{p} m_{i}^{\prime}\right) \in \mathfrak{R} \cup \Re^{-1}$ such that $x \in \sum_{i=1}^{p} m_{i}^{\prime}$ and $y \in \sum_{i=1}^{q} z_{i}^{\prime}$.
We denote $\rho_{\mathfrak{R}}^{*}$ the transitive closure of $\rho_{\mathfrak{R}}$.
Theorem 4.2. Let $\mathfrak{R} \subseteq \mathcal{U} \times \mathcal{U}$. Then, for all $(x, y) \in M^{2}, x K_{\mathfrak{R}}^{\mathcal{L}} y$ if and only if $x \rho_{\mathfrak{R}}^{*} y$.

Proof. It is easy to see that $\rho_{\mathcal{L}, \mathfrak{R}}^{*} \subseteq K_{\mathfrak{R}}^{\mathcal{L}}$.
Conversely, suppose that $x K_{\Re}^{\mathcal{L}} y$. Then, so by Theorem 3.6, $x \in K_{t+1, \mathfrak{R}}^{\mathcal{L}}$ for some $t \in \mathbb{N}$. So, there exists $\left(\sum_{i=1}^{p_{1}} m_{1, i}^{\prime}, \sum_{i=1}^{q_{1}} z_{1, i}^{\prime}\right) \in \mathfrak{R}$ such that $x \in \sum_{i=1}^{p_{1}} m_{1, i}^{\prime}$ and $\sum_{i=1}^{q_{1}} z_{1, i}^{\prime} \cap K_{t, \mathfrak{R}}^{\mathcal{L}}(y) \neq \emptyset$. Thus, there exists $x_{1} \in \sum_{i=1}^{q_{1}} z_{1, i}^{\prime} \cap K_{t, \mathfrak{R}}^{\mathcal{L}}(y)$ which implies that $x \rho_{\mathcal{L}, \Re} x_{1}$. Since $x_{1} \in K_{t, \mathfrak{R}}^{\mathcal{L}}(y)$, there exists $\left(\sum_{i=1}^{p_{2}} m_{2, i}^{\prime}, \sum_{i=1}^{q_{2}} z_{2, i}^{\prime}\right) \in \mathfrak{R}$ such that $x_{1} \in \sum_{i=1}^{p_{2}} m_{2, i}^{\prime}$ and $\sum_{i=1}^{q_{2}} z_{2, i}^{\prime} \cap K_{t-1, \mathfrak{R}}^{\mathcal{L}}(y) \neq \emptyset$. Therefore, $x_{1} \rho_{\mathcal{L}, \mathfrak{R}} x_{2}$, where $x_{2} \in \sum_{i=1}^{q_{2}} z_{2, i}^{\prime} \cap K_{t-1, \mathfrak{R}}^{\mathcal{L}}(y)$. After t steps, we obtain there exists $x_{t} \in \sum_{i=1}^{q_{t}} z_{t, i}^{\prime} \cap$ $K_{t-(t-1), \Re}^{\mathcal{L}}(y)$ such that $x_{t-1} \rho_{\mathcal{L}, \Re} x_{t}$. Thus, we have:

$$
x \rho_{\mathcal{L}, \Re} x_{1} \rho_{\mathcal{L}, \Re} x_{2} \ldots x_{t} \rho_{\mathcal{L}, \Re} y
$$

and from this it follows that $K_{\mathfrak{R}}^{\mathcal{L}} \subseteq \rho_{\mathcal{L}, \mathfrak{R}}^{*}$. By the similar way, we obtain $x K_{\mathfrak{R}}^{\mathcal{R}} y$ if and only if $x \rho_{\mathcal{R}, \Re}^{*} y$. Therefore, $x \mathcal{K}_{\mathfrak{R}} y$ if and only if $x \rho_{\mathfrak{R}}^{*} y$.

Proposition 4.3. If \mathfrak{R} is a permutation of finite order in $S_{\mathcal{U}}$, then $\rho_{\mathcal{L}, \mathfrak{R}}^{*}=\rho_{\mathcal{R}, \Re}^{*}$.
Proof. By Theorem $3.4, K_{\mathfrak{R}}^{\mathcal{L}}(y)$ is an $\mathcal{L} \Re_{\mathcal{U}}$-part and so by Theorem $3.3, K_{\mathfrak{R}}^{\mathcal{L}}(y)$ is an $\mathcal{R} \mathfrak{R}_{\mathcal{U}}$-part and hence $K_{\mathfrak{R}}^{\mathcal{R}}(y) \subseteq K_{\mathfrak{R}}^{\mathcal{L}}(y)$. Analogously, $K_{\mathfrak{R}}^{\mathcal{L}}(y) \subseteq K_{\mathfrak{R}}^{\mathcal{R}}(y)$ and this completes the proof.

Definition 4.4. Let $(M,+)$ be an R-hypermodule. A relation \mathfrak{R} on \mathcal{U} is called
(1) compatible on the left (on the right), if for all $P_{1}, P_{2}, P \in \mathcal{U}$ and $r \in R$ from $P_{1} \Re P_{2}$ it follows $P+P_{1} \Re P+P_{2}\left(P_{1}+P \Re P_{2}+P\right)$ and $r \cdot P_{1} \Re r \cdot P_{2}$ ($P_{1} \cdot r \Re P_{2} \cdot r$). \mathfrak{R} is compatible if it is compatible on the left and on the right;
(2) regular if for all $x \in M$, implies $K_{\mathfrak{R}}^{\mathcal{L}}(x)=K_{\mathfrak{R}}^{\mathcal{R}}(x)$;
(3) a regular relation \mathfrak{R} on \mathcal{U} is called strongly regular on the left (on the right) if $\rho_{\mathcal{L}, \Re}^{*}\left(\rho_{\mathcal{R}, \Re}^{*}\right)$ is strongly regular on the left (on the right, respectively);
(4) a regular relation \Re on \mathcal{U} is called strongly regular if ρ_{\Re}^{*} is strongly regular.

Proposition 4.5. Let \mathfrak{R} be a regular relation on \mathcal{U}. Then,
(1) \Re^{-1} is regular;
(2) $\rho_{\mathcal{L}, \Re}^{*}=\rho_{\mathcal{R}, \Re}^{*}=\rho_{\mathfrak{R}}^{*}$ is an equivalence relation.

Proof. The proof follows from Remark 3.1 and Theorem 4.2.

Let $\mathfrak{R} \subseteq \mathcal{U} \times \mathcal{U}$. For any element x of an R-hypermodule M, set

$$
\begin{aligned}
& P_{\mathcal{L}, \mathfrak{R}}^{n}(x)=\bigcup\left\{\sum_{i=1}^{q} z_{i}^{\prime} \mid \sum_{i=1}^{q} z_{i}^{\prime} \Re \sum_{i=1}^{p} m_{i}^{\prime} \text { and } x \in \sum_{i=1}^{p} m_{i}^{\prime}\right\} ; \\
& P_{\mathcal{L}, \mathfrak{R}}(x)=\bigcup_{n \geq 1} P_{\mathcal{L}, \mathfrak{R}}^{n}(x) \cup\{x\} ; \\
& \rho_{\mathcal{L}, \mathfrak{R}}^{*}(x)=\left\{y \in M \mid y \rho_{\mathcal{L}, \mathfrak{R}}^{*} x\right\} .
\end{aligned}
$$

In the next theorem we find the necessary and sufficient conditions for the transitivity of the relation $\rho_{\mathcal{L}, \Re}$.

Theorem 4.6. Let \mathfrak{R} be a relation on \mathcal{U} and M be an R-hypermodule. Then, the following conditions are equivalent:
(1) $\rho_{\mathcal{L}, \Re}$ is transitive;
(2) for every $x \in M, \rho_{\mathcal{L}, \mathfrak{R}}^{*}(x)=P_{\mathcal{L}, \mathfrak{R}}(x)$;
(3) for every $x \in M, P_{\mathcal{L}, \mathfrak{R}}(x)$ is an $\mathcal{L} \Re_{\mathcal{U}}$-part of M.

Proof. (1) \Rightarrow (2): For any pair $(x, y) \in M^{2}$, we have

$$
y \in \rho_{\mathcal{L}, \mathfrak{R}}^{*}(x) \Leftrightarrow y \rho_{\mathcal{L}, \Re}^{*} x \Leftrightarrow y \rho_{\mathcal{L}, \Re} x \Leftrightarrow y \in P_{\mathcal{L}, \mathfrak{R}}(x)
$$

(2) \Rightarrow (3): Suppose that $\left(\sum_{i=1}^{q} z_{i}^{\prime}, \sum_{i=1}^{p} m_{i}^{\prime}\right) \in \mathfrak{R}$ such that $\sum_{i=1}^{p} m_{i}^{\prime} \cap P_{\mathcal{L}, \mathfrak{R}}(x) \neq \emptyset$. Then, $\sum_{i=1}^{p} m_{i}^{\prime} \cap \rho_{\mathcal{L}, \mathfrak{R}}^{*}(x) \neq \emptyset$ and so there exists $z \in \sum_{i=1}^{p} m_{i}^{\prime}$ and $z \in \rho_{\mathcal{L}, \mathfrak{R}}^{*}(x)$. Thus, by Theorem 4.2, $z \in K_{\mathfrak{R}}^{\mathcal{L}}(x)$. On the other hand, $z \in K_{\mathfrak{\Re}}^{\mathcal{L}}(x)$, so $\sum_{i=1}^{p} m_{i}^{\prime} \cap$ $K_{\mathfrak{\Re}}^{\mathcal{L}}(x) \neq \emptyset$. Hence, $\sum_{i=1}^{q} z_{i}^{\prime} \subseteq K_{\mathfrak{\Re}}^{\mathcal{L}}(z)$, because $\sum_{i=1}^{q} z_{i}^{\prime} \Re \sum_{i=1}^{p} m_{i}^{\prime}$ and $K_{\mathfrak{\Re}}^{\mathcal{L}}(z)$ is an $\mathcal{L} \Re_{\mathcal{U}}$-part of M. Now, suppose that $t \in \sum_{i=1}^{q} z_{i}^{\prime}$ is an arbitrary element. Thus, $t \in$ $K_{\mathfrak{R}}^{\mathcal{L}}(x)$ and $t \rho_{\mathcal{L}, \mathfrak{R}}^{*} x$. Therefore, $t \in \rho_{\mathcal{L}, \mathfrak{R}}^{*}(x)=P_{\mathcal{L}, \mathfrak{R}}(x)$ and so $\sum_{i=1}^{q} z_{i}^{\prime} \subseteq P_{\mathcal{L}, \mathfrak{R}}(x)$.
(3) $\Rightarrow(1)$: Suppose that $x, y, z \in M$ such that $x \rho_{\mathcal{L}, \Re} y$ and $y \rho_{\mathcal{L}, \Re} z$. Since $x \rho_{\mathcal{L}, \mathfrak{R}} y$, there exists $\left(\sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime}\right) \in \mathfrak{R}$ such that $x \in \sum_{i=1}^{p} m_{i}^{\prime}$ and $y \in \sum_{i=1}^{q} z_{i}^{\prime}$. So, $\sum_{i=1}^{q} z_{i}^{\prime} \cap P_{\mathcal{L}, \mathfrak{R}}(y) \neq \emptyset$ and since $P_{\mathcal{L}, \mathfrak{R}}(y)$ is an $\mathcal{L} \Re_{\mathcal{U}}$-part, $\sum_{i=1}^{p} m_{i}^{\prime} \subseteq P_{\mathcal{L}, \mathfrak{R}}(y)$, whence $x \in P_{\mathcal{L}, \mathfrak{R}}(y)$. We can easily check that $P_{\mathcal{L}, \mathfrak{R}}(y) \subseteq P_{\mathcal{L}, \mathfrak{R}}(z)$. Similarly, from $y \rho_{\mathcal{L}, \Re} z$ we obtain $y \in P_{\mathcal{L}, \Re}(z)$, then we use that $P_{\mathcal{L}, \Re}(z)$ is a $\mathcal{L} \Re_{\mathcal{U}}$-part of M. Therefore, $x \in P_{\mathcal{L}, \Re}(z)$ and hence $x \rho_{\mathcal{L}, \Re} z$.

A hypermodule M is said to be regular, if as a hypergroup is regular [4].
Theorem 4.7. Let M be a regular hypermodule and \Re be a compatible relation on \mathcal{U}, Then, $\rho_{\mathcal{L}, \Re}$ is transitive.

Proof. According to the previous theorem, it is enough to check that for any $x \in M, P_{\mathcal{L}, \mathfrak{R}}(x)$ is an $\mathcal{L} \Re_{\mathcal{U}}$-part of M. Suppose that $\left(\sum_{i=1}^{q} z_{i}^{\prime}, \sum_{i=1}^{p} m_{i}^{\prime}\right) \in \mathfrak{R}$ such that $\sum_{i=1}^{p} m_{i}^{\prime} \cap P_{\mathcal{L}, \Re}(x) \neq \emptyset$. We check that $\sum_{i=1}^{q} z_{i}^{\prime} \subseteq P_{\mathcal{L}, \mathfrak{R}}(x)$. Since M is a regular hypermodule, there exists an identity e in M. Moreover, there exist $u, v \in M$ such that $e \in u+x$ and $x \in t+v$, where $t \in \sum_{i=1}^{p} m_{i}^{\prime} \cap P_{\mathcal{L}, \mathfrak{R}}(x)$. Hence, there exist $P_{1}, P_{2} \in \mathcal{U}$ such that $t \in P_{1}, x \in P_{2}$ and $P_{1} \Re P_{2}$. We obtain

$$
\begin{aligned}
x \in t+v & \subseteq \sum_{i=1}^{p} m_{i}^{\prime}+v \subseteq \sum_{i=1}^{p} m_{i}^{\prime}+e+v \\
& \subseteq \sum_{i=1}^{p} m_{i}^{\prime}+u+x+v \subseteq \sum_{i=1}^{p} m_{i}^{\prime}+u+P_{2}+v=P_{3}
\end{aligned}
$$

and

$$
\sum_{i=1}^{q} z_{i}^{\prime} \subseteq \sum_{i=1}^{q} z_{i}^{\prime}+e \subseteq \sum_{i=1}^{q} z_{i}^{\prime}+u+t+v \subseteq \sum_{i=1}^{q} z_{i}^{\prime}+u+P_{1}+v=P_{4}
$$

Since $\sum_{i=1}^{p} m_{i}^{\prime} \Re \sum_{i=1}^{q} z_{i}^{\prime}, P_{1} \Re P_{2}$ and \mathfrak{R} is regular, it follows that $P_{3} \Re P_{4}$. Therefore, $\sum_{i=1}^{q} z_{i}^{\prime} \subseteq P_{\mathcal{L}, \mathfrak{R}}(x)$ and so, $\rho_{\mathcal{L}, \Re}$ is transitive.

Similarly, we can prove that if M is a regular hypermodule and \Re is a compatible relation on \mathcal{U}, then ρ_{\Re} is transitive.

Theorem 4.8. Let M be an R-hypermodule and $K=\bigcup_{n \geq 1} A_{n}$, where A_{n} is the alternating subgroup of the symmetric group \mathbb{S}_{n} of order n or $K=\{I\}$, the identity of \mathbb{S}_{n}. We define the relation \mathfrak{R}^{K} on \mathcal{U} as follows: for all $\left(\sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime}\right) \in \mathcal{U}^{2}$,

$$
\sum_{i=1}^{p} m_{i}^{\prime} \mathfrak{R}^{K} \sum_{i=1}^{q} z_{i}^{\prime} \Leftrightarrow \exists \tau \in K, \sum_{i=1}^{q} z_{i}^{\prime}=\sum_{i=1}^{p} m_{\tau(i)}^{\prime}
$$

Then,

$$
\rho_{\mathfrak{R}^{K}}=\rho_{\mathfrak{R}^{K}}^{*}=\left\{\begin{array}{l}
\varepsilon^{*} \text { if } K=\{I\} \\
\theta^{*} \text { if } K=\bigcup_{n \geq 1} A_{n}
\end{array}\right.
$$

Proof. It is straightforward that $\rho_{\mathfrak{R}^{K}}$ is a strongly relation on \mathcal{U}. If $K=\{I\}$, the proof is obvious (see [3]). Now, suppose that $K=\bigcup_{n \geq 1} A_{n}$. Then, $\rho_{\mathfrak{R}^{K}}^{*} \subseteq \theta^{*}$. Conversely, we prove that $\frac{M}{\rho_{9 K}^{*} K}$ is an abelian group. Let $x_{1}, x_{2} \in M$. From $M=$ $x_{2}+M$, it follows that there exists $x_{3} \in M$ such that $x_{2} \in x_{2}+x_{3}$. Thus, we have $x_{1}+x_{2} \subseteq x_{1}+x_{2}+x_{3}$ and $x_{2}+x_{1} \subseteq x_{2}+x_{3}+x_{1}$. We have $\sum_{i=1}^{3} x_{i} \Re^{K} \sum_{i=1}^{3} x_{\tau(i)}$, where $\tau(1)=2, \tau(2)=3, \tau(3)=1$ and $\tau \in A_{3}$. We conclude that $\rho_{\mathfrak{R}^{K}}^{*}\left(x_{1}\right)+$ $\rho_{\mathfrak{R}^{K}}^{*}\left(x_{2}\right)=\rho_{\mathfrak{R}^{K}}^{*}\left(x_{2}\right)+\rho_{\mathfrak{R}^{K}}^{*}\left(x_{1}\right)$ and hence $\frac{M}{\rho_{\Re^{K}}^{*}}$ is abelian. Suppose that $r \in R$ and $x \in M$. Since $\rho_{\mathfrak{R}^{K}}^{*}$ is a strongly regular, $r \circ \rho_{\mathfrak{R}^{K}}^{*}(x)=\rho_{\mathfrak{R}^{K}}^{*}(z)$ for any $z \in r \cdot x$.

Since M is an R-hypermodule, the properties of M as an R-hypermodule, grantee that the abelian group $\frac{M}{\rho_{9^{*} K}^{*}}$ is an R-hypermodule.

Theorem 4.9. Let M be an R-hypermodule. The relation \Re on \mathcal{U} is defined as follows: for all $m, n \in \mathbb{N}$ and for all $\left(\sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime}\right) \in \mathcal{U}^{2}$,

$$
\begin{gathered}
\sum_{i=1}^{p} m_{i}^{\prime} \Re \sum_{i=1}^{q} z_{i}^{\prime} \Leftrightarrow\left(\left|\sum_{i=1}^{p} m_{i}^{\prime}-\sum_{i=1}^{q} z_{i}^{\prime}\right|<\infty \text { or }\left|\sum_{i=1}^{q} z_{i}^{\prime}-\sum_{i=1}^{p} m_{i}^{\prime}\right|<\infty\right) \\
\text { and } \sum_{i=1}^{p} m_{i}^{\prime} \cap \sum_{i=1}^{q} z_{i}^{\prime} \neq \emptyset
\end{gathered}
$$

where $|A|$ is the cardinal number of the set A. Then, $\rho_{\mathfrak{R}}^{*}=\varepsilon^{*}$.
Proof. Since \Re regular, by Proposition 4.5(2), ρ_{\Re}^{*} is an equivalence relation. Suppose that $(x, y) \in \rho_{\Re}$. Then, there exists $\left(\sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime}\right) \in \Re$ such that $x \in \sum_{i=1}^{p} m_{i}^{\prime}$ and $y \in \sum_{i=1}^{q} z_{i}^{\prime}$. Without the loss of generality, suppose that

$$
\left|\sum_{i=1}^{p} m_{i}^{\prime}-\sum_{i=1}^{q} z_{i}^{\prime}\right|<\infty,
$$

so $\sum_{i=1}^{p} m_{i}^{\prime}-\sum_{i=1}^{q} z_{i}^{\prime}=\left\{b_{1}, b_{2}, \ldots, b_{t}\right\}$. Set $z_{q}^{\prime}=\sum_{j=1}^{q_{i}}\left(\prod_{k=1}^{k_{i j}} r_{i j k}\right) z_{q}$. Since M is a hypermodule, there exists $\left(c_{1}, d_{1}\right) \in M^{2}$ such that $z_{q} \in c_{1}+b_{1}, b_{1} \in a+d_{1}$, where $a \in \sum_{i=1}^{p} m_{i}^{\prime} \cap \sum_{i=1}^{q} z_{i}^{\prime}$. Thus, we have

$$
\begin{aligned}
\sum_{i=1}^{q} z_{i}^{\prime} & \subseteq \sum_{i=1}^{q-1} z_{i}^{\prime}+\sum_{j=1}^{q_{i}} \prod_{k=1}^{k_{i j}} r_{i j k}\left(c_{1}+b_{1}\right) \\
& \subseteq \sum_{i=1}^{q-1} z_{i}^{\prime}+\sum_{j=1}^{q_{i}} \prod_{k=1}^{k_{i j}} r_{i j k}\left(c_{1}+a+d_{1}\right) \\
& \subseteq \sum_{i=1}^{q-1} z_{i}^{\prime}+\sum_{j=1}^{q_{i}} \prod_{k=1}^{k_{i j}} r_{i j k}\left(c_{1}+\sum_{i=1}^{p} m_{i}^{\prime}+d_{1}\right)=P .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
b_{1} \in a+d_{1} & \subseteq \sum_{i=1}^{q-1} z_{i}^{\prime}+z_{q}^{\prime}+d_{1} \\
& \subseteq \sum_{i=1}^{q-1} z_{i}^{\prime}+\sum_{j=1}^{q_{i}} \prod_{k=1}^{k_{i j}} r_{i j k}\left(c_{1}+b_{1}\right)+d_{1} \\
& \subseteq \sum_{i=1}^{q-1} z_{i}^{\prime}+\sum_{j=1}^{q_{i}} \prod_{k=1}^{k_{i j}} r_{i j k}\left(c_{1}+\sum_{i=1}^{p} m_{i}^{\prime}+d_{1}\right)=P .
\end{aligned}
$$

Denote $\sum_{i=1}^{k_{1}} v_{1, i}^{\prime}:=\sum_{i=1}^{q-1} z_{i}^{\prime}+\sum_{j=1}^{q_{i}} \prod_{k=1}^{k_{i j}} r_{i j k}\left(c_{1}+\sum_{i=1}^{p} m_{i}^{\prime}\right)+d_{1}$. Thus, $\left\{b_{1}\right\} \cup$ $\sum_{i=1}^{q} z_{i}^{\prime} \subseteq \sum_{i=1}^{k_{1}} v_{1, i}^{\prime}$. Using again that M is a hypermodule, there exists $\left(c_{2}, d_{2}\right) \in$ M^{2} such that $v_{1, k_{1}}^{\prime}=\sum_{j=1}^{q_{i}} \prod_{k=1}^{k_{i j}} s_{i j k} v_{1, k_{1}} \subseteq \sum_{j=1}^{q_{i}} \prod_{k=1}^{k_{i j}} s_{i j k}\left(c_{2}+b_{2}\right)$ and $b_{2} \in b_{1}+$ d_{2}. Suppose that $\sum_{i=1}^{k_{2}} v_{2, i}^{\prime}=\sum_{i=1}^{k_{1}-1} v_{1, i}^{\prime}+c_{2}+\sum_{i=1}^{p} m_{i}^{\prime}+d_{2}$. Similarly, we obtain $\left\{b_{2}\right\} \cup \sum_{i=1}^{k_{1}} v_{1, i}^{\prime} \subseteq \sum_{i=1}^{k_{2}} v_{2, i}^{\prime}$ and so $\left\{b_{1}, b_{2}\right\} \subseteq \sum_{i=1}^{q} z_{i}^{\prime} \subseteq \sum_{i=1}^{k_{2}} v_{2, i}^{\prime}$. After t steps, we obtain $\sum_{i=1}^{k_{t}} z_{t, i}^{\prime}$ such that $\left\{b_{1}, b_{2}, \ldots, b_{t}\right\} \cup \sum_{i=1}^{q} z_{i}^{\prime} \subseteq \sum_{i=1}^{k_{2}} v_{t, i}^{\prime}$. Thus, $\sum_{i=1}^{p} m_{i}^{\prime} \cup$ $\sum_{i=1}^{q} z_{i}^{\prime} \subseteq \sum_{i=1}^{k_{t}} v_{t, i}^{\prime}$, which implies that $(x, y) \in \varepsilon^{*}$ and $\rho_{\mathfrak{R}} \subseteq \varepsilon^{*}$. Therefore, $\rho_{\mathfrak{R}}^{*} \subseteq$ ε^{*}. Now, suppose that $(x, y) \in \varepsilon^{*}$. Then, there exists $\sum_{i=1}^{p} m_{i}^{\prime}$ such that $x, y \in$ $\sum_{i=1}^{p} m_{i}^{\prime}$. Since $\sum_{i=1}^{p} m_{i}^{\prime}-\sum_{i=1}^{p} m_{i}^{\prime}=\emptyset,(x, y) \in \rho_{\mathfrak{R}}$, hence $\varepsilon^{*} \subseteq \rho_{\mathfrak{R}}^{*}$. Therefore, $\varepsilon^{*}=\rho_{\mathfrak{R}}^{*}$.

Remark 4.10. The relation $\stackrel{\leftrightarrow}{R}$ on \mathcal{U} defined by

$$
\sum_{i=1}^{p} m_{i}^{\prime} \stackrel{\hookrightarrow}{R} \sum_{i=1}^{q} z_{i}^{\prime} \Leftrightarrow \sum_{i=1}^{p} m_{i}^{\prime} \subseteq \sum_{i=1}^{q} z_{i}^{\prime}
$$

is not symmetric and the induced strongly regular relation $\rho_{\underset{R}{*}}^{*}$ coincides with th induced strongly regular relation $\rho_{\mathfrak{R}}^{*}$ of Theorem 4.6.

Theorem 4.11. Let $(M,+)$ be an R-hypermodule and \mathfrak{R} be a strongly relation on \mathcal{U}. Then, an R-hypermodule (with ordinary group) structure can be defined on $\frac{M}{\rho_{\Re}^{*}}$ with respect to the following two operations

$$
\begin{aligned}
& \rho_{\mathfrak{R}}^{*}(x) \oplus \rho_{\mathfrak{R}}^{*}(y)=\rho_{\mathfrak{R}}^{*}(z), \text { where } z \in x+y, \\
& r \circ \rho_{\mathfrak{R}}^{*}(x)=\rho_{\mathfrak{R}}^{*}(z), \text { where } z \in r \cdot x, r \in R .
\end{aligned}
$$

Proof. We prove that the operations \oplus and \circ are well defined. Set $\rho_{\mathfrak{R}}^{*}\left(x_{0}\right)=$ $\rho_{\mathfrak{R}}^{*}\left(x_{1}\right)$ and $\rho_{\mathfrak{R}}^{*}\left(y_{0}\right)=\rho_{\mathfrak{R}}^{*}\left(y_{1}\right)$. It is enough to verify that $\rho_{\mathfrak{R}}^{*}\left(x_{0}\right) \oplus \rho_{\mathfrak{R}}^{*}\left(y_{0}\right)=$ $\rho_{\mathfrak{R}}^{*}\left(x_{1}\right) \oplus \rho_{\mathfrak{R}}^{*}\left(y_{1}\right)$.

By hypothesis $m, n \in \mathbb{N},\left(z_{0}, z_{1}, \ldots, z_{m}\right) \in H^{m+1}$ and $\left(t_{0}, t_{1}, \ldots, t_{n}\right) \in H^{m+1}$ exist such that $z_{0}=x_{0}, z_{m}=x_{1}, t_{0}=y_{0}$ and $t_{n}=y_{1}$ for all $1 \leq i \leq m, z_{i-1} \rho_{\mathfrak{R}} z_{i}$ and for all $1 \leq j \leq n, t_{j-1} \rho_{\Re} t_{j}$. Since \mathfrak{R} is strongly regular, for all $u \in z_{s-1}+t_{s-1}$ and $v \in z_{s}+t_{s}$, where $1 \leq s \leq k$ and $k=\min \{m, n\}$, we have $u \rho_{\mathfrak{R}}^{*} v$. Hence,

$$
\begin{aligned}
\rho_{\mathfrak{R}}^{*}\left(x_{0}\right) \oplus \rho_{\mathfrak{R}}^{*}\left(y_{0}\right) & =\rho_{\mathfrak{R}}^{*}\left(z_{1}\right) \oplus \rho_{\mathfrak{R}}^{*}\left(t_{1}\right)=\ldots=\rho_{\mathfrak{R}}^{*}\left(z_{k}\right) \oplus \rho_{\mathfrak{R}}^{*}\left(t_{k}\right) \\
& =\rho_{\mathfrak{R}}^{*}\left(a_{k+i}\right) \oplus \rho_{\mathfrak{R}}^{*}\left(b_{k+i}\right),
\end{aligned}
$$

where $k+1 \leq k+i \leq \max \{m, n\}$ and

$$
\left(a_{k+i}, b_{k+i}\right)=\left\{\begin{array}{l}
\left(x_{1}, t_{k+i}\right) \text { if } k=m \\
\left(z_{k+i}, y_{1}\right) \text { if } k=n
\end{array}\right.
$$

Therefore, \oplus is well defined. Now, suppose that $\rho_{\mathfrak{R}}^{*}\left(x_{1}\right)=\rho_{\mathfrak{R}}^{*}\left(x_{2}\right)$. Then, there exists $\left(z_{1}, \ldots, z_{t}\right)$ such that $x_{1}=z_{1}, x_{2}=z_{t}$ and for all $1 \leq j \leq t, t_{j-1} \rho_{\Re} t_{j}$. Since \mathfrak{R} is a strongly relation, $\rho_{\mathfrak{R}}^{*}$ is a strongly relation and so for any $u \in r \circ \rho_{\mathfrak{R}}^{*}\left(x_{1}\right)$ and $v \in r \circ \rho_{\mathfrak{R}}^{*}\left(x_{2}\right)$, we have $\rho_{\mathfrak{R}}^{*}(u)=\rho_{\mathfrak{R}}^{*}(v)$. Hence, $r \circ \rho_{\mathfrak{R}}^{*}\left(x_{1}\right)=r \circ \rho_{\mathfrak{R}}^{*}\left(z_{2}\right)=$ $\ldots=r \circ \rho_{\mathfrak{R}}^{*}\left(z_{t-1}\right)=r \circ \rho_{\mathfrak{R}}^{*}\left(z_{t}\right)$. Therefore, \circ is well defined. Since M is an $R-$ hypermodule, the properties of M as an R-hypermodule, grantee that the abelian group $\frac{M}{\rho_{\Re}^{*}}$ is an R-hypermodule.

Theorem 4.12. Let M be an R-hyperring and p be a prime number. If the relation $\mathfrak{R}_{+, p}$ on \mathcal{U} is defined as follows:

$$
\mathfrak{R}_{+, p}=\left\{\left(\sum_{i=1}^{n}\left(\prod_{j=1}^{k_{i}} r_{i j}\right)\left(s \cdot m_{i}\right), \sum_{i=1}^{n}\left(\prod_{j=1}^{k_{i}} r_{i j}\right)\left(t \cdot m_{i}\right)\right) \mid s, t \in\{1, p+1\}\right\} .
$$

Then, $M / \rho_{\mathfrak{R}_{+, p}}^{*}$ is an R-hypermodule such that $\left(M / \rho_{\mathfrak{R}_{+, p}}^{*}, \oplus\right)$ is a p-elementary group.

Proof. It is clear that the relation $\mathfrak{R}_{+, p}$ on \mathcal{U} is strongly regular. Now, by Theorem 4.11, the proof is completed.

By the similar way, we have the following Theorem.
Theorem 4.13. Let R be a hyperring and p be a prime number. If the relation $\mathfrak{R}_{+, p}^{\sigma}$ on \mathcal{U} is defined as follows:

$$
\mathfrak{R}_{+, p}^{\sigma}=\left\{\left(\sum_{i=1}^{n}\left(\prod_{j=1}^{k_{i}} r_{i j}\right)\left(s \cdot m_{i}\right), \sum_{i=1}^{n}\left(\prod_{j=1}^{k_{\sigma(i)}} x_{\sigma(i) j}\right)\left(t \cdot m_{\sigma(i)}\right)\right) \mid s, t \in\{1, p+1\}\right\} .
$$

Then, $M / \rho_{\mathfrak{R}_{+, p}^{\sigma}}^{*}$ is an R-hypermodule such that $\left(M / \rho_{\mathfrak{R}_{+, p}^{\sigma}}^{*}, \oplus\right)$ is a p-elementary abelian group.

Example 4.14. Let p be a prime. Consider $M:=\underbrace{\mathbb{Z} \times \ldots \times \mathbb{Z}}_{n}$ as a \mathbb{Z}-module. Then, the relation $\Re_{+, p}$ in Theorem 4.12 is of the form

$$
\Re_{+, p}=\left\{\left(\sum_{i=1}^{n} t n_{i}, \sum_{i=1}^{n} t n_{i}\right) \mid s, t \in\{1, p+1\}, n_{i} \in \mathbb{Z}\right\}
$$

Therefore, $M / \mathfrak{R}_{+, p}$ is a \mathbb{Z}-module such that $M / \mathfrak{R}_{+, p} \cong \underbrace{\mathbb{Z}_{p} \times \ldots \times \mathbb{Z}_{p}}_{n}$.

Example 4.15. Let $p=2$ and R be a ring. Set $M:=\mathbb{S}_{3} \times \mathbb{S}_{3}$, where \mathbb{S}_{3} is the permutation group of order 3, i.e., $\mathbb{S}_{3}=\{(1),(12),(13),(23),(123),(132)\}$. Let K_{1} and K_{2} be two subgroups of \mathbb{S}_{3}. Define the scalar hyperoperation $r \cdot(\sigma, \tau)=$ $\left(K_{1}, K_{2}\right)$ for any $r \in R$ and $\sigma, \tau \in \mathbb{S}_{3}$. Then, $M / \mathfrak{R}_{+, p}^{\sigma}$ is an R-hypermodule such that $M / \mathbb{R}_{+, p}^{\sigma} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Definition 4.16. Let M be an R-hypermodule and $\rho: M \longrightarrow \frac{M}{\rho_{\Re}^{*}}$ be the canonical projection. Denote by 0 the zero element of the group $\frac{M}{\rho_{\Re}^{*}}$. The set $\rho^{-1}(0)$ is called the \Re-heart of M and it is denoted by $\omega_{\Re, M}$.

Notice that if \mathfrak{R} is the diagonal relation of \mathcal{U}, then the \mathfrak{R}-heart is just the heart of the hypermodule M.

Theorem 4.17. Let M be a regular R-hypermodule and \mathfrak{R} be a compatible relation with + and \cdot on \mathcal{U}. Then, $\omega_{\mathfrak{R}, M}$ is the smallest subhypermodule of M, which is also an \mathfrak{R}-part.

Proof. First, we check that $\omega_{\Re, M}$ is a subhypermodule of M. If $x, y \in \omega_{\Re, M}$ and $z \in x+y$, then $\rho_{\mathfrak{R}}^{*}(z)=\rho_{\mathfrak{R}}^{*}(x) \oplus \rho_{\mathfrak{R}}^{*}(y)=0$, the identity of the group $\frac{M}{\rho_{\mathfrak{R}}^{*}}$. Hence, $z \in \omega_{\mathfrak{R}, M}$. On the other hand, there exists $u \in M$, such that $x \in u+y$, whence $\rho_{\mathfrak{R}}^{*}(x)=\rho_{\mathfrak{R}}^{*}(u) \oplus \rho_{\mathfrak{R}}^{*}(y)$, so $\rho_{\mathfrak{R}}^{*}(u)=0$ and $u \in \omega_{\mathfrak{R}, M}$. This means that $\omega_{\Re, M}=\omega_{\Re, M}+y$ and similarly we obtain that $\omega_{\Re, M}=y+\omega_{\Re, M}$.

Now, suppose that $x \in \omega_{\Re, M}$ and $r \in R$. Then, for any $z \in r \circ x$, we have $\rho_{\mathfrak{R}}^{*}(z) \subseteq \rho_{\mathfrak{R}}^{*}(r \circ x)=r \circ \rho_{\mathfrak{R}}^{*}(x)=r \circ 0=0$ by strongly regularity of $\rho_{\mathfrak{R}}^{*}$. Since M is an R-hypermodule, the properties of M as an R-hypermodule, follows that $\omega_{\Re, M}$ is a subhypermodule of M. By Theorems 4.6, 4.7 and Proposition 4.5, for all $x \in \omega_{\Re, M}, P_{\mathcal{U}, \mathfrak{R}}(x)=\rho_{\mathcal{U}, \mathfrak{R}}^{*}(x)=\rho_{\mathfrak{R}}(x)$, which represents the zero element of $\frac{M}{\rho_{\Re}^{*}}$. On the other hand, $\rho_{\mathfrak{R}}^{*}(x)$ represents the \mathfrak{R}-heart $\omega_{\Re, M}$, as a subset of M. So, for all $x \in \omega_{\Re, M}$, according to Theorems 4.6, 4.7, $\omega_{\mathfrak{R}, M}=P_{\mathcal{U}, \mathfrak{R}}(x)$, which is an $\mathcal{L} \Re_{\mathcal{U}}$-part of M. In fact, by Proposition 4.5, $P_{\mathcal{U}, \mathfrak{R}}(x)$ is also an $\mathcal{R} \Re_{\mathcal{U}}$-part of M, hence it is an \mathfrak{R}-part of M. Moreover, $\omega_{\mathfrak{R}, M}$ is the smallest subhypermodule which is an \Re-part of M. Indeed, if K is a subhypermodule and an \Re-part of M, then for all $k \in K$, there is $e \in K$ such that $k \in e+k$, whence $\rho_{\mathfrak{R}}^{*}(k)=\rho_{\mathfrak{R}}^{*}(e) \oplus \rho_{\mathfrak{R}}^{*}(k)$, so $e \in \omega_{\mathfrak{R}, M}$. Since K is an \mathfrak{R}-part of M, hence $P_{\mathcal{U}, \mathfrak{R}}(e)=\omega_{\Re, M} \subseteq K$.

Theorem 4.18. For every non-empty subset A of hypermodule M, if A is an \mathfrak{R}-part of M, then $\rho^{-1}(\rho(A))=A$.

Proof. It is obvious that $A \subseteq \rho^{-1}(\rho(A))$. Moreover, if $x \in \rho^{-1}(\rho(A))$, then there exists an element $a \in A$ such that $\rho(x)=\rho(a)$. Since A is an \mathfrak{R}-part, $x \in \rho_{\mathfrak{R}}^{*}(x)=$ $\rho_{\mathfrak{R}}^{*}(a) \subseteq A$. Therefore, $\rho^{-1}(\rho(A)) \subseteq A$.

Theorem 4.19. Let A be a non-empty subset of a hypermodule M. The following condition are equivalent:
(1) A is $a \Re_{\mathcal{U}}$ - part of M.
(2) $x \in A, x \rho_{\mathfrak{R}} y \Rightarrow y \in A$.
(3) $x \in A, x \rho_{\mathfrak{R}}^{*} y \Rightarrow y \in A$.

Proof. (1) \Rightarrow (2): If $x, y \in M$ is a pair such that $x \in A$ and $x \rho_{\mathfrak{R}} y$, then there exists $\left(\sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime}\right) \in \mathfrak{R}_{\mathcal{U}} \cup \Re_{\mathcal{U}}^{-1}$ such that $x \in \sum_{i=1}^{p} m_{i}^{\prime}$ and $y \in \sum_{i=1}^{q} z_{i}^{\prime}$. Since A is a $\Re_{\mathcal{U}}$-part of R, we obtain $\sum_{i=1}^{p} m_{i}^{\prime} \cap A \neq \emptyset$ and $\sum_{i=1}^{p} m_{i}^{\prime} \Re_{\mathcal{U}} \sum_{i=1}^{q} z_{i}^{\prime}$ which implies that $\sum_{i=1}^{q} z_{i}^{\prime} \subseteq A$. Then, $y \in A$.
(2) \Rightarrow (3) Suppose that $x, y \in R$, such that $x \in A$ and $x \in \rho_{\mathfrak{R}}^{*}(y)$. Obviously, there exist $s \in \mathbb{N}$ and $\left(w_{0}=x, w_{1}, \ldots, w_{s-1}, w_{s}=y\right) \in R^{s+1}$ such that

$$
x=w_{0} \rho_{\mathfrak{K}} w_{1} \ldots \rho_{\mathfrak{R}} w_{s-1} \rho_{\mathfrak{K}} w_{s}=y
$$

Since $x \in A$, applying (2) s times, we obtain $y \in A$.
(3) \Rightarrow (1) Suppose that $\sum_{i=1}^{p} m_{i}^{\prime} \cap A \neq \emptyset$ and $x \in \sum_{i=1}^{p} m_{i}^{\prime} \cap A$.

If $\left(\sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{q} z_{i}^{\prime}\right) \in \mathfrak{R}_{\mathcal{U}} \cup \Re_{\mathcal{U}}^{-1}$, where $\sum_{i=1}^{q} z_{i}^{\prime} \in \mathcal{U}$, then for every $y \in$ $\sum_{i=1}^{q} z_{i}^{\prime}$, we obtain $y \rho_{\mathfrak{R}} x$ and by (3) we have $y \in A$.

Corollary 4.20. Let R be a hyperring and A be a nonempty subset of M. If \mathfrak{R} is a relation on \mathcal{U} then A is an $\mathfrak{R}_{\mathcal{U}}$ - part of R if and only if $A=\bigcup_{x \in A} \rho_{\mathfrak{R}}^{*}(x)$.

Theorem 4.21. Let R be a commutative hyperring, M a regular R-hypermodule and for every $m \in M, R . m=M$. Let $\mathfrak{R C}$ be the set of all reflexive and compatible relations with + and \cdot on \mathcal{U}. Then, the heart of the hypermodule M is $\omega_{M}=$ $\bigcap_{\Re \in \mathcal{R C}} \omega_{\mathfrak{\Re}, M}$.

Proof. Notice that if $(x, y) \in \varepsilon$, then $x, y \in \sum_{i=1}^{p} m_{i}^{\prime}$, where $i \in\{1,2 \ldots, n\}$. So, $\varepsilon \subseteq \bigcap_{\Re \in \mathcal{R C}} \rho_{\mathfrak{R}}^{*}$. Conversely, it is enough to remark that $\bigcap_{\Re \in \mathcal{R C}} \rho_{\Re}^{*} \subseteq \varepsilon$. By Theorem $1.2, \varepsilon=\varepsilon^{*}$. So, $\varepsilon=\varepsilon^{*}=\rho_{I d}^{*}$, where $I d$ is the diagonal relation on \mathcal{U}. Hence, $\varepsilon=\bigcap_{\Re \in \mathcal{R C}} \rho_{\mathfrak{R}}^{*}$. From here it follows that, $\omega_{M}=\bigcap_{\Re \in \mathcal{R C}} \omega_{\Re, M}$, since for all $x \in M, \varepsilon(x)=0$ if and only if $x \in \omega_{M}$, while for all $\mathfrak{R} \in \mathcal{R C}, \rho_{\mathfrak{R}}^{*}(x)=0$ if and only if $x \in \omega_{\Re, M}$.

REFERENCES

[1] S.M. Anvariyeh - S. Mirvakili - B. Davvaz, θ^{*} - Relation on hypermodules and fundamental modules over commutative fundamental rings, Comm. Algebra 36 (2008), 622-631.
[2] S.M. Anvariyeh - S. Mirvakili - B. Davvaz, Transitivity of θ^{*}-relation on hypermodules, Iranian J. Science Tech., Transaction A 32 (A3) (2008), 188-205.
[3] S.M. Anvariyeh - B. Davvaz, Strongly transitive geometric spaces associated to hypermodules, J. Algebra 322 (2009), 1340-1359.
[4] S.M. Anvariyeh - B. Davvaz, On the heart of Hypermodules, Mathematica Scandinavica 106 (2010), 39-49.
[5] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, 1993.
[6] P. Corsini - V. Leoreanu, About the heart of a hypergroup, Acta Univ. Carolinae 37 (1996), 17-28.
[7] B. Davvaz - M. Karimian, On the γ^{*}-complete hypergroups, European J. Combinatories 28 (2007), 86-93.
[8] B. Davvaz - V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, USA, 2007.
[9] B. Davvaz - T. Vougiouklis, Commutative- rings obtained from hyperrings ($H_{v}-$ rings) with α^{*} - relations, Comm. Algebra 35 (11) (2007), 3307-3320.
[10] D. Freni, A new characterization of the derived hypergroup via strongly regular equivalences, Comm. Algebra 30 (8) (2002), 3977-3989.
[11] D. Freni, Strongly transitive geometric spaces: Applications to hypergroups and semigroups theory, Comm. Algebra 32 (8) (2004), 969-988.
[12] M. Koskas, Groupoides, Demi-hypergroupes et hypergroupes, J. Math. Pure Appl. 49 (1970), 155-192.
[13] R. Migliorato, n-complete semihypergroups and hypergroups, Ann. Sci. Univ. Clermont-Ferrand II Math. 23 (1986), 99-123.
[14] S. S. H. Mousavi - V. Leoreanu-Fotea - M. Jafarpour, R-parts in (semi)hypergroups, Ann. Mat. Pura Appl. 190 (4) (2011), 667-680.
[15] T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, Proc. Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scientific, (1991) 203-211.
[16] T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press, Inc, 115, Palm Harber, USA, 1994.
[17] T. Vougiouklis, H_{v}-vector spaces, Algebraic hyperstructures and applications (Iasi, 1993), 181-190, Hadronic Press, Palm Harbor, FL, 1994.

S. M. ANVARIYEH
Department of Mathematics
Yazd University, Yazd, Iran
e-mail: anvariyeh@yazd.ac.ir

S. MIRVAKILI

Department of Mathematics
Payame Noor University(PNU), Tehran, Iran e-mail: saeed_mirvakili@pnu.ac.ir
B. DAVVAZ

Department of Mathematics
Yazd University, Yazd, Iran e-mail: davvaz@yazd.ac.ir

