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R-PARTS AND MODULES DERIVED FROM STRONGLY
U-REGULAR RELATIONS ON HYPERMODULES

S. M. ANVARIYEH - S. MIRVAKILI - B. DAVVAZ

This paper concerns a new relationship between hypermodules and
modules. We generalize the notion of complete parts and 0-parts by the
notion of R-parts on hypermodules and then R-closures of hypermodules
as a generalization of O-closures are defined. In addition, we give the
notion of a strongly U-regular relation on hypermodules and investigate
some properties of it.

1. Introduction

If M is an R-hypermodule [1] and p C M x M is an equivalence relation, then
for all pairs (A,B) of non-empty subsets of M, we set ApB if and only if apb
for all a € A, b € B. The relation p is said to be strongly regular to the right if
xpy implies x+a p y+aand r-x p r-y for all x,y,a € H and r € R. Analo-
gously, we can define strongly regular to the left. Moreover p is called strongly
regular if it is strongly regular to the right and to the left. Let M be a hyper-
module and p an equivalence relation on M. Let p(a) be the equivalence class
of a with respect to p and set M/p = {p(a) | a € M}. The hyperoperations
@ are © are defined on M /p by p(a) ®p(b) ={p(x) | x € p(a)+p(b)} and
rop(a) ={p(z)lzer-p(a)}. If p is strongly regular then it readily follows
that p(a) ®p(b) ={p(x) |x€a+b} and rop(a) ={p(x)|x € r-a} It is well
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known for p strongly regular that (M/p,®,®) is an R-hypermodule. That is
pla)®p(b)=p(c)forallcca+band r©p(a)=p(x) forallx € r-a[l].
Several relations have been studied in hypergroups, hyperrings and hyper-
modules such 3,7, €, 0 etc., for example see Anvariyeh et al. [1-4], Corsini and
Leoreanu [6], Davvaz et al. [8, 9], Freni [10, 11], Koskas [12] and Vougiouklis
[15-17]. Complete parts were introduced by Koskas [12] and studied then by
Corsini [5], Davvaz and Karimian [7], Miglirato [13], Mousavi et al. [14], and
others.
Let M be an R-hypermodule. We consider the relation € on M as follows
[16]:
n n;  kij
xey & x,ye Y my mi=m; or mp=Y ([]xi)u
i=1 j=1 k=1
m; €M, Xijk €ER, z; eM.

The fundamental relation €* on M can be considered as the smallest equiv-
alence relation such that the quotient M /€* be a module over the corresponding
fundamental ring such that M/e* as a group is not abelian [1, 16]. Now, we
recall the following definition from [1].

Definition 1.1. [1]. Let M be an R-hypermodule. We define the relation 6 as
follows:

x0y < IneN, I(m),...,m)), I(ki,kz,...,ky) EN" Jo €Sy,

ki
El(x,-l,x,-z, - 7xik,-) €R s E|Gi S Snn E|G,'j S Skij’

such that
n ni  kij
X E Zm;, m: =m; Or mi = Z(Hxijk)mi
i=1 j=1 k=1
and
n
/
y (S ch(i),
i=1
where
/ . /
Mg (i) = Me(i) if m;=m; and
n; ki
/ . /
my iy = Bo@moq it mi="Y ([ [xiw)m,
j=1 k=1
with

n; ki
Bi = ZAiGi(j)7 Al} = Hxijcfij(k)'
j=1 k=1
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If 6* is the transitive closure of 6, then 0* is a strongly regular relation on M
as an R-hypermodule [1]. The fundamental relation 6 is not transitive in general
[2]. The following theorem gives the sufficient conditions, that the relation 0 is
transitive.

Theorem 1.2. [3]. Let R be a commutative hyperring. If M is an R-hypermodule
and for every m € M, R-m = M, then the fundamental relation 0 is transitive
on hypermodules.

2. O-parts and R-parts of hypermodules

In this section, we begin with the definition of 8 —parts of hypermodules which
are valid in every hypermodule [3]. In the following m is the notation that
defined in Definition 1.1.

Definition 2.1. [3]. Let M be an R—hypermodule and H be a non-empty subset
of M. We say that H is a 8-part of M if for every n € N, for every ¢ € S,, and

for every (m},...,m),)

p p
i=1 i=1

H is said to be a complete part of M, if ¢ is identity.

Now, we generalize the notion of complete parts and 6-parts and by the
notion of R-parts and then we study R-closures in hypermodules. Recently,
‘R-parts in (semi)-hypergroups introduced by Mousavi, Leoreanu-Fotea and Ja-
farpour [14].

Let M be an R-hypermodule and U be the set of finite sums of Y% m] and
R be a relation on M.

Definition 2.2. For a nonempty subset A of M, we say that A is a left R-part of
M with respect to U (or briefly in LIRy-part) if for all Y7, m} and Y7, 2z} in U
the following implication is valid

P q P q
(Z{m;ﬂA#(band Z{zgfﬁ Zim;> =Y cA
i= i= =

i=1

Similarly, we can define a right R-part of M with respect to U (or briefly in
RRy-part). A is an R-part on M with respect to U (or briefly in Ry -part) if it
is an LRy-part and an RRy,-part.
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Remark 2.3. By Definition 2.2, it is straightforward for any nonempty subset
A of a hypermodule M, A is an E‘ﬁal—part (R%&l-part) if and only if A is an
RRy-part (LRy,-part).

Now, we recall that a Kj;-semihypergroup is the semihypergroup construct-
ed from a semihypergroup (M,+) and a family {A(x)},ep of nonempty and
mutually disjoint subsets of M. Set Ky = [J,cpsA(x) and consider the hyperop-
eration * on Kj; as follows:

W(a,b) € K: a € A(X), b€ AY), axb=UserryAl2).

Then, (M,+) is a hypergroup if and and only if (Kj,*) is a hypergroup (see
Theorem 375 [5]).

Theorem 2.4. Let (M,+,-) be an R-hypermodule. Then, the (Ky,*,0) is an
R-hypermodule.

Proof. We define the scalar hyperoperation o as follows:
reR, acA(x); roa:=,.Az).
Suppose that r,s € R and a € A(x), b € A(y). Then,

(1)
(I’—i— S) ca = UZE(rJrs)-xA(Z) = Uzer-ers-xA(Z)
= Umler-x,mzehv‘x Uz€m1+m2A(Z)
and
(ro Cl) * (S ° a) = (Uker»xA(k)) * (Utes-xA(t))
= UkEroc.,tes‘x Uwek-‘rtA(W)'
(2)
ro (a*b) =ro (Uz€x+yA(Z)) = UzeeryroA(Z)
= Uzexﬂ’ Uu€r~zA(u) = Uu€r~(x+y)A(u)
and
(rea)x(rob) = (UieraAk))* (Uier»A(1))
= Uk6r~a,t€r~b Uw€k+tA(W) = UME(F‘)H-I“}’)A(M)'
(3)

ro(soa) =ro(U.enA(2) =Uzepx UnerzAu)
= UuEr(s~x)A(u) = UzE(rs)-xA(Z) = (}’S) oa.

Therefore, Kjs is an R-hypermodule. O
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Forall P € @*(H), set A(P) = UyepA(x).

Theorem 2.5. If R is a relation on U, then P is an LRy -part of hypermodule
M if and only if A(P) is an LRy-part of Ky, where the relation R is defined as
follows:

U am% U A(u)@imﬁ%izﬁ

vey?  m! uey?! 7

i=1""%

Proof. Suppose that A(P) is an L%y -part of Ky, and (X m, Yl ) eRis
such that Y7 ZiNP # 0. So,

U A(v)é\i U A(u)

vey?  m uey?! 7

and

q q
Y zinP#0 — 3peP suchthatpe ) 7
i=1 i=1

— dp € P, such that A(p) C U A(u)

ueLl 7]
= |J Am)nA(P)#£0.
uerl 7
= U A(v) CA(P), because A(P) is aLS/i; — part.

uey?  m!

i=1""

Forallr € Y'Y  m], A(t) C A(P), so there exists ¢ € P such that A(t) NA(g) # 0.
Thus, 7 = ¢ and hence ¢ € P. Therefore, Y/, m, C P.

Conversely, suppose that *Zle m;NA(P) # 0, where =Y denotes a hyper-
sum of Kj;. Suppose that Y7z, R * Y»_,m.. Then, there exists (xi,...,x,)
such that for any 7; € m} (1 <i < q), t; € A(x;). Now, if

ue U A(y)NA(P),

yEZlexi

then u € A(yo) for some yy € ¥¥_, x;. Since u € A(P), there exists y; € P such
that u € A(y1). So, A(yo) NA(y1) # 0, which implies that yo = y; € Y7, x;N P.
Since P is an LRy-part of M and Y7 v; R Y7, x;, where u; € 2}, u; € A(v;) for
all 1 <i<gq. It follows that Y./, v; C P. Therefore,

7= J Aw)CJA@D) =A(P).

1 WGZ?Zl Vi leP

e

1
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3. R-closure and R-parts of hypermodules

Let M be an R-hypermodule and I/ be the set of finite sums of Zf;l m and R be
the relation on M. The intersection of all LR;,-parts (or RRy,-parts, R-parts)
which contain A is called LR;,-closure (or RRy-closure, R-closure) of A in M
and it is denoted by LRy (A) (or RRy(A), Ry (A)).

Remark 3.1. By Remark 2.3, for any nonempty subset A of a hypermodule M,
A is an L’S)Kz;l—part (LRy-part) if and only if A is an RRy-part (R‘ﬁ&l—part).
So, immediately, we obtain

L%, (4) = RFu(4) (RF,(4) = LF(4)).
For a nonempty subset A of M, we define:
X = {RCUxU | TRy(a) =4}

and

Y= {%guXuyRTtu(A):A}_

Lemma3.2. If Y #0 (or Y.\ #0), then (,\ Y/ #0,0) (or (Y4 #0,0)) is

closed under the composition o of relations.

Proof. Suppose that R, R’ € AZM and (Y7, m, Y] z) € U xU are given.
Also, letY?  mNA#0and Y} 2t RoR' Y.L m]. So, there exists (¥}, ...,¥})
such that Y5 v R Y2 mland Y2, 2 R’ Y5 |y, From Y5 v/ R Y2 m! and
Re AZU it follows that Y¥_, v/ C A. Since R’ € AZU and Y2 2R Y5 |y, we

obtain that Z?:] z, C A. Hence, AZU and so (ZZ # 0,0) is a semigroup. [

Theorem 3.3. Let R be a permutation of finite order in Sy. If A is LRy -part,
then A is RRy-part.

Proof. Since A is LRy -part, LR;(A) = A and hence R € AZM. Since R is
a permutation of finite order in Sy, < R >= {R" | n € N} is a subgroup of

AZM and so R~! € AZU. By Remark 3.1, A = LR, (A) = R%y(A). Thus,
Re ZZ and hence A is a RRy-part. O

In the following, we determine the sets LRy (A), RRy(A) and Ry (A)),
where R C U x U and A is a nonempty subset of M. Set Kfcﬁ (A)=A and

P q P q
K,ﬁlm(A) = {x eEM|3 (Zmi,Zzi) eR, xe Zmﬁ, ZzﬁﬂKfm(A) + (Z)}.
=1 =1 =1 =1



R-PARTS AND MODULES 109
Denote K& (A) = U,>1 K~ (A). Similarly, set K[%;(A) = A and
q )4
K gA)=SxeM|3| Yz, )Y m | eR, xEZml,Zzlﬂ A)#£0
i=1 i=1

Denote KR (A) = U,» KZ%{ (A). Finally, set K} %(A) = A and

Kt—&-l,iK(A)

(e

Denote K (A) = U,>1 K, %x(A).

Theorem 3.4. Let A be a nonempty subset of hypermodule M. Then, Kx(A) =
Ry (A).

Proof. 1t is necessary to prove:

[ Mm

q P q
Z ) eRUR ' xe ) m Zz;mK,m(A);ém}.

i=1 i=1

(i) K&(A)is a LRy-part;
(i) if A C B and B is a LRy-part, then K% (A) C B.

In order to prove (i), suppose that Y2 1m NK% FA)#0and Y1 2t RYT |
So, there exists € N such that Y7, m/ ﬂKﬁ w(A) # 0, which it follows that

Z?:] z; C Ktﬁl x(4) C KEILK(A)'
Now, we prove (ii) by induction on ¢t. We have ngt (A) = A C B. Suppose
that Kf (A) C B. We prove that K t+1 #(A) CB. IfzeK l+1 EK( ), then there

exists( i1 m, Y1 | )GUxUsuchthatze):l Ml (i R YL 2 and
Z?lzﬂ x(A )7&0 Hence, Y7, 2, ﬂB;é(Dandsoze):plm C B. Then,

Ktﬁl w(4) g B. Hence, K&(A) = LRy(A). Also, by Remark 3.1, we have

KR(A) =KX (A) = LR, (A) = RRy(A). Therefore, Kn(A) = Ry (A). O

Proposition 3.5. Let A be a nonempty subset of hypermodule M and R be a
relation on U. Then, Ryy(A) = Uzes Ru(a).

Proof. Tt is clear that for all @ € A, LRy (a) C LRy (A). By Theorem 3.4, we

have £Ry(A) = Upz1 Krgi(A) and K{g(A) = A = Ugea{a} = Uea Ki5(a).
We prove the proposition by induction on n. Supposing it true for n, we prove

thatKﬁ.HEK( )CUaeA n+19i( )
Ifz € KL, | &(A), then there exists (X7, m}, Y1, zj) € R such that

zeY? miandY?! 2 ﬂKﬁ w(A) £0.
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By the hypothesis of induction, Zq LZiN (Uue A K ER( )) # () and so there exists

a € Asuchthaty! lzﬂKL (a") # 0. Hence, ZEK+IEK( a"), where LR;(A) C

Udea [ﬁ)iu( ). By the similar way, we can prove that RRy(A) = U,eq RRu(a).
Therefore, Ryg(A) = Uyes Ru(a). O

Theorem 3.6. If R C U X U, then the following relation Ké (K;?) on a hyper-
module M:

xK9%y<:>x€K§(y) (xK%?y@xEK;?(y)).
where K&(y) = K&({y}) (where KX (v) = KX ({y}) ) is a preorder. Further-

more, if R is symmetric, then Kgg ( Kg? respectively) is an equivalence relation.

Proof. Itis easy to see that Kgﬁt is reflexive. Now, suppose that xK§ yand ylﬂft 4
So, x € K&(y) and y € K%(z). By Theorem 3.4, K& (z) is an LRy-part. Thus,
K%(y) € K% (z) and hence x € K% (z). Therefore, K% is preorder. Now, if R is
symmetric, then we prove that Kgg is symmetric as well. We check that:

(i) foralln >2andx € M, Kf%(Kfcﬁ(x)) = Knﬁlm(x);
(i) x € Kj(y) if and only if y € K (x).
We prove (i) by induction on n. Suppose that 7 € K‘: (K2 % (x)), so there exists
( P lml,Zf 12;) € R such that z € ¥¥  m} and Zq 2 ﬂKZLER( ) # 0. Thus,
Kfq If K% (K5 (0) = Kf | (%), then

L L
€K% (Kz,ix (x))

q P q
&3 ng,zz; eR, ze Y mi, Y ANK%(Kig(x) #0
i i=1 1—1 i=1

q
&3 m;,Zz eR, zGZml,Zzﬂ ig(x) #0
=1

i—1
Sze z+2<ﬁ(x

Hence, for all# > 2 and x € M, K g (KE (x )) = Ktﬁlfﬁ(x).

We prove (ii) by induction on n, too. It is clear that x € Kzlfgc (y) if and
only if y € Kfy(x). Suppose that x € K5;(v) if and only if y € K5;(x). If
x€ Kz+1 <0, then there exists (Xr m l,): 12}) € R such thatx € Zp m!, and
Y.z ﬂKtE (y) # 0. Therefore, there exists b € Y7, z;N K5, (y) # 0, hence

€ K[%t(b)’. Since R is symmetric (Y7 2, Y7 m)) € R. From beyY! , z and
Y7, m N KLy (x), it follows thatb € Kf4(x) and so Kfm(Kfm)(x) — KE | 5(0):
Similarly, we can show that if y € K z+1 q(®),thenxeye K t+1 % () O
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Proposition 3.7. Let R be a relation on U and A be a nonempty subset of hy-
permodule M. Then, the following conditions are equivalent:

(1) Ais an LRy-part (LRy-part) of M;
(2) x €A, ZKE,%)C —z€A (xKgL{z =z € A, respectively).

Proof. (1)=(2): Let x € A and z € M be such that zK&x. Then, there exists
(X2 mi, XL 2}) € Rsuch that z € Y7 miNK/5(A) # 0 for some r € N. Since
A is a LR;4-part, according to Theorem 3.4, Kfm (A)CA,andso Y]  ZiNA#0.
Therefore, Y'7_, m; C A and hence z € A.
(2)=(1): Let Y7 miNA#0and YL,z R Y2  ml. So, there exists x €
P mNAandso Y’  z} ﬂKfm(A) #0. Setze Y! , z,. Hence,
q
Y 4%
i=1

) )
ml, 7€ Y ml = 7€ Kfq(x) =z K& x = 7 € A, because x € A.
=1 =1 '

=

1

q
Therefore, Z z§ C A and A is an LRy-part of M. ]

i=1

4. Modules derived from strongly {/-regular relations

In this section, we give the notion of a strongly U/-regular relation and investigate
some properties of it.

Definition 4.1. Let R C U x U. For all (x,y) € M?, we define the relation p s,
as follows:

p q p q
Xprgyex=yor3 <Zm:,22§> € R such that x € Zm; andy € Zz;
: ~

i=1 i=1 i=1 i

We denote p;. o the transitive closure of p, . Similarly, we can define the
relation pr x. ‘We denote Py & the transitive closure of pg . For all (x,y) €

M?, we define the relation Ps, as follows:

g p q
xpgy&x=yord (Zd,Zmﬁ) € RUR ' suchthatxe Y miandye ) 2.
=1 = i=1 i=1

We denote pg; the transitive closure of pg.

Theorem 4.2. Let R C U x U. Then, for all (x,y) € M?, x Kgﬁ( y if and only if
X Pg; Y-
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Proof. Itis easy to see that p,. o C Kgg.
Conversely, suppose that x KSQ y. Then, so by Theorem 3.6, x € K~ % for

some 7 € N. So, there exists ( vy Y l) € Rsuchthatx € ¥, m) ; and
)RIREE ﬂngt( ) # 0. Thus, there exists x; € Y.' | 2} ;K 9{( ) which implies
that xp,  x1. Since x| € KtﬁR(y), there exists < mzl,Z, % ,) € R such
that x; € Y12, mj ; and Y2, 2, ﬂKﬁlm(y) # 0. Therefore, x; py g X2, where
Xy € Zqzlzzl ﬂKC { EK( ). After ¢ steps, we obtain there exists x; € Y. | Z;J N
KIE_(I_])m( ) such that x; | pz % x;. Thus, we have:

XPLRXLPLRX2--- X PrRY

and from this it follows that K§ C pj - By the similar way, we obtain x K;(z y
if and only if x p, o y. Therefore, x Ky y if and only if x pg; y. O

Proposition 4.3. [f R is a permutation of finite order in Sy, then p}. ¢ = Py, -

Proof. By Theorem 3.4, K% (y) is an L3,-part and so by Theorem 3.3, K% ()
is an R%Ry-part and hence K (y) C Ks)% (y). Analogously, KS)% (y) C KR (y) and
this completes the proof. 0

Definition 4.4. Let (M,+) be an R-hypermodule. A relation R on ! is called

(1) compatible on the left (on the right), if for all P;,P,,P € U and r € R from
PR Pt follows P+Py RP+P (PL+PRPB+P)andr-PLRr-P,
(Py-r R Py-r). Ris compatible if it is compatible on the left and on the
right;

(2) regular if for all x € M, implies K& (x) = K5 (x);

(3) a regular relation R on U is called strongly regular on the left (on the
right) if p; & (P ) s strongly regular on the left (on the right, respec-
tively);

(4) aregular relation R on U is called strongly regular if pg; is strongly reg-
ular.

Proposition 4.5. Let R be a regular relation on U. Then,
(1) R~ is regular;
(2) P; g = P = Pg; is an equivalence relation.

Proof. The proof follows from Remark 3.1 and Theorem 4.2. O
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Let R CU x U. For any element x of an R-hypermodule M, set

q q P p
Ppgi(x) = U{Zzﬁ | Yz R Y m) andxe ng};
i=1 i=1 i=1 =

Prg(x) = Ups1 Pp gy (x) U{x};
Prax)={yeM|yp}qx}

In the next theorem we find the necessary and sufficient conditions for the
transitivity of the relation p. .

Theorem 4.6. Let R be a relation on U and M be an R-hypermodule. Then, the
following conditions are equivalent:

(1) prgx is transitive;

(2) for every x € M, P (x) = Prr(x);
(3) for every x € M, Py %(x) is an LRy-part of M.

Proof. (1) = (2): For any pair (x,y) € M?, we have
YEPL(X) S YPLg XSy Py X &y € Pra(x).

(2) = (3): Suppose that (Y7 2, Y7 m}) € R such that Y7, m/N P x(x) # 0.
Then, Y7, m;Np} (x) # 0 and so there exists z € Y7 m} and z € p} 5 (x).
Thus, by Theorem 4.2, z € Ks)% (x). On the other hand, z € Ksﬁz (x), so Zle m:N
K% (x) # 0. Hence, Y |z C K&(z), because Y7 Z/RYY | m] and K% (z) is an
LRy-part of M. Now, suppose that ¢ € Z?Zl Z} is an arbitrary element. Thus, ¢ €
K&(x) and ¢ P g x- Therefore, 1 € pr. ;(x) = Pz %(x) and so Yl 2 C Prg(x).

(3) =(1): Suppose that x,y,z € M such that x p & y and y p; & z. Since
X prs Y there exists (Y2 m}, Y1 7)) € Rsuchthatx€ Y7 miandye¥?! 2.
So, Y1, ZiNPr s (y) # 0 and since Py % (y) is an LRy-part, Y2 m! C Prx(y),
whence x € P, x(y). We can easily check that Py %(y) C P, %(z). Similarly,
from y p, & z we obtain y € Py (z), then we use that P, (z) is a L%R-part of
M. Therefore, x € P; %(z) and hence x p.  z. O

A hypermodule M is said to be regular, if as a hypergroup is regular [4].

Theorem 4.7. Let M be a regular hypermodule and R be a compatible relation
onU, Then, p. s is transitive.
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Proof. According to the previous theorem, it is enough to check that for any
x € M, Pz x(x) is an LRy-part of M. Suppose that (Y7 2, Y7, m}) € R such
that Y mN P, g (x) # 0. We check that Y] | z; C Pz % (x). Since M is a regular
hypermodule, there exists an identity e in M. Moreover, there exist u,v € M
such thate € u+xand x € 1 +v, where r € Y.V, m; N P % (x). Hence, there exist
PP, €U suchthatr € Pj,x € P, and P,RP,. We obtaln

XELt+v CZm +vCZm +e+v
i=1

CY mi+utx+vC Zm§+u+P2—i—v:P3,
i=1 i=1

"u\l

and

M&
M&

7 CY zite Zz,+u+t+vCZz,+u+P1+v—P4

1 1 i=1 i=1

Since Z ym; R Zl | 2>, PIRP; and R is regular, it follows that ;R P,. There-

fore, Zzl C P;%(x) and so, p. g is transitive. O
i=1

Similarly, we can prove that if M is a regular hypermodule and R is a com-
patible relation on U/, then pg; is transitive.

Theorem 4.8. Let M be an R-hypermodule and K =J,~| An, where A, is the al-
ternating subgroup of the symmetric group S,, of order n or K = {I }, the identity
of S,.. We define the relation RX on U as follows: for all ( L omlL Yl 7 ) 78

p q q )4
;mg RE ;zﬁeﬂr €k, Z‘TZQ = ;mlr(i)
i= i= = =

Then,
e if K={I}

Pk = Pgx = _

Proof. 1t is straightforward that pg« is a strongly relation on Y. If K = {I}, the

proof is obvious (see [3]). Now suppose that K = {J,>; An. Then, pgr C 6.
M x) € M. From M =

x> + M, it follows that there ex1sts x3 € M such that x, € x» +x3. Thus, we have
x1+x2 Cx1+x+x3 and xp +x1 € xp +x3 +x;. We have Z?:lxl RK Zi:lx17 (i)

where 7(1) =2, 7(2) =3, 7(3) = 1 and T € A3. We conclude that pgy (x1) +

Pgik (¥2) = Pgix (x2) + Pgix (x1) and hence pr4 is abelian. Suppose that r € R

RK
and x € M. Since pgy is a strongly regular, 7o g« (x) = pgix (z) for any z € r-x.

Conversely, we prove that
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Since M is an R- hypermodule the properties of M as an R-hypermodule, grantee
that the abelian group 5+ 1s an R-hypermodule. O

Theorem 4.9. Let M be an R- hypermodule The relation R on U is defined as
follows: for all m,n € N and for all ( ,72 ) cu?,
< oo)

p q p q q p
YRy s || Lmi- Y Y7 L mi
i=1 i=1 i=1 i=1 =1 =1
P q
and ) minY zi#0,
i=1 =l

< oo Or

where |A| is the cardinal number of the set A. Then, pg, = €*.

Proof. Since R regular, by Proposition 4.5(2), pcﬁ is an equivalence relation.
Suppose that (x,y) € p. Then, there exists ( Pom, Yyl 1Z) € R such that
X € ):f’zl m}andy € Y zi. Without the loss of generality, suppose that

q
)7
i=1

< oo,

. ki .
so Xy mi— Yl 7= {b1,ba,...,bi}. Set 5, = Y9, (Hkélrijk> 24 Since M
is a hypermodule, there exists (c1,d;) € M? such that 7qg € c1+b1,by €a+di,

P q
where a € Y m;NY’ zj. Thus, we have
=1 =l

— qi lJ

zZ QZ —i—ZHr,jk (c1+b1)
i=1

M=

i=1 = j= 1k
q—1 g kij
c) 4+ ZHr,jk c1+a+d)
i=1 Jj= lk
q,I i i
- H—Zﬁhﬂc CH-Zm +di) =
i=1 j=lk=

On the other hand,

g1
byea+d C Zz + 2, +d,
1

=

(I*l qi l]

QZ ZHrljk Cl+b1 +d;
i=1 j=lk=
q-1 gi ku

)4
Q Z;+ZHrijk(cl+Zm;+dl):P
i=1 j=lk=1 i=1



116 S. M. ANVARIYEH - S. MIRVAKILI - B. DAVVAZ

Denote Zl 1"11 = Z? | % +Z?;1H:i1 rig(cr + X0 m) +d;. Thus, {b;}U
Z,-q: 12 C Zizl Vl,i' Using again that M is a hypermodule, there exists (c2,d») €
M? such that v}, = zj“ T sievie © XTI silea +b2) and by € by +
d,. Suppose that Zl 1 v2 = Zf‘ | ! Vi iTet Zl M. +d,. Similarly, we obtain
{bz}UZl 1"11 - Zl 1Va; and so {b1,ba} C YL 7 C Z; 1V21 After 7 steps,
we obtain ):l 12 such that {by,bs,...,b, UYL 2, C Y22 V), .. Thus, Y7 | m}U
Y,z C Zizl v,’l, which implies that (x,y) € €* and pg C €*. Therefore, pg; C

g*. Now, suppose that (x,y) € €*. Then, there exists Y’/ 1m such that x,y €
Y7 mi. Since Y'Y  m;—Y! m;=0, (x,y) € pg, hence £ C pg. Therefore,
£ = pg- O

Remark 4.10. The relation } on U defined by

Mx:
MQ

q
mCI?Zz@
=1

M“c

/
m Z;

1 1 1

is not symmetric and the induced strongly regular relation p* coincides with th
R

induced strongly regular relation py, of Theorem 4.6.

Theorem 4.11. Let (M,+) be an R-hypermodule and R be a strongly relation
on U. Then, an R-hypermodule (with ordinary group) structure can be defined
on % with respect to the following two operations
P (x) ® pg; (v) = pgi (2), where z € x+,
ropgi(x) = pgi(z), wherez € r-x, r€R.

Proof. We prove that the operations & and o are well defined. Set pg;(xp) =
Ppgi(x1) and pg(vo) = pg;(v1). It is enough to verify that pg;(xo) @ pg; (vo) =
P (x1) © pg (1)

By hypothesis m,n € N, (z0,21,...,2,) € H™ " and (t9,11,...,t,) € H™!
exist such that zg = xg, z, = x1,fo =yo and t, = y; forall 1 <i<m, z;_1 Py zi
andforall 1 < j<n,t;_| pg t;. Since R is strongly regular, for all u € z;_1 +1,_
and v € 7, +t;, where 1 < s < k and k = min{m,n}, we have upg;v. Hence,

P5(%0) ® pg (o) = Pgi(z1) D P (t1) = ... = pg (zx) @ P (1)
= Pgi(arri) © Pgy (biri)

where k41 < k+i < max{m,n} and
(x1 7tk+i) ifk=m

(Qptis brri) = {

(Zk+iay1) if k=n.
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Therefore, & is well defined. Now, suppose that pg; (x1) = pg;(x2). Then, there
exists (z1,...,z/) such that x; =z;, xp, =z and forall 1 < j <r,t; | ps t;. Since
R is a strongly relation, pg; is a strongly relation and so for any u € ro pg(x1)
and v € ropg(x2), we have pg (1) = p5(v). Hence, ropg(x1) = ropg(z) =

.. =ropg(z—1) = ropg(z). Therefore, o is well defined. Since M is an R-
hypermodule, the properties of M as an R-hypermodule, grantee that the abelian
group % is an R-hypermodule.

O

Theorem 4.12. Let M be an R-hyperring and p be a prime number. If the
relation R, on U is defined as follows:

=3

+

=

|
—N—
N

Aygh

:1”

sm,,Zﬁ tm,) |s,t€{1,p+l}}.

[:1 ,]: i=1 j:

Then, M /pg, | is an R-hypermodule such that (M/pg g @) is a p-elementary
group.

Proof. 1t is clear that the relation R , on I/ is strongly regular. Now, by Theo-
rem 4.11, the proof is completed. O

By the similar way, we have the following Theorem.

Theorem 4.13. Let R be a hyperring and p be a prime number. If the relation
R, onU is defined as follows:

llj 1:1]:

9?171,:{(2":1—1;’,} sml,iﬁ )(t - mei) )\st€{1p+1}}

Then, M/ p;;ti is an R-hypermodule such that (M / pg}i ,@®) is a p-elementary
P »
abelian group.

Example 4.14. Let p be a prime. Consider M :=7Z X ... X Z as a Z-module.
—_——

n
Then, the relation R, , in Theorem 4.12 is of the form

n n
<‘K+7P = {(Ztnivztni)| RAS {lap+ 1}7”1’ S Z}
i=1 i=1

Therefore, M /R , is a Z-module such that M /R, , =7, X ... X Z,,.
—_———
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Example 4.15. Let p =2 and R be aring. Set M := S3 x S3, where S is the per-
mutation group of order 3, i.e., S3 ={(1),(12),(13),(23),(123),(132)}. Let
K; and K; be two subgroups of S3. Define the scalar hyperoperation r- (¢, 7) =
(K1,K>) for any r € R and 0,7 € S3. Then, M /R , is an R-hypermodule such
that M/E)iﬁ’p =7 X L.

Definition 4.16. Let M be an R-hypermodule and p : M — pﬂ* be the canonical
R

projection. Denote by O the zero element of the group pﬂ*. The set p~'(0) is
R
called the R-heart of M and it is denoted by @ y.

Notice that if R is the diagonal relation of I/, then the R-heart is just the
heart of the hypermodule M.

Theorem 4.17. Let M be a regular R-hypermodule and R be a compatible rela-
tion with + and - onU. Then, g,y is the smallest subhypermodule of M, which
is also an R-part.

Proof. First, we check that @ 5, is a subhypermodule of M. If x,y € wx »
and z € x+y, then pg,(z) = pg;(x) © pg; () = 0, the identity of the group %
Hence, z € @y . On the other hand, there exists u € M, such that x € u+y,
whence pg; (x) = pg; (1) ® pg;(y), s0 pg;(u) = 0 and u € @ p. This means that
% pr = O »r +y and similarly we obtain that @x 3 = y + % p-

Now, suppose that x € @y y and r € R. Then, for any z € rox, we have
P (z) € pg(rox) =ropg(x) =ro0 =0 by strongly regularity of pg. Since
M is an R-hypermodule, the properties of M as an R-hypermodule, follows that
g » is a subhypermodule of M. By Theorems 4.6, 4.7 and Proposition 4.5, for
all x € oy, Pyx(x) = pi;cﬁ( x) = pg(x), which represents the zero element
of M . On the other hand, pg(x) represents the R-heart @, as a subset

ofM So, for all x € @ y, according to Theorems 4.6, 4.7, & = Py x(x),
which is an LRy-part of M. In fact, by Proposition 4.5, B, g(x) is also an
RNRy-part of M, hence it is an R-part of M. Moreover, @y, is the smallest
subhypermodule which is an R-part of M. Indeed, if K is a subhypermodule
and an R-part of M, then for all k € K, there is e € K such that k € e +k,
whence pg; (k) = pg;(e) © pg; (k). s0 € € @ pr. Since K is an R-part of M, hence
Pysi(e) = oxm CK. O

Theorem 4.18. For every non-empty subset A of hypermodule M, if A is an
R-part of M, then p~'(p(A)) = A.

Proof. Itis obvious that A C p~!(p(A)). Moreover, if x € p~!(p(A)), then there
exists an element a € A such that p(x) = p(a). Since A is an R-part, x € pg; (x) =
pi(a) C A. Therefore, p~'(p(A)) C A. O



R-PARTS AND MODULES 119

Theorem 4.19. Let A be a non-empty subset of a hypermodule M. The following
condition are equivalent:

(1) AisaRy- part of M.
(2) x €A, xpgy =y €A.
(3) x €A, xpgy =y €EA.

Proof. (1)=(2): If x,y € M is a pair such that x € A and xpgy, then there exists
(Zf.’zl m, Y1 z;) € Ry U%&l suchthatx € Y?  mjandy €Y’  z. Since Aisa
Ry-part of R, we obtain Y7 m/NA#0and Y7, m; Ry Y1, 2/ which implies
that Y7, z; C A. Then, y € A.

(2)=-(3) Suppose that x,y € R, such that x € A and x € pg(y). Obviously,
there exist s € N and (wo = x,wy,...,ws_1,ws =y) € R"! such that

X =WoPRW1 -+ - PRWs— 1 PRWs = Y-

Since x € A, applying (2) s times, we obtain y € A.

(3)=(1) Suppose that Y7 m/NA # 0@ and x € Y, m;NA.

If (X0, ml, Y1, 2) € Ry URy,', where Y7zl € U, then for every y €
Y., 2}, we obtain ypgx and by (3) we have y € A. O]

Corollary 4.20. Let R be a hyperring and A be a nonempty subset of M. If R is
a relation on U then A is an Ryy- part of R if and only if A = U4 pg; (X)-

Theorem 4.21. Let R be a commutative hyperring, M a regular R-hypermodule
and for everym € M, Rm =M. Let RC be the set of all reflexive and compatible
relations with 4+ and - on U. Then, the heart of the hypermodule M is wy =

Nkere O%.m-

Proof. Notice that if (x,y) € €, then x,y € Y'Y m], where i € {1,2...,n}. So,
€ C (Ngere Py Conversely, it is enough to remark that (gcre Pz € €. By
Theorem 1.2, € = €*. So, € = €* = p;,, where Id is the diagonal relation on /.
Hence, € = (gere Py From here it follows that, @y = (gere @ pm» since for
all x € M, g(x) = 0 if and only if x € @y, while for all R € RC, pg;(x) = 0 if
and only if x € g y-. O
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