LE MATEMATICHE Vol. LXXII (2017) – Fasc. I, pp. 103–121 doi: 10.4418/2017.72.1.8

\mathcal{R} -PARTS AND MODULES DERIVED FROM STRONGLY \mathcal{U} -REGULAR RELATIONS ON HYPERMODULES

S. M. ANVARIYEH - S. MIRVAKILI - B. DAVVAZ

This paper concerns a new relationship between hypermodules and modules. We generalize the notion of complete parts and θ -parts by the notion of \Re -parts on hypermodules and then \Re -closures of hypermodules as a generalization of θ -closures are defined. In addition, we give the notion of a strongly \mathcal{U} -regular relation on hypermodules and investigate some properties of it.

1. Introduction

If *M* is an *R*-hypermodule [1] and $\rho \subseteq M \times M$ is an equivalence relation, then for all pairs (A, B) of non-empty subsets of *M*, we set $A\overline{\rho}B$ if and only if $a\rho b$ for all $a \in A$, $b \in B$. The relation ρ is said to be *strongly regular to the right* if $x\rho y$ implies $x + a \overline{\rho} y + a$ and $r \cdot x \rho r \cdot y$ for all $x, y, a \in H$ and $r \in R$. Analogously, we can define *strongly regular to the left*. Moreover ρ is called *strongly regular* if it is strongly regular to the right and to the left. Let *M* be a hypermodule and ρ an equivalence relation on *M*. Let $\rho(a)$ be the equivalence class of *a* with respect to ρ and set $M/\rho = {\rho(a) \mid a \in M}$. The hyperoperations \oplus are \odot are defined on M/ρ by $\rho(a) \oplus \rho(b) = {\rho(x) \mid x \in \rho(a) + \rho(b)}$ and $r \odot \rho(a) = {\rho(z) \mid z \in r \cdot \rho(a)}$. If ρ is strongly regular then it readily follows that $\rho(a) \oplus \rho(b) = {\rho(x) \mid x \in a + b}$ and $r \odot \rho(a) = {\rho(x) \mid x \in r \cdot a}$ It is well

AMS 2010 Subject Classification: 16Y99, 20N20

Keywords: complete part, \Re -closure, regular relation, strongly \mathcal{U} -regular relation

Entrato in redazione: 1 gennaio 2007

known for ρ strongly regular that $(M/\rho, \oplus, \odot)$ is an *R*-hypermodule. That is $\rho(a) \oplus \rho(b) = \rho(c)$ for all $c \in a + b$ and $r \odot \rho(a) = \rho(x)$ for all $x \in r \cdot a$ [1].

Several relations have been studied in hypergroups, hyperrings and hypermodules such β , γ , ε , θ etc., for example see Anvariyeh et al. [1–4], Corsini and Leoreanu [6], Davvaz et al. [8, 9], Freni [10, 11], Koskas [12] and Vougiouklis [15–17]. Complete parts were introduced by Koskas [12] and studied then by Corsini [5], Davvaz and Karimian [7], Miglirato [13], Mousavi et al. [14], and others.

Let *M* be an *R*-hypermodule. We consider the relation ε on *M* as follows [16]:

$$x \varepsilon y \Leftrightarrow x, y \in \sum_{i=1}^{n} m'_i; \quad m'_i = m_i \quad \text{or} \quad m'_i = \sum_{j=1}^{n_i} (\prod_{k=1}^{k_{ij}} x_{ijk}) z_i,$$

 $m_i \in M, \ x_{ijk} \in R, \ z_i \in M.$

The fundamental relation ε^* on M can be considered as the smallest equivalence relation such that the quotient M/ε^* be a module over the corresponding fundamental ring such that M/ε^* as a group is not abelian [1, 16]. Now, we recall the following definition from [1].

Definition 1.1. [1]. Let *M* be an *R*-hypermodule. We define the relation θ as follows:

$$\begin{aligned} x \theta y \iff \exists n \in \mathbb{N}, \ \exists (m'_1, \dots, m'_n), \ \exists (k_1, k_2, \dots, k_n) \in \mathbb{N}^n, \ \exists \sigma \in \mathbb{S}_n, \\ \exists (x_{i1}, x_{i2}, \dots, x_{ik_i}) \in \mathbf{R}^{k_i}, \ \exists \sigma_i \in \mathbb{S}_{n_i}, \ \exists \sigma_{ij} \in \mathbb{S}_{k_{ij}}, \end{aligned}$$

such that

$$x \in \sum_{i=1}^{n} m'_i; \quad m'_i = m_i \text{ or } m'_i = \sum_{j=1}^{n_i} (\prod_{k=1}^{n_i} x_{ijk}) m_i$$

and

$$y \in \sum_{i=1}^{n} m'_{\sigma(i)},$$

where

$$m'_{\sigma(i)} = m_{\sigma(i)}$$
 if $m'_i = m_i$ and
 $m'_{\sigma(i)} = B_{\sigma(i)}m_{\sigma(i)}$ if $m'_i = \sum_{j=1}^{n_i} (\prod_{k=1}^{k_{ij}} x_{ijk})m_i$,

with

$$B_i = \sum_{j=1}^{n_i} A_{i\sigma_i(j)}, \quad A_{ij} = \prod_{k=1}^{k_{ij}} x_{ij\sigma_{ij}(k)}$$

If θ^* is the transitive closure of θ , then θ^* is a strongly regular relation on M as an R-hypermodule [1]. The fundamental relation θ is not transitive in general [2]. The following theorem gives the sufficient conditions, that the relation θ is transitive.

Theorem 1.2. [3]. Let R be a commutative hyperring. If M is an R-hypermodule and for every $m \in M$, $R \cdot m = M$, then the fundamental relation θ is transitive on hypermodules.

2. θ -parts and \Re -parts of hypermodules

In this section, we begin with the definition of θ -parts of hypermodules which are valid in every hypermodule [3]. In the following m'_i is the notation that defined in Definition 1.1.

Definition 2.1. [3]. Let *M* be an *R*-hypermodule and *H* be a non-empty subset of *M*. We say that *H* is a θ -part of *M* if for every $n \in \mathbb{N}$, for every $\sigma \in \mathbb{S}_n$ and for every (m'_1, \ldots, m'_p)

$$\sum_{i=1}^p m'_i \cap H \neq \emptyset \Rightarrow \sum_{i=1}^p m'_{\sigma(i)} \subseteq H.$$

H is said to be a *complete part* of *M*, if σ is identity.

Now, we generalize the notion of complete parts and θ -parts and by the notion of \Re -parts and then we study \Re -closures in hypermodules. Recently, \mathcal{R} -parts in (semi)-hypergroups introduced by Mousavi, Leoreanu-Fotea and Jafarpour [14].

Let *M* be an *R*-hypermodule and \mathcal{U} be the set of finite sums of $\sum_{i=1}^{p} m'_{i}$ and \mathfrak{R} be a relation on *M*.

Definition 2.2. For a nonempty subset *A* of *M*, we say that *A* is a *left* \Re -*part of M* with respect to \mathcal{U} (or briefly in $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part) if for all $\sum_{i=1}^{p} m'_i$ and $\sum_{i=1}^{q} z'_i$ in \mathcal{U} the following implication is valid

$$\left(\sum_{i=1}^p m'_i \cap A \neq \emptyset \text{ and } \sum_{i=1}^q z'_i \mathfrak{R} \sum_{i=1}^p m'_i\right) \Rightarrow \sum_{i=1}^q z'_i \subseteq A.$$

Similarly, we can define a right \Re -part of M with respect to \mathcal{U} (or briefly in $\Re \Re_{\mathcal{U}}$ -part). A is an \Re -part on M with respect to \mathcal{U} (or briefly in $\Re_{\mathcal{U}}$ -part) if it is an $\mathcal{L} \Re_{\mathcal{U}}$ -part and an $\mathcal{R} \Re_{\mathcal{U}}$ -part.

Remark 2.3. By Definition 2.2, it is straightforward for any nonempty subset *A* of a hypermodule *M*, *A* is an $\mathcal{LR}^{-1}_{\mathcal{U}}$ -part ($\mathcal{RR}^{-1}_{\mathcal{U}}$ -part) if and only if *A* is an $\mathcal{RR}_{\mathcal{U}}$ -part ($\mathcal{LR}_{\mathcal{U}}$ -part).

Now, we recall that a K_M -semihypergroup is the semihypergroup constructed from a semihypergroup (M, +) and a family $\{A(x)\}_{x \in M}$ of nonempty and mutually disjoint subsets of M. Set $K_M = \bigcup_{x \in M} A(x)$ and consider the hyperoperation * on K_M as follows:

$$\forall (a,b) \in K_M^2; \ a \in A(x), \ b \in A(y), \ a * b = \bigcup_{z \in x+y} A(z).$$

Then, (M, +) is a hypergroup if and only if $(K_M, *)$ is a hypergroup (see Theorem 375 [5]).

Theorem 2.4. Let $(M, +, \cdot)$ be an *R*-hypermodule. Then, the $(K_M, *, \circ)$ is an *R*-hypermodule.

Proof. We define the scalar hyperoperation \circ as follows:

$$r \in \mathbb{R}, a \in A(x); r \circ a := \bigcup_{z \in r \cdot x} A(z).$$

Suppose that $r, s \in R$ and $a \in A(x)$, $b \in A(y)$. Then, (1)

$$(r+s) \circ a = \bigcup_{z \in (r+s) \cdot x} A(z) = \bigcup_{z \in r \cdot x + s \cdot x} A(z) = \bigcup_{m_1 \in r \cdot x, m_2 \in s \cdot x} \bigcup_{z \in m_1 + m_2} A(z)$$

and

$$\begin{aligned} (r \circ a) * (s \circ a) &= \left(\bigcup_{k \in r \cdot x} A(k)\right) * \left(\bigcup_{t \in s \cdot x} A(t)\right) \\ &= \bigcup_{k \in r \cdot x, t \in s \cdot x} \bigcup_{w \in k+t} A(w). \end{aligned}$$

(2)

$$r \circ (a * b) = r \circ (\bigcup_{z \in x+y} A(z)) = \bigcup_{z \in x+y} r \circ A(z)$$

=
$$\bigcup_{z \in x+y} \bigcup_{u \in r \cdot z} A(u) = \bigcup_{u \in r \cdot (x+y)} A(u)$$

and

$$\begin{aligned} (r \circ a) * (r \circ b) &= (\bigcup_{k \in r \cdot a} A(k)) * (\bigcup_{t \in r \cdot b} A(t)) \\ &= \bigcup_{k \in r \cdot a, t \in r \cdot b} \bigcup_{w \in k+t} A(w) = \bigcup_{u \in (r \cdot x + r \cdot y)} A(u). \end{aligned}$$

(3)

$$r \circ (s \circ a) = r \circ (\bigcup_{z \in s \cdot x} A(z)) = \bigcup_{z \in s \cdot x} \bigcup_{u \in r \cdot z} A(u)$$
$$= \bigcup_{u \in r(s \cdot x)} A(u) = \bigcup_{z \in (rs) \cdot x} A(z) = (rs) \circ a.$$

Therefore, K_M is an *R*-hypermodule.

For all
$$P \in \mathcal{O}^*(H)$$
, set $A(P) = \bigcup_{x \in P} A(x)$.

Theorem 2.5. If \Re is a relation on \mathcal{U} , then P is an $L\mathfrak{R}_{\mathcal{U}}$ -part of hypermodule M if and only if A(P) is an $L\mathfrak{R}_{\mathcal{U}}$ -part of K_M , where the relation \mathfrak{R} is defined as follows:

$$\bigcup_{v \in \sum_{i=1}^{p} m'_{i}} A(v) \,\widehat{\mathfrak{R}} \, \bigcup_{u \in \sum_{i=1}^{q} z'_{i}} A(u) \Leftrightarrow \sum_{i=1}^{p} m'_{i} \,\mathfrak{R} \, \sum_{i=1}^{q} z'_{i}$$

Proof. Suppose that A(P) is an $L\widehat{\mathfrak{R}}_{\mathcal{U}}$ -part of K_M , and $\left(\sum_{i=1}^{p} m'_i, \sum_{i=1}^{q} z'_i\right) \in \mathfrak{R}$ is such that $\sum_{i=1}^{q} z'_i \cap P \neq \emptyset$. So,

$$\bigcup_{v \in \sum_{i=1}^{p} m'_{i}} A(v) \, \mathfrak{R} \, \bigcup_{u \in \sum_{i=1}^{q} z'_{i}} A(u)$$

and

$$\sum_{i=1}^{q} z'_{i} \cap P \neq \emptyset \implies \exists p \in P, \text{ such that } p \in \sum_{i=1}^{q} z'_{i}$$
$$\implies \exists p \in P, \text{ such that } A(p) \subseteq \bigcup_{u \in \sum_{i=1}^{q} z'_{i}} A(u)$$
$$\implies \bigcup_{u \in \sum_{i=1}^{q} z'_{i}} A(u) \cap A(P) \neq \emptyset.$$
$$\implies \bigcup_{u \in \sum_{i=1}^{p} m'_{i}} A(v) \subseteq A(P), \text{ because } A(P) \text{ is a } L\widehat{\mathfrak{K}_{U}} - \text{ part}$$

For all $t \in \sum_{i=1}^{p} m'_i$, $A(t) \subseteq A(P)$, so there exists $q \in P$ such that $A(t) \cap A(q) \neq \emptyset$. Thus, t = q and hence $t \in P$. Therefore, $\sum_{i=1}^{p} m'_i \subseteq P$.

Conversely, suppose that $\sum_{i=1}^{p} m'_i \cap A(P) \neq \emptyset$, where $\sum_{i=1}^{p} m'_i \cap A(P) \neq \emptyset$, where $\sum_{i=1}^{q} m_i \cap A(P) \neq \emptyset$. Suppose that $\sum_{i=1}^{q} m_i \cap A(P) \neq \emptyset$, $\sum_{i=1}^{q} m_i \cap A(P) \neq \emptyset$. Now, if

$$u \in \bigcup_{y \in \sum_{i=1}^{p} x_i} A(y) \cap A(P),$$

then $u \in A(y_0)$ for some $y_0 \in \sum_{i=1}^p x_i$. Since $u \in A(P)$, there exists $y_1 \in P$ such that $u \in A(y_1)$. So, $A(y_0) \cap A(y_1) \neq \emptyset$, which implies that $y_0 = y_1 \in \sum_{i=1}^p x_i \cap P$. Since *P* is an $L\mathfrak{R}_U$ -part of *M* and $\sum_{i=1}^q v_i \mathfrak{R} \sum_{i=1}^p x_i$, where $u_i \in z'_i$, $u_i \in A(v_i)$ for all $1 \le i \le q$. It follows that $\sum_{i=1}^q v_i \subseteq P$. Therefore,

$$\sum_{i=1}^{q} z'_i = \bigcup_{w \in \sum_{i=1}^{q} v_i} A(w) \subseteq \bigcup_{l \in P} A(l) = A(P).$$

3. R-closure and R-parts of hypermodules

Let *M* be an *R*-hypermodule and \mathcal{U} be the set of finite sums of $\sum_{i=1}^{p} m'_{i}$ and \mathcal{R} be the relation on *M*. The intersection of all $\mathcal{LR}_{\mathcal{U}}$ -parts (or $\mathcal{RR}_{\mathcal{U}}$ -parts, \mathcal{R} -parts) which contain *A* is called $\mathcal{LR}_{\mathcal{U}}$ -closure (or $\mathcal{RR}_{\mathcal{U}}$ -closure, \mathcal{R} -closure) of *A* in *M* and it is denoted by $\overline{\mathcal{LR}_{\mathcal{U}}}(A)$ (or $\overline{\mathcal{RR}_{\mathcal{U}}}(A), \overline{\mathcal{R}_{\mathcal{U}}}(A)$).

Remark 3.1. By Remark 2.3, for any nonempty subset *A* of a hypermodule *M*, *A* is an $\mathcal{LR}_{\mathcal{U}}^{-1}$ -part ($\mathcal{LR}_{\mathcal{U}}^{-1}$ -part) if and only if *A* is an $\mathcal{RR}_{\mathcal{U}}$ -part ($\mathcal{RR}_{\mathcal{U}}^{-1}$ -part). So, immediately, we obtain

$$\overline{\mathcal{L}\mathfrak{R}_{\mathcal{U}}^{-1}}(A) = \overline{\mathcal{R}\mathfrak{R}_{\mathcal{U}}}(A) \ \left(\overline{\mathcal{R}\mathfrak{R}_{\mathcal{U}}^{-1}}(A) = \overline{\mathcal{L}\mathfrak{R}_{\mathcal{U}}}(A)\right).$$

For a nonempty subset A of M, we define:

$$_{A}\sum^{\mathcal{U}} := \left\{ \mathfrak{R} \subseteq \mathcal{U} \times \mathcal{U} \mid \overline{\mathcal{L}}\mathfrak{R}_{\mathcal{U}}(A) = A \right\}$$

and

$$\sum_{A}^{\mathcal{U}} := \left\{ \mathfrak{R} \subseteq \mathcal{U} \times \mathcal{U} \mid \overline{\mathcal{R}\mathfrak{R}_{\mathcal{U}}}(A) = A \right\}.$$

Lemma 3.2. If ${}_{A}\sum^{\mathcal{U}} \neq \emptyset$ (or $\sum_{A}^{\mathcal{U}} \neq \emptyset$), then ${}_{A}\sum^{\mathcal{U}} \neq \emptyset$, \circ) (or $(\sum_{A}^{\mathcal{U}} \neq \emptyset, \circ)$) is closed under the composition \circ of relations.

Proof. Suppose that $\mathfrak{R}, \mathfrak{R}' \in \sum_{i=1}^{\mathcal{U}} \mathfrak{and} \left(\sum_{i=1}^{p} m'_{i}, \sum_{i=1}^{q} z'_{i} \right) \in \mathcal{U} \times \mathcal{U}$ are given. Also, let $\sum_{i=1}^{p} m'_{i} \cap A \neq \emptyset$ and $\sum_{i=1}^{p} z'_{i} \mathfrak{R} \circ \mathfrak{R}' \sum_{i=1}^{p} m'_{i}$. So, there exists (y'_{1}, \ldots, y'_{k}) such that $\sum_{i=1}^{k} y'_{i} \mathfrak{R} \sum_{i=1}^{p} m'_{i}$ and $\sum_{i=1}^{q} z'_{i} \mathfrak{R}' \sum_{i=1}^{k} y'_{i}$. From $\sum_{i=1}^{k} y'_{i} \mathfrak{R} \sum_{i=1}^{p} m'_{i}$ and $\mathfrak{R} \in \sum_{A} \sum^{\mathcal{U}}$ it follows that $\sum_{i=1}^{k} y'_{i} \subseteq A$. Since $\mathfrak{R}' \in \sum_{A} \sum^{\mathcal{U}} \mathfrak{and} \sum_{i=1}^{q} z'_{i} \mathfrak{R} \sum_{i=1}^{k} y'_{i}$, we obtain that $\sum_{i=1}^{q} z'_{i} \subseteq A$. Hence, $\sum_{A} \sum^{\mathcal{U}} \mathfrak{and}$ so $(\sum_{A}^{\mathcal{U}} \neq \emptyset, \circ)$ is a semigroup. \Box

Theorem 3.3. Let \Re be a permutation of finite order in $\mathbb{S}_{\mathcal{U}}$. If A is $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part, then A is $\mathcal{R}\mathfrak{R}_{\mathcal{U}}$ -part.

Proof. Since A is $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part, $\overline{\mathcal{L}\mathfrak{R}_{\mathcal{U}}}(A) = A$ and hence $\mathfrak{R} \in {}_{A}\sum^{\mathcal{U}}$. Since \mathfrak{R} is a permutation of finite order in $\mathbb{S}_{\mathcal{U}}$, $<\mathfrak{R}>=\{\mathfrak{R}^{n} \mid n \in \mathbb{N}\}$ is a subgroup of ${}_{A}\sum^{\mathcal{U}}$ and so $\mathfrak{R}^{-1} \in {}_{A}\sum^{\mathcal{U}}$. By Remark 3.1, $A = \overline{\mathcal{L}\mathfrak{R}_{\mathcal{U}}^{-1}}(A) = \overline{\mathcal{R}\mathfrak{R}_{\mathcal{U}}}(A)$. Thus, $\mathfrak{R} \in \sum_{A}^{\mathcal{U}}$ and hence A is a $\mathcal{R}\mathfrak{R}_{\mathcal{U}}$ -part.

In the following, we determine the sets $\overline{\mathcal{LR}}_{\mathcal{U}}(A)$, $\overline{\mathcal{RR}}_{\mathcal{U}}(A)$ and $\overline{\mathfrak{R}}_{\mathcal{U}}(A)$), where $\mathfrak{R} \subseteq \mathcal{U} \times \mathcal{U}$ and A is a nonempty subset of M. Set $K_{1,\mathfrak{R}}^{\mathcal{L}}(A) = A$ and

$$K_{t+1,\mathfrak{R}}^{\mathcal{L}}(A) = \left\{ x \in M \mid \exists \left(\sum_{i=1}^{p} m'_{i}, \sum_{i=1}^{q} z'_{i} \right) \in \mathfrak{R}, \ x \in \sum_{i=1}^{p} m'_{i}, \ \sum_{i=1}^{q} z'_{i} \cap K_{t,\mathfrak{R}}^{\mathcal{L}}(A) \neq \emptyset \right\}.$$

Denote $K_{\Re}^{\mathcal{L}}(A) = \bigcup_{n \ge 1} K_{n,\Re}^{\mathcal{L}}(A)$. Similarly, set $K_{1,\Re}^{\mathcal{R}}(A) = A$ and

$$K_{t+1,\mathfrak{R}}^{\mathcal{R}}(A) = \left\{ x \in M \mid \exists \left(\sum_{i=1}^{q} z'_{i}, \sum_{i=1}^{p} m'_{i} \right) \in \mathfrak{R}, \ x \in \sum_{i=1}^{p} m'_{i}, \ \sum_{i=1}^{q} z'_{i} \cap K_{t,\mathfrak{R}}^{\mathcal{R}}(A) \neq \emptyset \right\}.$$

Denote $K_{\Re}^{\mathcal{R}}(A) = \bigcup_{n \ge 1} K_{n,\Re}^{\mathcal{R}}(A)$. Finally, set $K_{1,\Re}(A) = A$ and

$$K_{t+1,\mathfrak{R}}(A) = \left\{ x \in M \mid \exists \left(\sum_{i=1}^{p} m'_{i}, \sum_{i=1}^{q} z'_{i} \right) \in \mathfrak{R} \cup \mathfrak{R}^{-1}, x \in \sum_{i=1}^{p} m'_{i}, \sum_{i=1}^{q} z'_{i} \cap K_{t,\mathfrak{R}}(A) \neq \emptyset \right\}.$$

Denote $K_{\mathfrak{R}}(A) = \bigcup_{n \ge 1} K_{n,\mathfrak{R}}(A)$.

Theorem 3.4. Let A be a nonempty subset of hypermodule M. Then, $K_{\Re}(A) = \overline{\mathfrak{R}_{\mathcal{U}}}(A)$.

Proof. It is necessary to prove:

- (i) $K_{\mathfrak{R}}^{\mathcal{L}}(A)$ is a $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part;
- (ii) if $A \subseteq B$ and B is a $\mathcal{LR}_{\mathcal{U}}$ -part, then $K_{\mathfrak{R}}^{\mathcal{L}}(A) \subseteq B$.

In order to prove (i), suppose that $\sum_{i=1}^{p} m'_i \cap K_{\Re}^{\mathcal{L}}(A) \neq \emptyset$ and $\sum_{i=1}^{q} z'_i \Re \sum_{i=1}^{p} m'_i$. So, there exists $t \in \mathbb{N}$ such that $\sum_{i=1}^{p} m'_i \cap K_{t,\Re}^{\mathcal{L}}(A) \neq \emptyset$, which it follows that $\sum_{i=1}^{q} z'_i \subseteq K_{t+1,\Re}^{\mathcal{L}}(A) \subseteq K_{\Re}^{\mathcal{L}}(A)$.

Now, we prove (ii) by induction on *t*. We have $K_{1,\Re}^{\mathcal{L}}(A) = A \subseteq B$. Suppose that $K_{t,\Re}^{\mathcal{L}}(A) \subseteq B$. We prove that $K_{t+1,\Re}^{\mathcal{L}}(A) \subseteq B$. If $z \in K_{t+1,\Re}^{\mathcal{L}}(A)$, then there exists $(\sum_{i=1}^{p} m'_i, \sum_{i=1}^{q} z'_i) \in \mathcal{U} \times \mathcal{U}$ such that $z \in \sum_{i=1}^{p} m'_i, \sum_{i=1}^{p} m'_i \Re \sum_{i=1}^{q} z'_i$ and $\sum_{i=1}^{q} z'_i \cap K_{t,\Re}^{\mathcal{L}}(A) \neq \emptyset$. Hence, $\sum_{i=1}^{q} z'_i \cap B \neq \emptyset$ and so $z \in \sum_{i=1}^{p} m'_i \subseteq B$. Then, $K_{t+1,\Re}^{\mathcal{L}}(A) \subseteq B$. Hence, $K_{\Re}^{\mathcal{L}}(A) = \overline{\mathcal{L}}\mathfrak{R}_{\mathcal{U}}(A)$. Also, by Remark 3.1, we have $K_{\Re}^{\mathcal{R}}(A) = K_{\Re^{-1}}^{\mathcal{R}}(A) = \overline{\mathcal{L}}\mathfrak{R}_{\mathcal{U}}^{-1}(A) = \overline{\mathcal{R}}\mathfrak{R}_{\mathcal{U}}(A)$. Therefore, $K_{\Re}(A) = \overline{\mathfrak{R}}_{\mathcal{U}}(A)$.

Proposition 3.5. Let A be a nonempty subset of hypermodule M and \Re be a relation on \mathcal{U} . Then, $\overline{\mathfrak{R}_{\mathcal{U}}}(A) = \bigcup_{a \in A} \overline{\mathfrak{R}_{\mathcal{U}}}(a)$.

Proof. It is clear that for all $a \in A$, $\overline{\mathcal{LR}}_{\mathcal{U}}(a) \subseteq \overline{\mathcal{LR}}_{\mathcal{U}}(A)$. By Theorem 3.4, we have $\overline{\mathcal{LR}}_{\mathcal{U}}(A) = \bigcup_{n \ge 1} K_{n,\Re}^{\mathcal{L}}(A)$ and $K_{1,\Re}^{\mathcal{L}}(A) = A = \bigcup_{a \in A} \{a\} = \bigcup_{a \in A} K_{1,\Re}^{\mathcal{L}}(a)$. We prove the proposition by induction on *n*. Supposing it true for *n*, we prove that $K_{n+1,\Re}^{\mathcal{L}}(A) \subseteq \bigcup_{a \in A} K_{n+1,\Re}^{\mathcal{L}}(a)$.

If $z \in K_{n+1,\Re}^{\mathcal{L}}(A)$, then there exists $\left(\sum_{i=1}^{p} m'_{i}, \sum_{i=1}^{q} z'_{i}\right) \in \Re$ such that

$$z \in \sum_{i=1}^{p} m'_i$$
 and $\sum_{i=1}^{q} z'_i \cap K_{n,\mathfrak{R}}^{\mathcal{L}}(A) \neq \emptyset$.

By the hypothesis of induction, $\sum_{i=1}^{q} z'_{i} \cap \left(\bigcup_{a \in A} K_{n,\Re}^{\mathcal{L}}(a)\right) \neq \emptyset$ and so there exists $a' \in A$ such that $\sum_{i=1}^{q} z'_{i} \cap K_{n,\Re}^{\mathcal{L}}(a') \neq \emptyset$. Hence, $z \in K_{n+1,\Re}^{\mathcal{L}}(a')$, where $\overline{\mathcal{L}\mathfrak{R}_{\mathcal{U}}}(A) \subseteq \bigcup_{a \in A} \overline{\mathcal{L}\mathfrak{R}_{\mathcal{U}}}(a)$. By the similar way, we can prove that $\overline{\mathcal{R}\mathfrak{R}_{\mathcal{U}}}(A) = \bigcup_{a \in A} \overline{\mathcal{R}\mathfrak{R}_{\mathcal{U}}}(a)$. Therefore, $\overline{\mathfrak{R}_{\mathcal{U}}}(A) = \bigcup_{a \in A} \overline{\mathfrak{R}\mathfrak{R}_{\mathcal{U}}}(a)$.

Theorem 3.6. If $\mathfrak{R} \subseteq \mathcal{U} \times \mathcal{U}$, then the following relation $K_{\mathfrak{R}}^{\mathcal{L}}(K_{\mathfrak{R}}^{\mathcal{R}})$ on a hypermodule M:

$$x K_{\mathfrak{R}}^{\mathcal{L}} y \Leftrightarrow x \in K_{\mathfrak{R}}^{\mathcal{L}}(y) \ \left(x K_{\mathfrak{R}}^{\mathcal{R}} y \Leftrightarrow x \in K_{\mathfrak{R}}^{\mathcal{R}}(y) \right).$$

where $K_{\Re}^{\mathcal{L}}(y) = K_{\Re}^{\mathcal{L}}(\{y\})$ (where $K_{\Re}^{\mathcal{R}}(y) = K_{\Re}^{\mathcal{R}}(\{y\})$) is a preorder. Furthermore, if \Re is symmetric, then $K_{\Re}^{\mathcal{L}}(K_{\Re}^{\mathcal{R}}$ respectively) is an equivalence relation.

Proof. It is easy to see that $K_{\mathfrak{R}}^{\mathcal{L}}$ is reflexive. Now, suppose that $xK_{\mathfrak{R}}^{\mathcal{L}} y$ and $yK_{\mathfrak{R}}^{\mathcal{L}} z$. So, $x \in K_{\mathfrak{R}}^{\mathcal{L}}(y)$ and $y \in K_{\mathfrak{R}}^{\mathcal{L}}(z)$. By Theorem 3.4, $K_{\mathfrak{R}}^{\mathcal{L}}(z)$ is an $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part. Thus, $K_{\mathfrak{R}}^{\mathcal{L}}(y) \subseteq K_{\mathfrak{R}}^{\mathcal{L}}(z)$ and hence $x \in K_{\mathfrak{R}}^{\mathcal{L}}(z)$. Therefore, $K_{\mathfrak{R}}^{\mathcal{L}}$ is preorder. Now, if \mathfrak{R} is symmetric, then we prove that $K_{\mathfrak{R}}^{\mathfrak{L}}$ is symmetric as well. We check that:

- (i) for all $n \ge 2$ and $x \in M$, $K_{n,\Re}^{\mathcal{L}}(K_{2,\Re}^{\mathcal{L}}(x)) = K_{n+1,\Re}^{\mathcal{L}}(x)$;
- (ii) $x \in K_{n,\Re}^{\mathcal{L}}(y)$ if and only if $y \in K_{n,\Re}^{\mathcal{L}}(x)$.

We prove (i) by induction on *n*. Suppose that $z \in K_{2,\Re}^{\mathcal{L}}(K_{2,\Re}^{\mathcal{L}}(x))$, so there exists $(\sum_{i=1}^{p} m'_i, \sum_{i=1}^{q} z'_i) \in \Re$ such that $z \in \sum_{i=1}^{p} m'_i$ and $\sum_{i=1}^{q} z'_i \cap K_{2,\Re}^{\mathcal{L}}(x) \neq \emptyset$. Thus, $z \in K_{3,\Re}^{\mathcal{L}}$. If $K_{t,\Re}^{\mathcal{L}}(K_{2,\Re}^{\mathcal{L}}(x)) = K_{t+1,\Re}^{\mathcal{L}}(x)$, then

$$\begin{split} z &\in K_{t+1,\mathfrak{R}}^{\mathcal{L}}\left(K_{2,\mathfrak{R}}^{\mathcal{L}}(x)\right) \\ \Leftrightarrow \exists \left(\sum_{i=1}^{p} m'_{i}, \sum_{i=1}^{q} z'_{i}\right) \in \mathfrak{R}, \ z \in \sum_{i=1}^{p} m'_{i}, \ \sum_{i=1}^{q} z'_{i} \cap K_{t,\mathfrak{R}}^{\mathcal{L}}(K_{2,\mathfrak{R}}^{\mathcal{L}}(x)) \neq \emptyset \\ \Leftrightarrow \exists \left(\sum_{i=1}^{p} m'_{i}, \sum_{i=1}^{q} z'_{i}\right) \in \mathfrak{R}, \ z \in \sum_{i=1}^{p} m'_{i}, \ \sum_{i=1}^{q} z'_{i} \cap K_{t+1,\mathfrak{R}}^{\mathcal{L}}(x) \neq \emptyset \\ \Leftrightarrow z \in K_{t+2,\mathfrak{R}}^{\mathcal{L}}(x). \end{split}$$

Hence, for all $t \ge 2$ and $x \in M$, $K_{t,\Re}^{\mathcal{L}}\left(K_{2,\Re}^{\mathcal{L}}(x)\right) = K_{t+1,\Re}^{\mathcal{L}}(x)$.

We prove (ii) by induction on *n*, too. It is clear that $x \in K_{2,\Re}^{\mathcal{L}}(y)$ if and only if $y \in K_{2,\Re}^{\mathcal{L}}(x)$. Suppose that $x \in K_{t,\Re}^{\mathcal{L}}(y)$ if and only if $y \in K_{t,\Re}^{\mathcal{L}}(x)$. If $x \in K_{t+1,\Re}^{\mathcal{L}}(y)$, then there exists $(\sum_{i=1}^{p} m'_{i}, \sum_{i=1}^{q} z'_{i}) \in \Re$ such that $x \in \sum_{i=1}^{p} m'_{i}$ and $\sum_{i=1}^{q} z'_{i} \cap K_{t,\Re}^{\mathcal{L}}(y) \neq \emptyset$. Therefore, there exists $b \in \sum_{i=1}^{q} z'_{i} \cap K_{t,\Re}^{\mathcal{L}}(y) \neq \emptyset$, hence $y \in K_{t,\Re}^{\mathcal{L}}(b)$. Since \Re is symmetric $(\sum_{i=1}^{q} z'_{i}, \sum_{i=1}^{p} m'_{i}) \in \Re$. From $b \in \sum_{i=1}^{q} z'_{i}$ and $\sum_{i=1}^{p} m'_{i} \cap K_{1,\Re}^{\mathcal{L}}(x)$, it follows that $b \in K_{2,\Re}^{\mathcal{L}}(x)$ and so $K_{t,\Re}^{\mathcal{L}}(K_{2,\Re}^{\mathcal{L}})(x) = K_{t+1,\Re}^{\mathcal{L}}(x)$. Similarly, we can show that if $y \in K_{t+1,\Re}^{\mathcal{L}}(x)$, then $x \in y \in K_{t+1,\Re}^{\mathcal{L}}(y)$. **Proposition 3.7.** Let \Re be a relation on \mathcal{U} and A be a nonempty subset of hypermodule M. Then, the following conditions are equivalent:

- (1) A is an $\mathcal{LR}_{\mathcal{U}}$ -part ($\mathcal{LR}_{\mathcal{U}}$ -part) of M;
- (2) $x \in A, zK_{\mathfrak{R}}^{\mathcal{L}}x \Longrightarrow z \in A (xK_{\mathfrak{R}}^{\mathcal{L}}z \Longrightarrow z \in A, \text{ respectively}).$

Proof. (1) \Rightarrow (2): Let $x \in A$ and $z \in M$ be such that $zK_{\Re}^{\mathcal{L}}x$. Then, there exists $\left(\sum_{i=1}^{p} m'_{i}, \sum_{i=1}^{q} z'_{i}\right) \in \Re$ such that $z \in \sum_{i=1}^{p} m'_{i} \cap K_{t,\Re}^{\mathcal{L}}(A) \neq \emptyset$ for some $t \in \mathbb{N}$. Since A is a $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part, according to Theorem 3.4, $K_{t,\Re}^{\mathcal{L}}(A) \subseteq A$, and so $\sum_{i=1}^{q} z'_{i} \cap A \neq \emptyset$. Therefore, $\sum_{i=1}^{p} m'_{i} \subseteq A$ and hence $z \in A$.

(2) \Rightarrow (1): Let $\sum_{i=1}^{p} m'_i \cap A \neq \emptyset$ and $\sum_{i=1}^{q} z'_i \Re \sum_{i=1}^{p} m'_i$. So, there exists $x \in \sum_{i=1}^{p} m'_i \cap A$ and so $\sum_{i=1}^{q} z'_i \cap K_{1,\Re}^{\mathcal{L}}(A) \neq \emptyset$. Set $z \in \sum_{i=1}^{q} z'_i$. Hence,

$$\sum_{i=1}^{q} z'_{i} \mathfrak{R} \sum_{i=1}^{p} m'_{i}, \ z \in \sum_{i=1}^{p} m'_{i} \Rightarrow z \in K_{2,\mathfrak{R}}^{\mathcal{L}}(x) \Rightarrow z K_{\mathfrak{R}}^{\mathcal{L}} x \Rightarrow z \in A, \text{ because } x \in A.$$

Therefore, $\sum_{i=1}^{q} z'_i \subseteq A$ and A is an $\mathcal{LR}_{\mathcal{U}}$ -part of M.

4. Modules derived from strongly U-regular relations

In this section, we give the notion of a strongly \mathcal{U} -regular relation and investigate some properties of it.

Definition 4.1. Let $\mathfrak{R} \subseteq \mathcal{U} \times \mathcal{U}$. For all $(x, y) \in M^2$, we define the relation $\rho_{\mathcal{L},\mathfrak{R}}$, as follows:

$$x \rho_{\mathcal{L},\mathfrak{R}} y \Leftrightarrow x = y \text{ or } \exists \left(\sum_{i=1}^p m'_i, \sum_{i=1}^q z'_i \right) \in \mathfrak{R} \text{ such that } x \in \sum_{i=1}^p m'_i \text{ and } y \in \sum_{i=1}^q z'_i.$$

We denote $\rho_{\mathcal{L},\mathfrak{R}}^*$ the transitive closure of $\rho_{\mathcal{L},\mathfrak{R}}$. Similarly, we can define the relation $\rho_{\mathcal{R},\mathfrak{R}}$. We denote $\rho_{\mathcal{R},\mathfrak{R}}^*$ the transitive closure of $\rho_{\mathcal{R},\mathfrak{R}}$. For all $(x,y) \in M^2$, we define the relation $\rho_{\mathfrak{R}}$, as follows:

$$x \rho_{\Re} y \Leftrightarrow x = y \text{ or } \exists \left(\sum_{i=1}^{q} z'_i, \sum_{i=1}^{p} m'_i \right) \in \Re \cup \Re^{-1} \text{ such that } x \in \sum_{i=1}^{p} m'_i \text{ and } y \in \sum_{i=1}^{q} z'_i.$$

We denote ρ_{\Re}^* the transitive closure of ρ_{\Re} .

Theorem 4.2. Let $\mathfrak{R} \subseteq \mathcal{U} \times \mathcal{U}$. Then, for all $(x, y) \in M^2$, $x K_{\mathfrak{R}}^{\mathcal{L}} y$ if and only if $x \rho_{\mathfrak{R}}^* y$.

Proof. It is easy to see that $\rho_{\mathcal{L},\mathfrak{R}}^* \subseteq K_{\mathfrak{R}}^{\mathcal{L}}$.

Conversely, suppose that $x K_{\Re}^{\mathcal{L}} y$. Then, so by Theorem 3.6, $x \in K_{t+1,\Re}^{\mathcal{L}}$ for some $t \in \mathbb{N}$. So, there exists $\left(\sum_{i=1}^{p_1} m'_{1,i}, \sum_{i=1}^{q_1} z'_{1,i}\right) \in \Re$ such that $x \in \sum_{i=1}^{p_1} m'_{1,i}$ and $\sum_{i=1}^{q_1} z'_{1,i} \cap K_{t,\Re}^{\mathcal{L}}(y) \neq \emptyset$. Thus, there exists $x_1 \in \sum_{i=1}^{q_1} z'_{1,i} \cap K_{t,\Re}^{\mathcal{L}}(y)$ which implies that $x \rho_{\mathcal{L},\Re} x_1$. Since $x_1 \in K_{t,\Re}^{\mathcal{L}}(y)$, there exists $\left(\sum_{i=1}^{p_2} m'_{2,i}, \sum_{i=1}^{q_2} z'_{2,i}\right) \in \Re$ such that $x_1 \in \sum_{i=1}^{p_2} m'_{2,i}$ and $\sum_{i=1}^{q_2} z'_{2,i} \cap K_{t-1,\Re}^{\mathcal{L}}(y) \neq \emptyset$. Therefore, $x_1 \rho_{\mathcal{L},\Re} x_2$, where $x_2 \in \sum_{i=1}^{q_2} z'_{2,i} \cap K_{t-1,\Re}^{\mathcal{L}}(y)$. After *t* steps, we obtain there exists $x_t \in \sum_{i=1}^{q_t} z'_{t,i} \cap K_{t-(t-1),\Re}^{\mathcal{L}}(y)$ such that $x_{t-1} \rho_{\mathcal{L},\Re} x_t$. Thus, we have:

$$x \rho_{\mathcal{L},\mathfrak{R}} x_1 \rho_{\mathcal{L},\mathfrak{R}} x_2 \dots x_t \rho_{\mathcal{L},\mathfrak{R}} y$$

and from this it follows that $K_{\mathfrak{R}}^{\mathcal{L}} \subseteq \rho_{\mathcal{L},\mathfrak{R}}^*$. By the similar way, we obtain $x K_{\mathfrak{R}}^{\mathcal{R}} y$ if and only if $x \rho_{\mathcal{R},\mathfrak{R}}^* y$. \Box

Proposition 4.3. If \Re is a permutation of finite order in S_U , then $\rho_{\mathcal{L},\Re}^* = \rho_{\mathcal{R},\Re}^*$.

Proof. By Theorem 3.4, $K_{\mathfrak{R}}^{\mathcal{L}}(y)$ is an $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part and so by Theorem 3.3, $K_{\mathfrak{R}}^{\mathcal{L}}(y)$ is an $\mathcal{R}\mathfrak{R}_{\mathcal{U}}$ -part and hence $K_{\mathfrak{R}}^{\mathcal{R}}(y) \subseteq K_{\mathfrak{R}}^{\mathcal{L}}(y)$. Analogously, $K_{\mathfrak{R}}^{\mathcal{L}}(y) \subseteq K_{\mathfrak{R}}^{\mathcal{R}}(y)$ and this completes the proof.

Definition 4.4. Let (M, +) be an *R*-hypermodule. A relation \Re on \mathcal{U} is called

- (1) compatible on the left (on the right), if for all $P_1, P_2, P \in \mathcal{U}$ and $r \in R$ from $P_1 \Re P_2$ it follows $P + P_1 \Re P + P_2 (P_1 + P \Re P_2 + P)$ and $r \cdot P_1 \Re r \cdot P_2 (P_1 \cdot r \Re P_2 \cdot r)$. \Re is compatible if it is compatible on the left and on the right;
- (2) *regular* if for all $x \in M$, implies $K_{\Re}^{\mathcal{L}}(x) = K_{\Re}^{\mathcal{R}}(x)$;
- (3) a regular relation R on U is called *strongly regular on the left* (on the right) if ρ^{*}_{L,R} (ρ^{*}_{R,R}) is strongly regular on the left (on the right, respectively);
- (4) a regular relation \mathfrak{R} on \mathcal{U} is called *strongly regular* if $\rho_{\mathfrak{R}}^*$ is strongly regular.

Proposition 4.5. Let \Re be a regular relation on \mathcal{U} . Then,

- (1) \Re^{-1} is regular;
- (2) $\rho_{\mathcal{L},\mathfrak{R}}^* = \rho_{\mathcal{R},\mathfrak{R}}^* = \rho_{\mathfrak{R}}^*$ is an equivalence relation.

Proof. The proof follows from Remark 3.1 and Theorem 4.2.

Let $\mathfrak{R} \subseteq \mathcal{U} \times \mathcal{U}$. For any element *x* of an *R*-hypermodule *M*, set

$$P_{\mathcal{L},\mathfrak{R}}^{n}(x) = \bigcup \left\{ \sum_{i=1}^{q} z_{i}' \mid \sum_{i=1}^{q} z_{i}' \mathfrak{R} \sum_{i=1}^{p} m_{i}' \text{ and } x \in \sum_{i=1}^{p} m_{i}' \right\};$$
$$P_{\mathcal{L},\mathfrak{R}}(x) = \bigcup_{n \ge 1} P_{\mathcal{L},\mathfrak{R}}^{n}(x) \cup \{x\};$$
$$\rho_{\mathcal{L},\mathfrak{R}}^{*}(x) = \{y \in M \mid y \ \rho_{\mathcal{L},\mathfrak{R}}^{*} x\}.$$

In the next theorem we find the necessary and sufficient conditions for the transitivity of the relation $\rho_{\mathcal{L},\mathfrak{R}}$.

Theorem 4.6. Let \Re be a relation on \mathcal{U} and M be an R-hypermodule. Then, the following conditions are equivalent:

- (1) $\rho_{\mathcal{L},\mathfrak{R}}$ is transitive;
- (2) for every $x \in M$, $\rho_{\mathcal{L},\mathfrak{R}}^*(x) = P_{\mathcal{L},\mathfrak{R}}(x)$;
- (3) for every $x \in M$, $P_{\mathcal{L},\mathfrak{R}}(x)$ is an $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part of M.

Proof. (1) \Rightarrow (2): For any pair $(x, y) \in M^2$, we have

$$y \in \boldsymbol{\rho}_{\mathcal{L},\mathfrak{R}}^*(x) \Leftrightarrow y \, \boldsymbol{\rho}_{\mathcal{L},\mathfrak{R}}^* \, x \Leftrightarrow y \, \boldsymbol{\rho}_{\mathcal{L},\mathfrak{R}} \, x \Leftrightarrow y \in P_{\mathcal{L},\mathfrak{R}}(x).$$

 $(2) \Rightarrow (3): \text{ Suppose that } \left(\sum_{i=1}^{q} z'_{i}, \sum_{i=1}^{p} m'_{i}\right) \in \Re \text{ such that } \sum_{i=1}^{p} m'_{i} \cap P_{\mathcal{L},\Re}(x) \neq \emptyset.$ Then, $\sum_{i=1}^{p} m'_{i} \cap \rho_{\mathcal{L},\Re}^{*}(x) \neq \emptyset$ and so there exists $z \in \sum_{i=1}^{p} m'_{i}$ and $z \in \rho_{\mathcal{L},\Re}^{*}(x).$ Thus, by Theorem 4.2, $z \in K_{\Re}^{\mathcal{L}}(x)$. On the other hand, $z \in K_{\Re}^{\mathcal{L}}(x)$, so $\sum_{i=1}^{p} m'_{i} \cap K_{\Re}^{\mathcal{L}}(x) \neq \emptyset$. Hence, $\sum_{i=1}^{q} z'_{i} \subseteq K_{\Re}^{\mathcal{L}}(z)$, because $\sum_{i=1}^{q} z'_{i} \Re \sum_{i=1}^{p} m'_{i}$ and $K_{\Re}^{\mathcal{L}}(z)$ is an $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part of M. Now, suppose that $t \in \sum_{i=1}^{q} z'_{i}$ is an arbitrary element. Thus, $t \in K_{\Re}^{\mathcal{L}}(x)$ and $t \rho_{\mathcal{L},\Re}^{*}(x)$. Therefore, $t \in \rho_{\mathcal{L},\Re}^{*}(x) = P_{\mathcal{L},\Re}(x)$ and so $\sum_{i=1}^{q} z'_{i} \subseteq P_{\mathcal{L},\Re}(x)$.

(3) \Rightarrow (1): Suppose that $x, y, z \in M$ such that $x \rho_{\mathcal{L},\mathfrak{R}} y$ and $y \rho_{\mathcal{L},\mathfrak{R}} z$. Since $x \rho_{\mathcal{L},\mathfrak{R}} y$, there exists $(\sum_{i=1}^{p} m'_i, \sum_{i=1}^{q} z'_i) \in \mathfrak{R}$ such that $x \in \sum_{i=1}^{p} m'_i$ and $y \in \sum_{i=1}^{q} z'_i$. So, $\sum_{i=1}^{q} z'_i \cap P_{\mathcal{L},\mathfrak{R}}(y) \neq \emptyset$ and since $P_{\mathcal{L},\mathfrak{R}}(y)$ is an $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part, $\sum_{i=1}^{p} m'_i \subseteq P_{\mathcal{L},\mathfrak{R}}(y)$, whence $x \in P_{\mathcal{L},\mathfrak{R}}(y)$. We can easily check that $P_{\mathcal{L},\mathfrak{R}}(y) \subseteq P_{\mathcal{L},\mathfrak{R}}(z)$. Similarly, from $y \rho_{\mathcal{L},\mathfrak{R}} z$ we obtain $y \in P_{\mathcal{L},\mathfrak{R}}(z)$, then we use that $P_{\mathcal{L},\mathfrak{R}}(z)$ is a $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part of M. Therefore, $x \in P_{\mathcal{L},\mathfrak{R}}(z)$ and hence $x \rho_{\mathcal{L},\mathfrak{R}} z$.

A hypermodule *M* is said to be *regular*, if as a hypergroup is regular [4].

Theorem 4.7. Let *M* be a regular hypermodule and \Re be a compatible relation on *U*, Then, $\rho_{\mathcal{L},\Re}$ is transitive.

Proof. According to the previous theorem, it is enough to check that for any $x \in M$, $P_{\mathcal{L},\mathfrak{R}}(x)$ is an $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part of M. Suppose that $(\sum_{i=1}^{q} z'_i, \sum_{i=1}^{p} m'_i) \in \mathfrak{R}$ such that $\sum_{i=1}^{p} m'_i \cap P_{\mathcal{L},\mathfrak{R}}(x) \neq \emptyset$. We check that $\sum_{i=1}^{q} z'_i \subseteq P_{\mathcal{L},\mathfrak{R}}(x)$. Since M is a regular hypermodule, there exists an identity e in M. Moreover, there exist $u, v \in M$ such that $e \in u + x$ and $x \in t + v$, where $t \in \sum_{i=1}^{p} m'_i \cap P_{\mathcal{L},\mathfrak{R}}(x)$. Hence, there exist $P_1, P_2 \in \mathcal{U}$ such that $t \in P_1, x \in P_2$ and $P_1 \mathfrak{R} P_2$. We obtain

$$x \in t + v \quad \subseteq \sum_{i=1}^{p} m'_{i} + v \subseteq \sum_{i=1}^{p} m'_{i} + e + v$$
$$\subseteq \sum_{i=1}^{p} m'_{i} + u + x + v \subseteq \sum_{i=1}^{p} m'_{i} + u + P_{2} + v = P_{3},$$

and

$$\sum_{i=1}^{q} z'_{i} \subseteq \sum_{i=1}^{q} z'_{i} + e \subseteq \sum_{i=1}^{q} z'_{i} + u + t + v \subseteq \sum_{i=1}^{q} z'_{i} + u + P_{1} + v = P_{4}.$$

Since $\sum_{i=1}^{p} m'_i \Re \sum_{i=1}^{q} z'_i$, $P_1 \Re P_2$ and \Re is regular, it follows that $P_3 \Re P_4$. Therefore, $\sum_{i=1}^{q} z'_i \subseteq P_{\mathcal{L},\Re}(x)$ and so, $\rho_{\mathcal{L},\Re}$ is transitive.

Similarly, we can prove that if *M* is a regular hypermodule and \Re is a compatible relation on \mathcal{U} , then ρ_{\Re} is transitive.

Theorem 4.8. Let *M* be an *R*-hypermodule and $K = \bigcup_{n \ge 1} A_n$, where A_n is the alternating subgroup of the symmetric group \mathbb{S}_n of order *n* or $K = \{I\}$, the identity of \mathbb{S}_n . We define the relation \mathfrak{R}^K on \mathcal{U} as follows: for all $(\sum_{i=1}^p m'_i, \sum_{i=1}^q z'_i) \in \mathcal{U}^2$,

$$\sum_{i=1}^{p} m'_{i} \,\mathfrak{R}^{K} \, \sum_{i=1}^{q} z'_{i} \Leftrightarrow \exists \tau \in K, \, \sum_{i=1}^{q} z'_{i} = \sum_{i=1}^{p} m'_{\tau(i)}.$$

Then,

Proof. It is straightforward that ρ_{\Re^K} is a strongly relation on \mathcal{U} . If $K = \{I\}$, the proof is obvious (see [3]). Now, suppose that $K = \bigcup_{n \ge 1} A_n$. Then, $\rho_{\Re^K} \subseteq \theta^*$. Conversely, we prove that $\frac{M}{\rho_{\Re^K}^*}$ is an abelian group. Let $x_1, x_2 \in M$. From $M = x_2 + M$, it follows that there exists $x_3 \in M$ such that $x_2 \in x_2 + x_3$. Thus, we have $x_1 + x_2 \subseteq x_1 + x_2 + x_3$ and $x_2 + x_1 \subseteq x_2 + x_3 + x_1$. We have $\sum_{i=1}^3 x_i \Re^K \sum_{i=1}^3 x_{\tau(i)}$, where $\tau(1) = 2$, $\tau(2) = 3$, $\tau(3) = 1$ and $\tau \in A_3$. We conclude that $\rho_{\Re^K}^*(x_1) + \rho_{\Re^K}^*(x_2) = \rho_{\Re^K}^*(x_2) + \rho_{\Re^K}^*(x_1)$ and hence $\frac{M}{\rho_{\Re^K}^*}$ is abelian. Suppose that $r \in R$ and $x \in M$. Since $\rho_{\Re^K}^*$ is a strongly regular, $r \circ \rho_{\Re^K}^*(x) = \rho_{\Re^K}^*(z)$ for any $z \in r \cdot x$.

Since *M* is an *R*-hypermodule, the properties of *M* as an *R*-hypermodule, grantee that the abelian group $\frac{M}{\rho_{\infty K}^*}$ is an *R*-hypermodule.

Theorem 4.9. Let M be an R-hypermodule. The relation \mathfrak{R} on \mathcal{U} is defined as follows: for all $m, n \in \mathbb{N}$ and for all $(\sum_{i=1}^{p} m'_i, \sum_{i=1}^{q} z'_i) \in \mathcal{U}^2$,

$$\sum_{i=1}^{p} m'_{i} \Re \sum_{i=1}^{q} z'_{i} \Leftrightarrow \left(\left| \sum_{i=1}^{p} m'_{i} - \sum_{i=1}^{q} z'_{i} \right| < \infty \text{ or } \left| \sum_{i=1}^{q} z'_{i} - \sum_{i=1}^{p} m'_{i} \right| < \infty \right)$$

and
$$\sum_{i=1}^{p} m'_{i} \cap \sum_{i=1}^{q} z'_{i} \neq \emptyset,$$

where |A| is the cardinal number of the set A. Then, $\rho_{\Re}^* = \varepsilon^*$.

Proof. Since \Re regular, by Proposition 4.5(2), ρ_{\Re}^* is an equivalence relation. Suppose that $(x, y) \in \rho_{\Re}$. Then, there exists $(\sum_{i=1}^p m'_i, \sum_{i=1}^q z'_i) \in \Re$ such that $x \in \sum_{i=1}^p m'_i$ and $y \in \sum_{i=1}^q z'_i$. Without the loss of generality, suppose that

$$\left|\sum_{i=1}^p m_i' - \sum_{i=1}^q z_i'\right| < \infty,$$

so $\sum_{i=1}^{p} m'_i - \sum_{i=1}^{q} z'_i = \{b_1, b_2, \dots, b_t\}$. Set $z'_q = \sum_{j=1}^{q_i} \left(\prod_{k=1}^{k_{ij}} r_{ijk}\right) z_q$. Since M is a hypermodule, there exists $(c_1, d_1) \in M^2$ such that $z_q \in c_1 + b_1, b_1 \in a + d_1$, where $a \in \sum_{i=1}^{p} m'_i \cap \sum_{i=1}^{q} z'_i$. Thus, we have

$$\sum_{i=1}^{q} z'_{i} \subseteq \sum_{i=1}^{q-1} z'_{i} + \sum_{j=1}^{q_{i}} \prod_{k=1}^{k_{ij}} r_{ijk}(c_{1} + b_{1})$$

$$\subseteq \sum_{i=1}^{q-1} z'_{i} + \sum_{j=1}^{q_{i}} \prod_{k=1}^{k_{ij}} r_{ijk}(c_{1} + a + d_{1})$$

$$\subseteq \sum_{i=1}^{q-1} z'_{i} + \sum_{j=1}^{q_{i}} \prod_{k=1}^{k_{ij}} r_{ijk}(c_{1} + \sum_{i=1}^{p} m'_{i} + d_{1}) = P.$$

On the other hand,

$$b_{1} \in a + d_{1} \subseteq \sum_{i=1}^{q-1} z'_{i} + z'_{q} + d_{1}$$

$$\subseteq \sum_{i=1}^{q-1} z'_{i} + \sum_{j=1}^{q_{i}} \prod_{k=1}^{k_{ij}} r_{ijk}(c_{1} + b_{1}) + d_{1}$$

$$\subseteq \sum_{i=1}^{q-1} z'_{i} + \sum_{j=1}^{q_{i}} \prod_{k=1}^{k_{ij}} r_{ijk}(c_{1} + \sum_{i=1}^{p} m'_{i} + d_{1}) = P.$$

Denote $\sum_{i=1}^{k_1} v'_{1,i} := \sum_{i=1}^{q-1} z'_i + \sum_{j=1}^{q_i} \prod_{k=1}^{k_{ij}} r_{ijk}(c_1 + \sum_{i=1}^{p} m'_i) + d_1$. Thus, $\{b_1\} \cup \sum_{i=1}^{q} z'_i \subseteq \sum_{i=1}^{k_1} v'_{1,i}$. Using again that M is a hypermodule, there exists $(c_2, d_2) \in M^2$ such that $v'_{1,k_1} = \sum_{j=1}^{q_i} \prod_{k=1}^{k_{ij}} s_{ijk}v_{1,k_1} \subseteq \sum_{j=1}^{q_i} \prod_{k=1}^{k_{ij}} s_{ijk}(c_2 + b_2)$ and $b_2 \in b_1 + d_2$. Suppose that $\sum_{i=1}^{k_2} v'_{2,i} = \sum_{i=1}^{k_{i-1}} v'_{1,i} + c_2 + \sum_{i=1}^{p} m'_i + d_2$. Similarly, we obtain $\{b_2\} \cup \sum_{i=1}^{k_1} v'_{1,i} \subseteq \sum_{i=1}^{k_2} v'_{2,i}$ and so $\{b_1, b_2\} \subseteq \sum_{i=1}^{q} z'_i \subseteq \sum_{i=1}^{k_2} v'_{2,i}$. After t steps, we obtain $\sum_{i=1}^{k_i} z'_{t,i}$ such that $\{b_1, b_2, \dots, b_t\} \cup \sum_{i=1}^{q} z'_i \subseteq \sum_{i=1}^{k_2} v'_{t,i}$. Thus, $\sum_{i=1}^{p} m'_i \cup \sum_{i=1}^{q} z'_i \subseteq \sum_{i=1}^{k_i} v'_{t,i}$, which implies that $(x, y) \in \varepsilon^*$ and $\rho_{\Re} \subseteq \varepsilon^*$. Therefore, $\rho_{\Re}^* \subseteq \varepsilon^*$. Now, suppose that $(x, y) \in \varepsilon^*$. Then, there exists $\sum_{i=1}^{p} m'_i$ such that $x, y \in \sum_{i=1}^{p} m'_i$. Since $\sum_{i=1}^{p} m'_i - \sum_{i=1}^{p} m'_i = \emptyset$, $(x, y) \in \rho_{\Re}$, hence $\varepsilon^* \subseteq \rho_{\Re}^*$. Therefore, $\varepsilon^* = \rho_{\Re}^*$.

Remark 4.10. The relation \overrightarrow{R} on \mathcal{U} defined by

$$\sum_{i=1}^{p} m'_{i} \stackrel{\leftrightarrow}{R} \sum_{i=1}^{q} z'_{i} \Leftrightarrow \sum_{i=1}^{p} m'_{i} \subseteq \sum_{i=1}^{q} z'_{i}$$

is not symmetric and the induced strongly regular relation $\rho_{\overrightarrow{R}}^*$ coincides with th induced strongly regular relation $\rho_{\overrightarrow{R}}^*$ of Theorem 4.6.

Theorem 4.11. Let (M, +) be an *R*-hypermodule and \Re be a strongly relation on \mathcal{U} . Then, an *R*-hypermodule (with ordinary group) structure can be defined on $\frac{M}{\rho_{\pi}^{\infty}}$ with respect to the following two operations

$$\rho_{\Re}^*(x) \oplus \rho_{\Re}^*(y) = \rho_{\Re}^*(z), \text{ where } z \in x + y, \\ r \circ \rho_{\Re}^*(x) = \rho_{\Re}^*(z), \text{ where } z \in r \cdot x, \ r \in R.$$

Proof. We prove that the operations \oplus and \circ are well defined. Set $\rho_{\Re}^*(x_0) = \rho_{\Re}^*(x_1)$ and $\rho_{\Re}^*(y_0) = \rho_{\Re}^*(y_1)$. It is enough to verify that $\rho_{\Re}^*(x_0) \oplus \rho_{\Re}^*(y_0) = \rho_{\Re}^*(x_1) \oplus \rho_{\Re}^*(y_1)$.

By hypothesis $m, n \in \mathbb{N}$, $(z_0, z_1, ..., z_m) \in H^{m+1}$ and $(t_0, t_1, ..., t_n) \in H^{m+1}$ exist such that $z_0 = x_0$, $z_m = x_1$, $t_0 = y_0$ and $t_n = y_1$ for all $1 \le i \le m$, $z_{i-1} \rho_{\Re} z_i$ and for all $1 \le j \le n$, $t_{j-1} \rho_{\Re} t_j$. Since \Re is strongly regular, for all $u \in z_{s-1} + t_{s-1}$ and $v \in z_s + t_s$, where $1 \le s \le k$ and $k = min\{m, n\}$, we have $u\rho_{\Re}^* v$. Hence,

$$\rho_{\mathfrak{R}}^*(x_0) \oplus \rho_{\mathfrak{R}}^*(y_0) = \rho_{\mathfrak{R}}^*(z_1) \oplus \rho_{\mathfrak{R}}^*(t_1) = \ldots = \rho_{\mathfrak{R}}^*(z_k) \oplus \rho_{\mathfrak{R}}^*(t_k) \\ = \rho_{\mathfrak{R}}^*(a_{k+i}) \oplus \rho_{\mathfrak{R}}^*(b_{k+i}),$$

where $k + 1 \le k + i \le \max\{m, n\}$ and

$$(a_{k+i}, b_{k+i}) = \begin{cases} (x_1, t_{k+i}) \text{ if } k = m \\ (z_{k+i}, y_1) \text{ if } k = n \end{cases}$$

Therefore, \oplus is well defined. Now, suppose that $\rho_{\Re}^*(x_1) = \rho_{\Re}^*(x_2)$. Then, there exists (z_1, \ldots, z_t) such that $x_1 = z_1, x_2 = z_t$ and for all $1 \le j \le t, t_{j-1} \rho_{\Re} t_j$. Since \Re is a strongly relation, ρ_{\Re}^* is a strongly relation and so for any $u \in r \circ \rho_{\Re}^*(x_1)$ and $v \in r \circ \rho_{\Re}^*(x_2)$, we have $\rho_{\Re}^*(u) = \rho_{\Re}^*(v)$. Hence, $r \circ \rho_{\Re}^*(x_1) = r \circ \rho_{\Re}^*(z_2) = \ldots = r \circ \rho_{\Re}^*(z_{t-1}) = r \circ \rho_{\Re}^*(z_t)$. Therefore, \circ is well defined. Since *M* is an *R*-hypermodule, the properties of *M* as an *R*-hypermodule, grantee that the abelian group $\frac{M}{\rho_{\Re}^*}$ is an *R*-hypermodule.

Theorem 4.12. Let *M* be an *R*-hyperring and *p* be a prime number. If the relation $\Re_{+,p}$ on *U* is defined as follows:

$$\mathfrak{R}_{+,p} = \left\{ \left(\sum_{i=1}^{n} (\prod_{j=1}^{k_i} r_{ij}) (s \cdot m_i), \sum_{i=1}^{n} (\prod_{j=1}^{k_i} r_{ij}) (t \cdot m_i) \right) \mid s,t \in \{1,p+1\} \right\}.$$

Then, $M/\rho^*_{\mathfrak{R}_{+,p}}$ is an *R*-hypermodule such that $(M/\rho^*_{\mathfrak{R}_{+,p}}, \oplus)$ is a *p*-elementary group.

Proof. It is clear that the relation $\Re_{+,p}$ on \mathcal{U} is strongly regular. Now, by Theorem 4.11, the proof is completed.

By the similar way, we have the following Theorem.

Theorem 4.13. Let *R* be a hyperring and *p* be a prime number. If the relation $\mathfrak{R}^{\sigma}_{+,p}$ on *U* is defined as follows:

$$\mathfrak{R}^{\sigma}_{+,p} = \left\{ \left(\sum_{i=1}^{n} (\prod_{j=1}^{k_i} r_{ij}) (s \cdot m_i), \sum_{i=1}^{n} (\prod_{j=1}^{k_{\sigma(i)}} x_{\sigma(i)j}) (t \cdot m_{\sigma(i)}) \right) \mid s,t \in \{1,p+1\} \right\}.$$

Then, $M/\rho_{\Re_{+,p}^{*}}^{*}$ is an *R*-hypermodule such that $(M/\rho_{\Re_{+,p}^{*}}^{*}, \oplus)$ is a *p*-elementary abelian group.

Example 4.14. Let *p* be a prime. Consider $M := \underbrace{\mathbb{Z} \times \ldots \times \mathbb{Z}}_{n}$ as a \mathbb{Z} -module. Then, the relation $\Re_{+,p}$ in Theorem 4.12 is of the form

$$\mathfrak{R}_{+,p} = \{ (\sum_{i=1}^{n} tn_i, \sum_{i=1}^{n} tn_i) | s, t \in \{1, p+1\}, n_i \in \mathbb{Z} \}$$

Therefore, $M/\Re_{+,p}$ is a \mathbb{Z} -module such that $M/\Re_{+,p} \cong \underbrace{\mathbb{Z}_p \times \ldots \times \mathbb{Z}_p}_{n}$.

Example 4.15. Let p = 2 and R be a ring. Set $M := \mathbb{S}_3 \times \mathbb{S}_3$, where \mathbb{S}_3 is the permutation group of order 3, i.e., $\mathbb{S}_3 = \{(1), (12), (13), (23), (123), (132)\}$. Let K_1 and K_2 be two subgroups of \mathbb{S}_3 . Define the scalar hyperoperation $r \cdot (\sigma, \tau) = (K_1, K_2)$ for any $r \in R$ and $\sigma, \tau \in \mathbb{S}_3$. Then, $M/\Re^{\sigma}_{+,p}$ is an R-hypermodule such that $M/\Re^{\sigma}_{+,p} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Definition 4.16. Let *M* be an *R*-hypermodule and $\rho : M \longrightarrow \frac{M}{\rho_{\Re}^*}$ be the canonical projection. Denote by 0 the zero element of the group $\frac{M}{\rho_{\Re}^*}$. The set $\rho^{-1}(0)$ is called the \Re -heart of *M* and it is denoted by $\omega_{\Re,M}$.

Notice that if \Re is the diagonal relation of \mathcal{U} , then the \Re -heart is just the heart of the hypermodule M.

Theorem 4.17. Let M be a regular R-hypermodule and \Re be a compatible relation with + and \cdot on U. Then, $\omega_{\Re,M}$ is the smallest subhypermodule of M, which is also an \Re -part.

Proof. First, we check that $\omega_{\mathfrak{R},M}$ is a subhypermodule of M. If $x, y \in \omega_{\mathfrak{R},M}$ and $z \in x + y$, then $\rho_{\mathfrak{R}}^*(z) = \rho_{\mathfrak{R}}^*(x) \oplus \rho_{\mathfrak{R}}^*(y) = 0$, the identity of the group $\frac{M}{\rho_{\mathfrak{R}}^*}$. Hence, $z \in \omega_{\mathfrak{R},M}$. On the other hand, there exists $u \in M$, such that $x \in u + y$, whence $\rho_{\mathfrak{R}}^*(x) = \rho_{\mathfrak{R}}^*(u) \oplus \rho_{\mathfrak{R}}^*(y)$, so $\rho_{\mathfrak{R}}^*(u) = 0$ and $u \in \omega_{\mathfrak{R},M}$. This means that $\omega_{\mathfrak{R},M} = \omega_{\mathfrak{R},M} + y$ and similarly we obtain that $\omega_{\mathfrak{R},M} = y + \omega_{\mathfrak{R},M}$.

Now, suppose that $x \in \omega_{\mathfrak{R},M}$ and $r \in R$. Then, for any $z \in r \circ x$, we have $\rho_{\mathfrak{R}}^*(z) \subseteq \rho_{\mathfrak{R}}^*(r \circ x) = r \circ \rho_{\mathfrak{R}}^*(x) = r \circ 0 = 0$ by strongly regularity of $\rho_{\mathfrak{R}}^*$. Since M is an R-hypermodule, the properties of M as an R-hypermodule, follows that $\omega_{\mathfrak{R},M}$ is a subhypermodule of M. By Theorems 4.6, 4.7 and Proposition 4.5, for all $x \in \omega_{\mathfrak{R},M}$, $P_{\mathcal{U},\mathfrak{R}}(x) = \rho_{\mathcal{U},\mathfrak{R}}^*(x) = \rho_{\mathfrak{R}}(x)$, which represents the zero element of $\frac{M}{\rho_{\mathfrak{R}}^*}$. On the other hand, $\rho_{\mathfrak{R}}^*(x)$ represents the \mathfrak{R} -heart $\omega_{\mathfrak{R},M}$, as a subset of M. So, for all $x \in \omega_{\mathfrak{R},M}$, according to Theorems 4.6, 4.7, $\omega_{\mathfrak{R},M} = P_{\mathcal{U},\mathfrak{R}}(x)$, which is an $\mathcal{L}\mathfrak{R}_{\mathcal{U}}$ -part of M. In fact, by Proposition 4.5, $P_{\mathcal{U},\mathfrak{R}}(x)$ is also an $\mathcal{R}\mathfrak{R}_{\mathcal{U}}$ -part of M, hence it is an \mathfrak{R} -part of M. Indeed, if K is a subhypermodule and an \mathfrak{R} -part of M, then for all $k \in K$, there is $e \in K$ such that $k \in e + k$, whence $\rho_{\mathfrak{R}}^*(k) = \rho_{\mathfrak{R}}^*(e) \oplus \rho_{\mathfrak{R}}^*(k)$, so $e \in \omega_{\mathfrak{R},M}$. Since K is an \mathfrak{R} -part of M, hence $P_{\mathcal{U},\mathfrak{R}}(e) = \omega_{\mathfrak{R},M} \subseteq K$.

Theorem 4.18. For every non-empty subset A of hypermodule M, if A is an \Re -part of M, then $\rho^{-1}(\rho(A)) = A$.

Proof. It is obvious that $A \subseteq \rho^{-1}(\rho(A))$. Moreover, if $x \in \rho^{-1}(\rho(A))$, then there exists an element $a \in A$ such that $\rho(x) = \rho(a)$. Since A is an \Re -part, $x \in \rho_{\Re}^*(x) = \rho_{\Re}^*(a) \subseteq A$. Therefore, $\rho^{-1}(\rho(A)) \subseteq A$.

Theorem 4.19. Let A be a non-empty subset of a hypermodule M. The following condition are equivalent:

- (1) A is a $\mathfrak{R}_{\mathcal{U}}$ part of M.
- (2) $x \in A, x \rho_{\Re} y \Rightarrow y \in A$.

(3)
$$x \in A, x \rho_{\Re}^* y \Rightarrow y \in A$$

Proof. (1) \Rightarrow (2): If $x, y \in M$ is a pair such that $x \in A$ and $x \rho_{\Re} y$, then there exists $\left(\sum_{i=1}^{p} m'_{i}, \sum_{i=1}^{q} z'_{i}\right) \in \Re_{\mathcal{U}} \cup \Re_{\mathcal{U}}^{-1}$ such that $x \in \sum_{i=1}^{p} m'_{i}$ and $y \in \sum_{i=1}^{q} z'_{i}$. Since *A* is a $\Re_{\mathcal{U}}$ -part of *R*, we obtain $\sum_{i=1}^{p} m'_{i} \cap A \neq \emptyset$ and $\sum_{i=1}^{p} m'_{i} \Re_{\mathcal{U}} \sum_{i=1}^{q} z'_{i}$ which implies that $\sum_{i=1}^{q} z'_{i} \subseteq A$. Then, $y \in A$.

(2) \Rightarrow (3) Suppose that $x, y \in R$, such that $x \in A$ and $x \in \rho_{\Re}^*(y)$. Obviously, there exist $s \in \mathbb{N}$ and $(w_0 = x, w_1, \dots, w_{s-1}, w_s = y) \in R^{s+1}$ such that

$$x = w_0 \rho_{\Re} w_1 \dots \rho_{\Re} w_{s-1} \rho_{\Re} w_s = y.$$

Since $x \in A$, applying (2) *s* times, we obtain $y \in A$.

(3) \Rightarrow (1) Suppose that $\sum_{i=1}^{p} m'_i \cap A \neq \emptyset$ and $x \in \sum_{i=1}^{p} m'_i \cap A$.

If $(\sum_{i=1}^{p} m'_i, \sum_{i=1}^{q} z'_i) \in \mathfrak{R}_{\mathcal{U}} \cup \mathfrak{R}_{\mathcal{U}}^{-1}$, where $\sum_{i=1}^{q} z'_i \in \mathcal{U}$, then for every $y \in \sum_{i=1}^{q} z'_i$, we obtain $y \rho_{\mathfrak{R}} x$ and by (3) we have $y \in A$.

Corollary 4.20. Let *R* be a hyperring and *A* be a nonempty subset of *M*. If \Re is a relation on *U* then *A* is an $\Re_{\mathcal{U}}$ - part of *R* if and only if $A = \bigcup_{x \in A} \rho_{\Re}^*(x)$.

Theorem 4.21. Let *R* be a commutative hyperring, *M* a regular *R*-hypermodule and for every $m \in M$, R.m = M. Let $\Re C$ be the set of all reflexive and compatible relations with + and \cdot on \mathcal{U} . Then, the heart of the hypermodule *M* is $\omega_M = \bigcap_{\Re \in \mathcal{RC}} \omega_{\Re,M}$.

Proof. Notice that if $(x, y) \in \varepsilon$, then $x, y \in \sum_{i=1}^{p} m'_{i}$, where $i \in \{1, 2, ..., n\}$. So, $\varepsilon \subseteq \bigcap_{\Re \in \mathcal{RC}} \rho_{\Re}^{*}$. Conversely, it is enough to remark that $\bigcap_{\Re \in \mathcal{RC}} \rho_{\Re}^{*} \subseteq \varepsilon$. By Theorem 1.2, $\varepsilon = \varepsilon^{*}$. So, $\varepsilon = \varepsilon^{*} = \rho_{Id}^{*}$, where *Id* is the diagonal relation on \mathcal{U} . Hence, $\varepsilon = \bigcap_{\Re \in \mathcal{RC}} \rho_{\Re}^{*}$. From here it follows that, $\omega_{M} = \bigcap_{\Re \in \mathcal{RC}} \omega_{\Re,M}$, since for all $x \in M$, $\varepsilon(x) = 0$ if and only if $x \in \omega_{M}$, while for all $\Re \in \mathcal{RC}$, $\rho_{\Re}^{*}(x) = 0$ if and only if $x \in \omega_{M}$.

REFERENCES

- [1] S.M. Anvariyeh S. Mirvakili B. Davvaz, θ^* Relation on hypermodules and fundamental modules over commutative fundamental rings, Comm. Algebra 36 (2008), 622–631.
- [2] S.M. Anvariyeh S. Mirvakili B. Davvaz, *Transitivity of* θ^* -*relation on hyper-modules*, Iranian J. Science Tech., Transaction A 32 (A3) (2008), 188–205.
- [3] S.M. Anvariyeh B. Davvaz, Strongly transitive geometric spaces associated to hypermodules, J. Algebra 322 (2009), 1340–1359.
- [4] S.M. Anvariyeh B. Davvaz, *On the heart of Hypermodules*, Mathematica Scandinavica 106 (2010), 39–49.
- [5] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, 1993.
- [6] P. Corsini V. Leoreanu, *About the heart of a hypergroup*, Acta Univ. Carolinae 37 (1996), 17–28.
- [7] B. Davvaz M. Karimian, On the γ^{*}-complete hypergroups, European J. Combinatories 28 (2007), 86–93.
- [8] B. Davvaz V. Leoreanu-Fotea, *Hyperring Theory and Applications*, International Academic Press, USA, 2007.
- [9] B. Davvaz T. Vougiouklis, *Commutative- rings obtained from hyperrings* (H_{υ} -*rings*) with α^* relations, Comm. Algebra 35 (11) (2007), 3307–3320.
- [10] D. Freni, A new characterization of the derived hypergroup via strongly regular equivalences, Comm. Algebra 30 (8) (2002), 3977–3989.
- [11] D. Freni, Strongly transitive geometric spaces: Applications to hypergroups and semigroups theory, Comm. Algebra 32 (8) (2004), 969–988.
- [12] M. Koskas, Groupoides, Demi-hypergroupes et hypergroupes, J. Math. Pure Appl. 49 (1970), 155–192.
- [13] R. Migliorato, *n-complete semihypergroups and hypergroups*, Ann. Sci. Univ. Clermont-Ferrand II Math. 23 (1986), 99–123.
- [14] S. S. H. Mousavi V. Leoreanu-Fotea M. Jafarpour, *R-parts in (semi)hypergroups*, Ann. Mat. Pura Appl. 190 (4) (2011), 667–680.
- [15] T. Vougiouklis, *The fundamental relation in hyperrings. The general hyperfield*, Proc. Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scientific, (1991) 203–211.
- [16] T. Vougiouklis, *Hyperstructures and Their Representations*, Hadronic Press, Inc, 115, Palm Harber, USA, 1994.
- [17] T. Vougiouklis, *H_v-vector spaces*, Algebraic hyperstructures and applications (Iasi, 1993), 181–190, Hadronic Press, Palm Harbor, FL, 1994.

S. M. ANVARIYEH Department of Mathematics Yazd University, Yazd, Iran e-mail: anvariyeh@yazd.ac.ir

S. MIRVAKILI Department of Mathematics Payame Noor University(PNU), Tehran, Iran e-mail: saeed_mirvakili@pnu.ac.ir

> B. DAVVAZ Department of Mathematics Yazd University, Yazd, Iran e-mail: davvaz@yazd.ac.ir