LE MATEMATICHE Vol. LXXII (2017) – Fasc. I, pp. 123–135 doi: 10.4418/2017.72.1.9

2-ABSORBING AND STRONGLY 2-ABSORBING SECONDARY SUBMODULES OF MODULES

H. ANSARI-TOROGHY - F. FARSHADIFAR

In this paper, we will introduce the concept of 2-absorbing (resp. strongly 2-absorbing) secondary submodules of modules over a commutative ring as a generalization of secondary modules and investigate some basic properties of these classes of modules.

1. Introduction

Throughout this paper, *R* will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers.

Let *M* be an *R*-module. A proper submodule *P* of *M* is said to be *prime* if for any $r \in R$ and $m \in M$ with $rm \in P$, we have $m \in P$ or $r \in (P :_R M)$ [13]. Let *N* be a proper submodule of *M*. Then the *M*-radical of *N*, denoted by *M*-rad(*N*), is defined to be the intersection of all prime submodules of *M* containing *N*. If *M* has no prime submodule containing *N*, then the *M*-radical of *N* is defined to be *M* [16]. A non-zero submodule *S* of *M* is said to be *second* if for each $a \in R$, the homomorphism $S \xrightarrow{a} S$ is either surjective or zero [20]. In this case $Ann_R(S)$ is a prime ideal of *R*.

The notion of 2- absorbing ideals as a generalization of prime ideals was introduced and studied in [8]. A proper ideal I of R is a 2-absorbing ideal of

Entrato in redazione: 0 0

AMS 2010 Subject Classification: 13C13, 13C99

Keywords: Secondary, 2-absorbing secondary, strongly 2-absorbing secondary, second radical This research was in part supported by a grant from IPM (No. 94130048)

R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. It has been proved that *I* is a 2-absorbing ideal of *R* if and only if whenever I_1, I_2 , and I_3 are ideals of *R* with $I_1I_2I_3 \subseteq I$, then $I_1I_2 \subseteq I$ or $I_1I_3 \subseteq I$ or $I_2I_3 \subseteq I$ [8]. In [9], the authors introduced the concept of 2-absorbing primary ideal which is a generalization of primary ideal. A proper ideal *I* of *R* is called a 2-*absorbing primary ideal* of *R* if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in \sqrt{I}$ or $bc \in \sqrt{I}$.

The notion of 2-absorbing ideals was extended to 2-absorbing submodules in [12]. A proper submodule *N* of *M* is called a 2-*absorbing submodule* of *M* if whenever $abm \in N$ for some $a, b \in R$ and $m \in M$, then $am \in N$ or $bm \in N$ or $ab \in (N :_R M)$.

In [5], the present authors introduced the dual notion of 2-absorbing submodules (that is, 2-absorbing (resp. strongly 2-absorbing) second submodules) of M and investigated some properties of these classes of modules. A non-zero submodule N of M is said to be a 2-absorbing second submodule of M if whenever $a, b \in R$, L is a completely irreducible submodule of M, and $abN \subseteq L$, then $aN \subseteq L$ or $bN \subseteq L$ or $ab \in Ann_R(N)$. A non-zero submodule N of M is said to be a strongly 2-absorbing second submodule of M if whenever $a, b \in R$, K is a submodule of M, and $abN \subseteq K$, then $aN \subseteq K$ or $bN \subseteq K$ or $ab \in Ann_R(N)$.

In [18], the authors introduced the notion of 2-absorbing primary submodules as a generalization of 2-absorbing primary ideals of rings and studied some properties of this class of modules. A proper submodule N of M is said to be a 2-*absorbing primary submodule* of M if whenever $a, b \in R, m \in M$, and $abm \in N$, then $am \in M$ -rad(N) or $bm \in M$ -rad(N) or $ab \in (N :_R M)$.

The purpose of this paper is to introduce the concepts of 2-absorbing and strongly 2-absorbing secondary submodules of an R-module M as dual notion of 2-absorbing primary submodules and obtain some related results.

2. Main results

Let *M* be an *R*-module. For a submodule *N* of *M* the the *second radical* (or second socle) of *N* is defined as the sum of all second submodules of *M* contained in *N* and it is denoted by sec(N) (or soc(N)). In case *N* does not contain any second submodule, the second radical of *N* is defined to be (0). $N \neq 0$ is said to be a *second radical submodule of M* if sec(N) = N (see [11] and [2]).

A proper submodule *N* of *M* is said to be *completely irreducible* if $N = \bigcap_{i \in I} N_i$, where $\{N_i\}_{i \in I}$ is a family of submodules of *M*, implies that $N = N_i$ for some $i \in I$. It is easy to see that every submodule of *M* is an intersection of completely irreducible submodules of *M* [14].

We frequently use the following basic fact without further comment.

Remark 2.1. Let *N* and *K* be two submodules of an *R*-module *M*. To prove $N \subseteq K$, it is enough to show that if *L* is a completely irreducible submodule of *M* such that $K \subseteq L$, then $N \subseteq L$.

Definition 2.2. We say that a non-zero submodule *N* of an *R*-module *M* is a 2-*absorbing secondary submodule* of *M* if whenever $a, b \in R$, *L* is a completely irreducible submodule of *M* and $abN \subseteq L$, then $a(sec(N)) \subseteq L$ or $b(sec(N)) \subseteq L$ or $ab \in Ann_R(N)$. By a 2-*absorbing secondary module*, we mean a module which is a 2-absorbing secondary submodule of itself.

Example 2.3. Clearly, every submodule of the \mathbb{Z} -module \mathbb{Z} is not secondary. But as $sec(\mathbb{Z}) = 0$, every submodule of the \mathbb{Z} -module \mathbb{Z} is 2-absorbing secondary.

Lemma 2.4. Let I be an ideal of R and N be a 2-absorbing secondary submodule of M. If $a \in R$, L is a completely irreducible submodule of M, and $IaN \subseteq L$, then $a(sec(N)) \subseteq L$ or $I(sec(N)) \subseteq L$ or $Ia \in Ann_R(N)$.

Proof. Let $a(sec(N)) \not\subseteq L$ and $Ia \notin Ann_R(N)$. Then there exists $b \in I$ such that $abN \neq 0$. Now as N is a 2-absorbing secondary submodule of M, $baN \subseteq L$ implies that $b(sec(N)) \subseteq L$. We show that $I(sec(N)) \subseteq L$. To see this, let c be an arbitrary element of I. Then $(b+c)aN \subseteq L$. Hence, either $(b+c)(sec(N)) \subseteq L$ or $(b+c)a \in Ann_R(N)$. If $(b+c)(sec(N)) \subseteq L$, then since $b(sec(N)) \subseteq L$ we have $c(sec(N)) \subseteq L$. If $(b+c)a \in Ann_R(N)$, then $ca \notin Ann_R(N)$. Thus $caN \subseteq L$ implies that $c(sec(N)) \subseteq L$. Hence, we conclude that $I(sec(N) \subseteq L$. \Box

Theorem 2.5. Let *I* and *J* be two ideals of *R* and *N* be a 2-absorbing secondary submodule of an *R*-module *M*. If *L* is a completely irreducible submodule of *M* and $IJN \subseteq L$, then $I(sec(N)) \subseteq L$ or $J(sec(N)) \subseteq L$ or $IJ \subseteq Ann_R(N)$.

Proof. Let $I(sec(N)) \not\subseteq L$ and $J(sec(N)) \not\subseteq L$. We show that $IJ \subseteq Ann_R(N)$. Assume that $c \in I$ and $d \in J$. By assumption, there exists $a \in I$ such that $a(sec(N)) \not\subseteq L$ but $aJN \subseteq L$. Now Lemma 2.4 shows that $aJ \subseteq Ann_R(N)$ and so $(I \setminus (L :_R sec(N)))J \subseteq Ann_R(N)$. Similarly, there exists $b \in (J \setminus (L :_R sec(N)))$ such that $Ib \subseteq Ann_R(N)$ and also $I(J \setminus (L :_R sec(N))) \subseteq Ann_R(N)$. Thus we have $ab \in Ann_R(N)$, $ad \in Ann_R(N)$, and $cb \in Ann_R(N)$. As $a + c \in I$ and $b + d \in J$, we have $(a + c)(b + d)N \subseteq L$. Therefore, $(a + c)(sec(N)) \subseteq L$ or $(b+d)(sec(N)) \subseteq L$ or $(a+c)(b+d) \in Ann_R(N)$. If $(a+c)(sec(N)) \subseteq L$, then $c(sec(N)) \not\subseteq L$. Hence $c \in I \setminus (L :_R sec(N))$ which implies that $cd \in Ann_R(N)$. Similarly, if $(b+d)(sec(N)) \subseteq L$, we can deduce that $cd \in Ann_R(N)$. Finally if $(a+c)(b+d) \in Ann_R(N)$, then $ab + ad + cb + cd \in Ann_R(N)$ so that $cd \in Ann_R(N)$. Therefore, $IJ \subseteq Ann_R(N)$. □ **Theorem 2.6.** Let N be a non-zero submodule of an R-module M. The following statements are equivalent:

- (a) If $abN \subseteq L_1 \cap L_2$ for some $a, b \in R$ and completely irreducible submodules L_1, L_2 of M, then $a(sec(N)) \subseteq L_1 \cap L_2$ or $b(sec(N)) \subseteq L_1 \cap L_2$ or $ab \in Ann_R(N)$;
- (b) If $IJN \subseteq K$ for some ideals I,J of R and a submodule K of M, then $I(sec(N)) \subseteq K$ or $J(sec(N)) \subseteq K$ or $IJ \in Ann_R(N)$;
- (c) For each $a, b \in R$, we have $a(sec(N)) \subseteq abN$ or $b(sec(N)) \subseteq abN$ or abN = 0.

Proof. $(a) \Rightarrow (b)$. Assume that $IJN \subseteq K$ for some ideals I, J of R, a submodule K of M, and $IJ \not\subseteq Ann_R(N)$. Then by Theorem 2.5, for all completely irreducible submodules L of M with $K \subseteq L$ either $I(sec(N)) \subseteq L$ or $J(sec(N)) \subseteq L$. If $I(sec(N)) \subseteq L$ (resp. $J(sec(N)) \subseteq L$) for all completely irreducible submodules L of M with $K \subseteq L$, we are done. Now suppose that L_1 and L_2 are two completely irreducible submodules of M with $K \subseteq L_1$, $K \subseteq L_2$, $I(sec(N)) \not\subseteq L_1$, and $J(sec(N)) \not\subseteq L_2$. Then $I(sec(N)) \subseteq L_2$ and $J(sec(N)) \subseteq L_1$. Since $IJN \subseteq L_1 \cap L_2$, we have either $I(sec(N)) \subseteq L_1 \cap L_2$ or $J(sec(N)) \subseteq L_1 \cap L_2$. If $I(sec(N)) \subseteq L_1 \cap L_2$, then $I(sec(N)) \subseteq L_1$ which is a contradiction. Similarly from $J(sec(N)) \subseteq L_1 \cap L_2$ we get a contradiction.

 $(b) \Rightarrow (a)$. This is clear

 $(a) \Rightarrow (c)$. By part (a), $N \neq 0$. Let $a, b \in R$. Then $abN \subseteq abN$ implies that $a(sec(N)) \subseteq abN$ or $b(sec(N)) \subseteq abN$ or abN = 0.

 $(c) \Rightarrow (a)$. This is clear.

Definition 2.7. We say that a non-zero submodule *N* of an *R*-module *M* is a *strongly 2-absorbing secondary submodule* of *M* if satisfies the equivalent conditions of Theorem 2.6. By a *strongly 2-absorbing secondary module*, we mean a module which is a strongly 2-absorbing secondary submodule of itself.

Let N be a submodule of an R-module M. Then part (d) of Theorem 2.6 shows that N is a strongly 2-absorbing secondary submodule of M if and only if N is a strongly 2-absorbing secondary module.

Example 2.8. Clearly every strongly 2-absorbing secondary submodule is a 2absorbing secondary submodule. But the converse is not true in general. For example, consider $M = \mathbb{Z}_6 \oplus \mathbb{Q}$ as a \mathbb{Z} -module. Then M is a 2-absorbing secondary module. But since $0 \neq 6M \subseteq 0 \oplus \mathbb{Q}$, sec(M) = M, $2M \not\subseteq 0 \oplus \mathbb{Q}$, and $3M \not\subseteq 0 \oplus \mathbb{Q}$, M is not a strongly 2-absorbing secondary module.

Proposition 2.9. Let N be a 2-absorbing second submodule of an R-module M. Then N is a strongly 2-absorbing secondary submodule of M.

Proof. Let $a, b \in R$ and K be a submodule of M such that $abN \subseteq K$. Then $aN \subseteq K$ or $bN \subseteq K$ or abN = 0 by assumption. Thus $a(sec(N)) \subseteq aN \subseteq K$ or $b(sec(N)) \subseteq aN \subseteq K$ or abN = 0, as required.

The following example shows that the converse of the Proposition 2.9 is not true in general.

Example 2.10. Let *M* be the \mathbb{Z} -module $\mathbb{Z}_{p^{\infty}}$. Then as $p^2 \langle 1/p^3 + \mathbb{Z} \rangle \subseteq \langle 1/p + \mathbb{Z} \rangle$, $p \langle 1/p^3 + \mathbb{Z} \rangle \not\subseteq \langle 1/p + \mathbb{Z} \rangle$, and $p^2 \langle 1/p^3 + \mathbb{Z} \rangle \neq 0$, we have the submodule $\langle 1/p^3 + \mathbb{Z} \rangle$ of $\mathbb{Z}_{p^{\infty}}$ is not 2-absorbing second submodule. But $sec(\langle 1/p^3 + \mathbb{Z} \rangle) = \langle 1/p + \mathbb{Z} \rangle$ implies that $\langle 1/p^3 + \mathbb{Z} \rangle$ is a strongly 2-absorbing secondary submodule of *M*.

An *R*-module *M* is said to be a *comultiplication module* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that $N = (0 :_M I)$, equivalently, for each submodule *N* of *M*, we have $N = (0 :_M Ann_R(N))$ [1].

Theorem 2.11. Let M be a finitely generated comultiplication R-module. If N is a strongly 2-absorbing secondary submodule of M, then $Ann_R(N)$ is a 2-absorbing primary ideal of R.

Proof. Let *a*, *b*, *c* ∈ *R* be such that *abc* ∈ *Ann_R*(*N*), *ac* ∉ $\sqrt{Ann_R(N)}$, and *bc* ∉ $\sqrt{Ann_R(N)}$. Since by [4, 2.12], *Ann_R*(*sec*(*N*)) = $\sqrt{Ann_R(N)}$, there exist completely irreducible submodules *L*₁ and *L*₂ of *M* such that *ac*(*sec*(*N*)) ⊈ *L*₁ and *bc*(*sec*(*N*)) ⊈ *L*₂. But *abcN* = 0 ⊆ *L*₁ ∩ *L*₂ implies that *abN* ⊆ (*L*₁ ∩ *L*₂ :_{*M*} *c*). Now as *N* is a strongly 2-absorbing secondary submodule of *M*, *a*(*sec*(*N*)) ⊆ (*L*₁ ∩ *L*₂ :_{*M*} *c*) or *b*(*sec*(*N*)) ⊆ (*L*₁ ∩ *L*₂ :_{*M*} *c*) or *abN* = 0. If *a*(*sec*(*N*)) ⊆ (*L*₁ ∩ *L*₂ :_{*M*} *c*), then we have *ac*(*sec*(*N*)) ⊆ *L*₁ (resp. *b*(*sec*(*N*)) ⊆ (*L*₁ ∩ *L*₂ :_{*M*} *c*), then we have *ac*(*sec*(*N*)) ⊆ *L*₁ (resp. *bc*(*sec*(*N*)) ⊆ *L*₂), a contradiction. Hence *abN* = 0, as needed.

Theorem 2.12. Let N be a submodule of a comultiplication R-module M. If $Ann_R(N)$ is a 2-absorbing primary ideal of R, then N is a strongly 2-absorbing secondary submodule of M.

Proof. Let $abN \subseteq K$ for some $a, b \in R$ and some submodule K of M. As M is a comultiplication module, there exists an ideal I of R such that $K = (0:_M I)$. Hence $Iab \subseteq Ann_R(N)$ which implies that either $Ia \subseteq \sqrt{Ann_R(N)}$ or $Ib \subseteq \sqrt{Ann_R(N)}$ or $ab \in Ann_R(N)$. If $ab \in Ann_R(N)$, we are done. If $Ia \subseteq \sqrt{Ann_R(N)}$, as $\sqrt{Ann_R(N)} \subseteq Ann_R(sec(N))$, we have Ia(sec(N)) = 0. This implies that $a(sec(N)) \subseteq K$ because M is a comultiplication module. Similarly, if $Ib \subseteq \sqrt{Ann_R(N)}$, we get $b(sec(N)) \subseteq K$. This completes the proof. \Box

The following example shows that Theorem 2.12 is not satisfied in general.

Example 2.13. Consider the \mathbb{Z} -module $M = \mathbb{Z}_p \oplus \mathbb{Z}_q \oplus \mathbb{Q}$, where $p \neq q$ are two prime numbers. Then *M* is not a comultiplication \mathbb{Z} -module and $Ann_{\mathbb{Z}}(M) = 0$ is a 2-absorbing primary ideal of *R*. But since $0 \neq pqM \subseteq 0 \oplus 0 \oplus \mathbb{Q}$, sec(M) = M, $pM \not\subseteq 0 \oplus 0 \oplus \mathbb{Q}$, and $qM \not\subseteq 0 \oplus 0 \oplus \mathbb{Q}$, *M* is not a strongly 2-absorbing secondary module.

In [18, 2.6], it is shown that, if M is a finitely generated multiplication R-module and N is a 2-absorbing primary submodule of M, then M-rad(N) is a 2-absorbing submodule of M. In the following lemma, we see that some of this conditions are redundant.

Lemma 2.14. Let N be a 2-absorbing primary submodule of an R-module M. Then M-rad(N) is a 2-absorbing submodule of M.

Proof. This follows from the fact that M-rad(M-rad(N)) = M-rad(N) by [15, Proposition 2].

Proposition 2.15. Let M be an R-module. Then we have the following.

- (a) If N is a 2-absorbing (resp. strongly 2-absorbing) secondary submodule of an R-module M, then sec(N) is a 2-absorbing (resp. strongly 2-absorbing) second submodule of M.
- (b) If N is a second radical submodule of M, then N is a 2-absorbing (resp. strongly 2-absorbing) second submodule if and only if N is a 2-absorbing (resp. strongly 2-absorbing) secondary submodule.

Proof. (a) This follows from the fact that sec(sec(N)) = sec(N) by [4, 2.1].
(b) This follows from part (a)

Let *N* and *K* be two submodules of an *R*-module *M*. The *coproduct* of *N* and *K* is defined by $(0:_M Ann_R(N)Ann_R(K))$ and denoted by C(NK) [6].

Theorem 2.16. Let N be a submodule of an R-module M such that sec(N) is a second submodule of M. Then we have the following.

- (a) N is a strongly 2-absorbing secondary submodule of M.
- (b) If M is a comultiplication R-module, then $C(N^t)$ is a strongly 2-absorbing secondary submodule of M for every positive integer $t \ge 1$, where $C(N^t)$ means the coproduct of N, t times.

Proof. (a) Let $a, b \in R$, K be a submodule of M such that $abN \subseteq K$, and let $b(sec(N)) \not\subseteq K$. Then as sec(N) is a second submodule and $a(sec(N)) \subseteq aN \subseteq (K :_M b)$, we have a(sec(N)) = 0 by [3, 2.10]. Thus $a(sec(N)) \subseteq K$, as needed.

(b) Let *M* be a comultiplication *R*-module. Then there exists an ideal *I* of *R* such that $N = (0 :_M I)$. Thus by [4, 2.1],

$$sec(c(N^t)) = sec((0:_M I^t)) = sec((0:_M I)) = sec(N)$$

Now the results follows from to the proof of part (a).

Theorem 2.17. *Let M be a comultiplication R-module. Then we have the following.*

- (a) If $N_1, N_2, ..., N_n$ are strongly 2-absorbing secondary submodules of M with the same second radical, then $N = \sum_{i=1}^n N_i$ is a strongly 2-absorbing secondary submodule of M.
- (b) If $N_1, N_2, ..., N_n$ are 2-absorbing secondary submodules of M with the same second radical, then $N = \sum_{i=1}^{n} N_i$ is a 2-absorbing secondary submodule of M.
- (c) If N_1 and N_2 are two secondary submodules of M, then $N_1 + N_2$ is a strongly 2-absorbing secondary submodule of M.
- (d) If M is finitely generated, N is a submodule of M which possess a secondary representation, and $sec(N) = K_1 + K_2$, where K_1 and K_2 are two minimal submodules of M, then N is a strongly 2-absorbing secondary submodule of M.

Proof. (a) Let $a, b \in R$ and K be a submodule of M such that $abN \subseteq K$. Thus for each i = 1, 2, ..., n, $abN_i \subseteq K$. If there exists $1 \leq j \leq n$ such that $a(sec(N_j)) \subseteq K$ or $b(sec(N_j)) \subseteq K$, then $a(sec(N)) \subseteq K$ or $b(sec(N)) \subseteq K$ (note that $sec(N) = sec(\sum_{i=1}^{n} N_i) = \sum_{i=1}^{n} sec(N_i) = sec(N_i)$ by [11, 2.6]). Otherwise, $abN_i = 0$ for each i = 1, 2, ..., n. Hence abN = 0, as desired.

(b) The proof is similar to the part (a).

(c) As N_1 and N_2 are secondary submodules of M, $Ann_R(N_1)$ and $Ann_R(N_2)$ are primary ideals of R. Hence $Ann_R(N_1 + N_2) = Ann_R(N_1) \cap Ann_R(N_2)$ is a 2-absorbing primary ideal of R by [9, 2.4]. Thus by Theorem 2.12, $N_1 + N_2$ is a strongly 2-absorbing secondary submodule of M.

(d) Let $N = \sum_{i=1}^{n} N_i$ be a secondary representation. By [4, 2.6], $sec(N) = \sum_{i=1}^{n} sec(N_i)$. Since $sec(N_i)$'s are second submodules of *M* by [4, 2.13], we have

$$\{sec(N_1), sec(N_2), \dots, sec(N_n)\} = \{K_1, K_2\}.$$

Without loss of generality, we may assume that for some $1 \le t < n$,

$$\{sec(N_1), ..., sec(N_t)\} = \{K_1\}$$

and $\{sec(N_{t+1}), ..., sec(N_n)\} = \{K_2\}$. Set $H_1 := N_1 + ... + N_t$ and $H_2 := N_{t+1} + ...N_n$. By [4, 2.12], H_1 and H_2 are secondary submodules of M. Therefore, by part (c), $N = H_1 + H_2$ is a strongly 2-absorbing secondary submodule of M. \Box

The following example shows that the direct sum of two strongly 2-absorbing secondary *R*-modules is not a strongly 2-absorbing secondary *R*-module in general.

Example 2.18. Clearly, the \mathbb{Z} -modules \mathbb{Z}_6 and \mathbb{Z}_{10} are strongly 2-absorbing secondary \mathbb{Z} -modules. Let $M = \mathbb{Z}_6 \oplus \mathbb{Z}_{10}$. Then M is not a strongly 2-absorbing second \mathbb{Z} -module. By [3, 2.1], sec(M) = M. Thus M is not a strongly 2-absorbing secondary \mathbb{Z} -module by Proposition 2.15.

Lemma 2.19. Let $f : M \to M$ be a monomorphism of *R*-modules. Then we have the following.

- (a) If N is a submodule of M, then sec(f(N)) = f(sec(N)).
- (b) If \hat{N} is a submodule of \hat{M} such that $\hat{N} \subseteq f(M)$, then $sec(f^{-1}(\hat{N})) = f^{-1}(sec(\hat{N}))$.

Proof. (a) Let \hat{S} be a second submodule of f(N). Then one can see that $f^{-1}(\hat{S})$ is a second submodule of N. Hence $f(f^{-1}(\hat{S})) \subseteq f(sec(N))$. Thus $sec(f(N)) \subseteq f(sec(N))$. The reverse inclusion is clear.

(b) Let S be a second submodule of $f^{-1}(\acute{N})$. Then one can see that f(S) is a second submodule of \acute{N} . Hence $f^{-1}(S) \subseteq f^{-1}(sec(\acute{N}))$. Thus $sec(f^{-1}(\acute{N})) \subseteq f^{-1}(sec(\acute{N}))$. To see the reverse inclusion, let \acute{S} be a second submodule of \acute{N} . Then $f^{-1}(\acute{S})$ is a second submodule of $f^{-1}(\acute{N})$. It follows that $f^{-1}(sec(\acute{N})) \subseteq sec(f^{-1}(\acute{N}))$.

Theorem 2.20. Let $f : M \to M$ be a monomorphism of *R*-modules. Then we have the following.

- (a) If N is a strongly 2-absorbing secondary submodule of M, then f(N) is a strongly 2-absorbing secondary submodule of M.
- (b) If \hat{N} is a strongly 2-absorbing secondary submodule of \hat{M} and $\hat{N} \subseteq f(M)$, then $f^{-1}(\hat{N})$ is a strongly 2-absorbing secondary submodule of M.

Proof. (a) Since $N \neq 0$ and f is a monomorphism, we have $f(N) \neq 0$. Let $a, b \in R$, K be a submodule of M, and $abf(N) \subseteq K$. Then $abN \subseteq f^{-1}(K)$. As N is strongly 2-absorbing secondary submodule, $a(sec(N)) \subseteq f^{-1}(K)$ or $b(secN)) \subseteq f^{-1}(K)$ or abN = 0. Therefore, by Lemma 2.19 (a),

$$a(sec(f(N))) = a(f(sec(N))) \subseteq f(f^{-1}(K)) = f(M) \cap K \subseteq K$$

or

$$b(sec(f(N))) = b(f(sec(N))) \subseteq f(f^{-1}(K)) = f(M) \cap K \subseteq K$$

or abf(N) = 0, as needed.

(b) If $f^{-1}(\hat{N}) = 0$, then $f(M) \cap \hat{N} = f(f^{-1}(\hat{N})) = f(0) = 0$. Thus $\hat{N} = 0$, a contradiction. Therefore, $f^{-1}(\hat{N}) \neq 0$. Now let $a, b \in R$, K be a submodule of M, and $abf^{-1}(\hat{N}) \subseteq K$. Then

$$ab\dot{N} = ab(f(M) \cap \dot{N}) = abff^{-1}(\dot{N}) \subseteq f(K).$$

As \hat{N} is strongly 2-absorbing secondary submodule, we have $a(sec(\hat{N}) \subseteq f(K))$ or $b(sec(\hat{N}) \subseteq f(K))$ or $ab\hat{N} = 0$. Hence by Lemma 2.19 (b),

$$a(sec(f^{-1}(\acute{N}))) = af^{-1}(sec(\acute{N})) \subseteq f^{-1}(f(K)) = K$$

or

$$b(sec(f^{-1}(\acute{N}))) = bf^{-1}(sec(\acute{N})) \subseteq f^{-1}(f(K)) = K$$

or $abf^{-1}(\dot{N}) = 0$, as desired.

Corollary 2.21. Let M be an R-module and let $N \subseteq K$ be two submodules of M. Then N is a strongly 2-absorbing secondary submodule of K if and only if N is a strongly 2-absorbing secondary submodule of M.

Proof. This follows from Theorem 2.20 by using the natural monomorphism $K \rightarrow M$.

Proposition 2.22. Let M be a cocyclic R-module with minimal submodule K and N be a submodule of M such that $rN \neq K$ for each $r \in R$. If N/K is a strongly 2-absorbing secondary submodule of M/K, then N is a strongly 2-absorbing secondary submodule of M.

Proof. Let $a, b \in R$ and H be a submodule of M such that $abN \subseteq H$. Then $ab(N/K) \subseteq H/K$ implies that $a(sec(N/K)) \subseteq H/K$ or $b(sec(N/K)) \subseteq H/K$ or ab(N/K) = 0. If ab(N/K) = 0, then abN = 0 because $rN \neq K$ for each $r \in R$. Otherwise, since $a(sec(N))/K \subseteq sec(N/K)$, we have $a(sec(N)) \subseteq H$ or $b(sec(N)) \subseteq H$ as required.

Let R_i be a commutative ring with identity and M_i be an R_i -module, for i = 1, 2. Let $R = R_1 \times R_2$. Then $M = M_1 \times M_2$ is an R-module and each submodule of M is in the form of $N = N_1 \times N_2$ for some submodules N_1 of M_1 and N_2 of M_2 . In addition, M_i is a comultiplication R_i -module, for i = 1, 2 if and only if M is a comultiplication R-module by [19, 2.1].

Lemma 2.23. Let $R = R_1 \times R_2$ and $M = M_1 \times M_2$, where M_1 is an R_1 -module and M_2 is an R_2 -module. If $N = N_1 \times N_2$ is a submodule of M, then we have the following.

- (a) N is a second submodule of M if and only if $N = S_1 \times 0$ or $N = S_2 \times 0$, where S_1 is a second submodule of N_1 and S_2 is a second submodule of M_2 .
- (b) $sec(N) = sec(N_1) \times sec(N_2)$.

Proof. (a) This is straightforward.(b) This follows from part (a).

Theorem 2.24. Let $R = R_1 \times R_2$ and $M = M_1 \times M_2$, where M_1 is a comultiplication R_1 -module and M_2 is a comultiplication R_2 -module. Then we have the following.

- (a) If M_1 be a finitely generated R_1 -module, then a non-zero submodule K_1 of M_1 is a strongly 2-absorbing secondary submodule if and only if $N = K_1 \times 0$ is a strongly 2-absorbing secondary submodule of M.
- (b) If M_2 be a finitely generated R_2 -module, then a non-zero submodule K_2 of M_2 is a strongly 2-absorbing secondary submodule if and only if $N = 0 \times K_2$ is a strongly 2-absorbing secondary submodule of M.
- (c) If K_1 is a secondary submodule of M_1 and K_2 is a secondary submodule of M_2 , then $N = K_1 \times K_2$ is a strongly 2-absorbing secondary submodule of M.

Proof. (a) Let K_1 be a strongly 2-absorbing secondary submodule of M_1 . Then $Ann_{R_1}(K_1)$ is a 2-absorbing primary ideal of R_1 by Theorem 2.11. Now since $Ann_R(N) = Ann_{R_1}(K_1) \times R_2$, we have $Ann_R(N)$ is a 2-absorbing primary ideal of R by [9, 2.23]. Thus the result follows from Theorem 2.12. Conversely, let $N = K_1 \times 0$ be a strongly 2-absorbing secondary submodule of M. Then $Ann_R(N) = Ann_{R_1}(K_1) \times R_2$ is a primary ideal of R by Theorem 2.11. Thus $Ann_R(N) = Ann_{R_1}(K_1) \times R_2$ is a primary ideal of R by Theorem 2.12, K_1 be a strongly 2-absorbing secondary submodule of M_1 .

(b) We have similar arguments as in part (a).

 \square

(c) Let K_1 be a secondary submodule of M_1 and K_2 be a secondary submodule of M_2 . Then $Ann_{R_1}(K_1)$ and $Ann_{R_2}(K_2)$ are primary ideals of R_1 and R_2 , respectively. Now since $Ann_R(N) = Ann_{R_1}(K_1) \times Ann_{R_2}(K_2)$, we have $Ann_R(N)$ is a 2-absorbing primary ideal of R by [9, 2.23]. Thus the result follows from Theorem 2.12.

Lemma 2.25. Let N be a submodule of a comultiplication R-module M. Then N is a secondary module if and only if $Ann_R(N)$ be a primary ideal of R.

Proof. The necessity is clear. For converse, let $r \in R$. As M is a comultiplication module, $rN = (0:_M I)$ for some ideal I of R. Now $rI \subseteq Ann_R(N)$ implies that $I \subseteq Ann_R(N)$ or $r^t \in Ann_R(N)$ for some positive integer t. Thus as M is a comultiplication R-module, N = rN or $r^tN = 0$ for some positive integer t. \Box

Theorem 2.26. Let $R = R_1 \times R_2$ be a decomposable ring and $M = M_1 \times M_2$ be a finitely generated comultiplication *R*-module, where M_1 is an R_1 -module and M_2 is an R_2 -module. Suppose that $N = N_1 \times N_2$ is a non-zero submodule of *M*. Then the following conditions are equivalent:

- (a) N is a strongly 2-absorbing secondary submodule of M;
- (b) Either $N_1 = 0$ and N_2 is a strongly 2-absorbing secondary submodule of M_2 or $N_2 = 0$ and N_1 is a strongly 2-absorbing secondary submodule of M_1 or N_1 , N_2 are secondary submodules of M_1 , M_2 , respectively.

Proof. $(a) \Rightarrow (b)$. Let $N = N_1 \times N_2$ be a strongly 2-absorbing secondary submodule of M. Then $Ann_R(N) = Ann_{R_1}(N_1) \times Ann_{R_2}(N_2)$ is a 2-absorbing primary ideal of R by Theorem 2.11. By [9, 2.23], we have $Ann_{R_1}(N_1) = R_1$ and $Ann_{R_2}(N_2)$ is a 2-absorbing primary ideal of R_2 or $Ann_{R_2}(N_2) = R_2$ and $Ann_{R_1}(N_1)$ is a 2-absorbing primary ideal of R_1 or $Ann_{R_1}(N_1)$ and $Ann_{R_2}(N_2)$ are primary ideals of R_1 and R_2 , respectively. Suppose that $Ann_{R_1}(N_1) = R_1$ and $Ann_{R_2}(N_2)$ is a 2-absorbing primary ideal of R_2 . Then $N_1 = 0$ and N_2 is a strongly 2-absorbing secondary submodule of M_2 by Theorem 2.12. Similarly, if $Ann_{R_2}(N_2) = R_2$ and $Ann_{R_1}(N_1)$ is a 2-absorbing primary ideal of R_1 , then $N_2 = 0$ and N_1 is a strongly 2-absorbing secondary submodule of M_1 . If the last case hold, then as M_1 (resp. M_2) is a comultiplication R_1 (resp. R_2) module, N_1 (resp. N_2) is a secondary submodule of M_1 (resp. M_2) by Lemma 2.25.

 $(b) \Rightarrow (a)$. This follows from Theorem 2.25.

REFERENCES

- H. Ansari-Toroghy F. Farshadifar, *The dual notion of multiplication modules*, Taiwanese J. Math. **11** (4) (2007), 1189–1201.
- [2] H. Ansari-Toroghy F. Farshadifar, On the dual notion of prime submodules, Algebra Colloq. 19 (Spec 1)(2012), 1109-1116.
- [3] H. Ansari-Toroghy F. Farshadifar, On the dual notion of prime submodules (II), Mediterr. J. Math., 9 (2) (2012), 329-338.
- [4] H. Ansari-Toroghy F. Farshadifar, *On the dual notion of prime radicals of submodules*, Asian Eur. J. Math. **6** (2) (2013), 1350024 (11 pages).
- [5] H. Ansari-Toroghy F. Farshadifar, *Some generalizations of second submodules*, submitted.
- [6] H. Ansari-Toroghy F. Farshadifar, Product and dual product of submodules, Far East J. Math. Sci. 25 (3) (2007), 447-455.
- [7] H. Ansari-Toroghy F. Farshadifar S.S. Pourmortazavi F. Khaliphe On secondary modules, International Journal of Algebra, 6 (16) (2012), 769-774.
- [8] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), 417-429.
- [9] A. Badawi U. Tekir E. Yetkin, *On 2-absorbing primary ideals in commutative rings*, Bull. Korean Math. Soc., **51** (4) (2014), 1163-1173.
- [10] A. Barnard, *Multiplication modules*, J. Algebra **71** (1981), 174-178.
- S. Ceken M. Alkan P.F. Smith, *The dual notion of the prime radical of a module*, J. Algebra **392** (2013), 265-275.
- [12] A. Y. Darani F. Soheilnia, 2-absorbing and weakly 2-absorbing submoduels, Thai J. Math. 9(3) (2011), 577?584.
- [13] J. Dauns, Prime submodules, J. Reine Angew. Math. 298 (1978), 156-181.
- [14] L. Fuchs W. Heinzer B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in : Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math. 249 (2006), 121–145.
- [15] C.P. Lu, *M-radicals of submodules in modules*, Math. Japonica, **34** (2) (1989), 211-219.
- [16] R.L. McCasland M.E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull. 29 (1) (1986), 37-39.
- [17] H. Mostafanasab U. Tekir K.H. Oral, Classical 2-absorbing submodules of modules over commutative rings, Eur. J. Pure Appl. Math, 8 (3) (2015), 417-430.
- [18] H. Mostafanasab E. Yetkin U. Tekir A. Yousefian Darani, On 2-absorbing primary submodules of modules over commutative rings, An. St. Univ. Ovidius Constanta, 24 (1) (2016), 335-351.
- [19] A. Nikseresht H. Sharif, On comultiplication and R-multiplication modules, Journal of algebraic systems 2 (1) (2014), 1-19.

- [20] S. Yassemi, *The dual notion of prime submodules*, Arch. Math. (Brno) **37** (2001), 273–278.
- [21] S. Yassemi, *The dual notion of the cyclic modules*, Kobe. J. Math. **15** (1998), 41–46.

H. ANSARI-TOROGHY

Department of pure Mathematics, Faculty of mathematical Sciences University of Guilan P. O. Box 41335-19141, Rasht, Iran. e-mail: ansari@guilan.ac.ir

F. FARSHADIFAR

University of Farhangian, P. O. Box 19396-14464, Tehran, Iran. School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran. e-mail: f.farshadifar@gmail.com