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2-ABSORBING AND STRONGLY 2-ABSORBING SECONDARY
SUBMODULES OF MODULES

H. ANSARI-TOROGHY - F. FARSHADIFAR

In this paper, we will introduce the concept of 2-absorbing (resp.
strongly 2-absorbing) secondary submodules of modules over a commu-
tative ring as a generalization of secondary modules and investigate some
basic properties of these classes of modules.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and Z
will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be prime if for
any r ∈ R and m ∈M with rm ∈ P, we have m ∈ P or r ∈ (P :R M) [13]. Let N
be a proper submodule of M. Then the M-radical of N, denoted by M-rad(N),
is defined to be the intersection of all prime submodules of M containing N. If
M has no prime submodule containing N, then the M-radical of N is defined to
be M [16]. A non-zero submodule S of M is said to be second if for each a ∈ R,
the homomorphism S a→ S is either surjective or zero [20]. In this case AnnR(S)
is a prime ideal of R.

The notion of 2- absorbing ideals as a generalization of prime ideals was
introduced and studied in [8]. A proper ideal I of R is a 2-absorbing ideal of
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R if whenever a,b,c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. It has
been proved that I is a 2-absorbing ideal of R if and only if whenever I1, I2, and
I3 are ideals of R with I1I2I3 ⊆ I, then I1I2 ⊆ I or I1I3 ⊆ I or I2I3 ⊆ I [8]. In
[9], the authors introduced the concept of 2-absorbing primary ideal which is a
generalization of primary ideal. A proper ideal I of R is called a 2-absorbing
primary ideal of R if whenever a,b,c ∈ R and abc ∈ I, then ab ∈ I or ac ∈

√
I

or bc ∈
√

I.
The notion of 2-absorbing ideals was extended to 2-absorbing submodules

in [12]. A proper submodule N of M is called a 2-absorbing submodule of M
if whenever abm ∈ N for some a,b ∈ R and m ∈M, then am ∈ N or bm ∈ N or
ab ∈ (N :R M).

In [5], the present authors introduced the dual notion of 2-absorbing sub-
modules (that is, 2-absorbing (resp. strongly 2-absorbing) second submodules)
of M and investigated some properties of these classes of modules. A non-zero
submodule N of M is said to be a 2-absorbing second submodule of M if when-
ever a,b ∈ R, L is a completely irreducible submodule of M, and abN ⊆ L, then
aN ⊆ L or bN ⊆ L or ab ∈ AnnR(N). A non-zero submodule N of M is said to
be a strongly 2-absorbing second submodule of M if whenever a,b ∈ R, K is a
submodule of M, and abN ⊆ K, then aN ⊆ K or bN ⊆ K or ab ∈ AnnR(N).

In [18], the authors introduced the notion of 2-absorbing primary submod-
ules as a generalization of 2-absorbing primary ideals of rings and studied some
properties of this class of modules. A proper submodule N of M is said to be a 2-
absorbing primary submodule of M if whenever a,b ∈ R, m ∈M, and abm ∈ N,
then am ∈M-rad(N) or bm ∈M-rad(N) or ab ∈ (N :R M).

The purpose of this paper is to introduce the concepts of 2-absorbing and
strongly 2-absorbing secondary submodules of an R-module M as dual notion
of 2-absorbing primary submodules and obtain some related results.

2. Main results

Let M be an R-module. For a submodule N of M the the second radical (or sec-
ond socle) of N is defined as the sum of all second submodules of M contained
in N and it is denoted by sec(N) (or soc(N)). In case N does not contain any
second submodule, the second radical of N is defined to be (0). N 6= 0 is said to
be a second radical submodule of M if sec(N) = N (see [11] and [2]).

A proper submodule N of M is said to be completely irreducible if N =⋂
i∈I Ni, where {Ni}i∈I is a family of submodules of M, implies that N = Ni for

some i ∈ I. It is easy to see that every submodule of M is an intersection of
completely irreducible submodules of M [14].

We frequently use the following basic fact without further comment.
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Remark 2.1. Let N and K be two submodules of an R-module M. To prove
N ⊆ K, it is enough to show that if L is a completely irreducible submodule of
M such that K ⊆ L, then N ⊆ L.

Definition 2.2. We say that a non-zero submodule N of an R-module M is a
2-absorbing secondary submodule of M if whenever a,b ∈ R, L is a completely
irreducible submodule of M and abN ⊆ L, then a(sec(N))⊆ L or b(sec(N))⊆ L
or ab ∈ AnnR(N). By a 2-absorbing secondary module, we mean a module
which is a 2-absorbing secondary submodule of itself.

Example 2.3. Clearly, every submodule of the Z-module Z is not secondary.
But as sec(Z) = 0, every submodule of the Z-module Z is 2-absorbing sec-
ondary.

Lemma 2.4. Let I be an ideal of R and N be a 2-absorbing secondary submod-
ule of M. If a ∈ R, L is a completely irreducible submodule of M, and IaN ⊆ L,
then a(sec(N))⊆ L or I(sec(N))⊆ L or Ia ∈ AnnR(N).

Proof. Let a(sec(N)) 6⊆ L and Ia 6∈ AnnR(N). Then there exists b ∈ I such that
abN 6= 0. Now as N is a 2-absorbing secondary submodule of M, baN ⊆ L
implies that b(sec(N))⊆ L. We show that I(sec(N))⊆ L. To see this, let c be an
arbitrary element of I. Then (b+ c)aN ⊆ L. Hence, either (b+ c)(sec(N))⊆ L
or (b+ c)a ∈ AnnR(N). If (b+ c)(sec(N)) ⊆ L, then since b(sec(N)) ⊆ L we
have c(sec(N))⊆ L. If (b+ c)a ∈ AnnR(N), then ca 6∈ AnnR(N). Thus caN ⊆ L
implies that c(sec(N))⊆ L. Hence, we conclude that I(sec(N)⊆ L.

Theorem 2.5. Let I and J be two ideals of R and N be a 2-absorbing secondary
submodule of an R-module M. If L is a completely irreducible submodule of M
and IJN ⊆ L, then I(sec(N))⊆ L or J(sec(N))⊆ L or IJ ⊆ AnnR(N).

Proof. Let I(sec(N)) 6⊆ L and J(sec(N)) 6⊆ L. We show that IJ ⊆ AnnR(N).
Assume that c ∈ I and d ∈ J. By assumption, there exists a ∈ I such that
a(sec(N)) 6⊆ L but aJN ⊆ L. Now Lemma 2.4 shows that aJ ⊆ AnnR(N) and so
(I \ (L :R sec(N)))J ⊆ AnnR(N). Similarly, there exists b ∈ (J \ (L :R sec(N)))
such that Ib ⊆ AnnR(N) and also I(J \ (L :R sec(N))) ⊆ AnnR(N). Thus we
have ab ∈ AnnR(N), ad ∈ AnnR(N), and cb ∈ AnnR(N). As a + c ∈ I and
b+ d ∈ J, we have (a+ c)(b+ d)N ⊆ L. Therefore, (a+ c)(sec(N)) ⊆ L or
(b+d)(sec(N))⊆ L or (a+ c)(b+d) ∈ AnnR(N). If (a+ c)(sec(N))⊆ L, then
c(sec(N)) 6⊆ L. Hence c ∈ I \ (L :R sec(N)) which implies that cd ∈ AnnR(N).
Similarly, if (b+ d)(sec(N)) ⊆ L, we can deduce that cd ∈ AnnR(N). Finally
if (a+ c)(b+ d) ∈ AnnR(N), then ab+ ad + cb+ cd ∈ AnnR(N) so that cd ∈
AnnR(N). Therefore, IJ ⊆ AnnR(N).
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Theorem 2.6. Let N be a non-zero submodule of an R-module M. The following
statements are equivalent:

(a) If abN ⊆ L1∩L2 for some a,b∈ R and completely irreducible submodules
L1,L2 of M, then a(sec(N)) ⊆ L1 ∩ L2 or b(sec(N)) ⊆ L1 ∩ L2 or ab ∈
AnnR(N);

(b) If IJN ⊆ K for some ideals I,J of R and a submodule K of M, then
I(sec(N))⊆ K or J(sec(N))⊆ K or IJ ∈ AnnR(N);

(c) For each a,b ∈ R, we have a(sec(N)) ⊆ abN or b(sec(N)) ⊆ abN or
abN = 0.

Proof. (a)⇒ (b). Assume that IJN ⊆ K for some ideals I,J of R, a submodule
K of M, and IJ 6⊆ AnnR(N). Then by Theorem 2.5, for all completely irre-
ducible submodules L of M with K ⊆ L either I(sec(N))⊆ L or J(sec(N))⊆ L.
If I(sec(N)) ⊆ L (resp. J(sec(N)) ⊆ L) for all completely irreducible submod-
ules L of M with K ⊆ L, we are done. Now suppose that L1 and L2 are two
completely irreducible submodules of M with K ⊆ L1, K ⊆ L2, I(sec(N)) 6⊆
L1, and J(sec(N)) 6⊆ L2. Then I(sec(N)) ⊆ L2 and J(sec(N)) ⊆ L1. Since
IJN ⊆ L1 ∩ L2, we have either I(sec(N)) ⊆ L1 ∩ L2 or J(sec(N)) ⊆ L1 ∩ L2.
If I(sec(N))⊆ L1∩L2, then I(sec(N))⊆ L1 which is a contradiction. Similarly
from J(sec(N))⊆ L1∩L2 we get a contradiction.

(b)⇒ (a). This is clear
(a)⇒ (c). By part (a), N 6= 0. Let a,b ∈ R. Then abN ⊆ abN implies that

a(sec(N))⊆ abN or b(sec(N))⊆ abN or abN = 0.
(c)⇒ (a). This is clear.

Definition 2.7. We say that a non-zero submodule N of an R-module M is a
strongly 2-absorbing secondary submodule of M if satisfies the equivalent con-
ditions of Theorem 2.6. By a strongly 2-absorbing secondary module, we mean
a module which is a strongly 2-absorbing secondary submodule of itself.

Let N be a submodule of an R-module M. Then part (d) of Theorem 2.6
shows that N is a strongly 2-absorbing secondary submodule of M if and only if
N is a strongly 2-absorbing secondary module.

Example 2.8. Clearly every strongly 2-absorbing secondary submodule is a 2-
absorbing secondary submodule. But the converse is not true in general. For
example, consider M = Z6⊕Q as a Z-module. Then M is a 2-absorbing sec-
ondary module. But since 0 6= 6M ⊆ 0⊕Q, sec(M) = M, 2M 6⊆ 0⊕Q, and
3M 6⊆ 0⊕Q, M is not a strongly 2-absorbing secondary module.
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Proposition 2.9. Let N be a 2-absorbing second submodule of an R-module M.
Then N is a strongly 2-absorbing secondary submodule of M.

Proof. Let a,b ∈ R and K be a submodule of M such that abN ⊆ K. Then
aN ⊆ K or bN ⊆ K or abN = 0 by assumption. Thus a(sec(N)) ⊆ aN ⊆ K or
b(sec(N))⊆ aN ⊆ K or abN = 0, as required.

The following example shows that the converse of the Proposition 2.9 is not
true in general.

Example 2.10. Let M be the Z-module Zp∞ . Then as p2〈1/p3 +Z〉 ⊆ 〈1/p+
Z〉, p〈1/p3 +Z〉 6⊆ 〈1/p+Z〉, and p2〈1/p3 +Z〉 6= 0, we have the submodule
〈1/p3+Z〉 of Zp∞ is not 2-absorbing second submodule. But sec(〈1/p3+Z〉) =
〈1/p+Z〉 implies that 〈1/p3+Z〉 is a strongly 2-absorbing secondary submod-
ule of M.

An R-module M is said to be a comultiplication module if for every sub-
module N of M there exists an ideal I of R such that N = (0 :M I), equivalently,
for each submodule N of M, we have N = (0 :M AnnR(N)) [1].

Theorem 2.11. Let M be a finitely generated comultiplication R-module. If
N is a strongly 2-absorbing secondary submodule of M, then AnnR(N) is a 2-
absorbing primary ideal of R.

Proof. Let a,b,c ∈ R be such that abc ∈ AnnR(N), ac 6∈
√

AnnR(N), and bc 6∈√
AnnR(N). Since by [4, 2.12], AnnR(sec(N)) =

√
AnnR(N), there exist com-

pletely irreducible submodules L1 and L2 of M such that ac(sec(N)) 6⊆ L1 and
bc(sec(N)) 6⊆ L2. But abcN = 0 ⊆ L1 ∩L2 implies that abN ⊆ (L1 ∩L2 :M c).
Now as N is a strongly 2-absorbing secondary submodule of M, a(sec(N)) ⊆
(L1∩L2 :M c) or b(sec(N)) ⊆ (L1∩L2 :M c) or abN = 0. If a(sec(N)) ⊆ (L1∩
L2 :M c) (resp. b(sec(N))⊆ (L1∩L2 :M c)), then we have ac(sec(N))⊆ L1 (resp.
bc(sec(N))⊆ L2), a contradiction. Hence abN = 0, as needed.

Theorem 2.12. Let N be a submodule of a comultiplication R-module M. If
AnnR(N) is a 2-absorbing primary ideal of R, then N is a strongly 2-absorbing
secondary submodule of M.

Proof. Let abN ⊆ K for some a,b ∈ R and some submodule K of M. As
M is a comultiplication module, there exists an ideal I of R such that K =
(0 :M I). Hence Iab ⊆ AnnR(N) which implies that either Ia ⊆

√
AnnR(N)

or Ib ⊆
√

AnnR(N) or ab ∈ AnnR(N). If ab ∈ AnnR(N), we are done. If
Ia⊆

√
AnnR(N), as

√
AnnR(N)⊆AnnR(sec(N)), we have Ia(sec(N))= 0. This

implies that a(sec(N))⊆ K because M is a comultiplication module. Similarly,
if Ib⊆

√
AnnR(N), we get b(sec(N))⊆ K. This completes the proof.
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The following example shows that Theorem 2.12 is not satisfied in general.

Example 2.13. Consider the Z-module M = Zp⊕Zq⊕Q, where p 6= q are two
prime numbers. Then M is not a comultiplication Z-module and AnnZ(M)= 0 is
a 2-absorbing primary ideal of R. But since 0 6= pqM ⊆ 0⊕0⊕Q, sec(M) = M,
pM 6⊆ 0⊕0⊕Q, and qM 6⊆ 0⊕0⊕Q, M is not a strongly 2-absorbing secondary
module.

In [18, 2.6], it is shown that, if M is a finitely generated multiplication R-
module and N is a 2-absorbing primary submodule of M, then M-rad(N) is a
2-absorbing submodule of M. In the following lemma, we see that some of this
conditions are redundant.

Lemma 2.14. Let N be a 2-absorbing primary submodule of an R-module M.
Then M-rad(N) is a 2-absorbing submodule of M.

Proof. This follows from the fact that M-rad(M-rad(N)) = M-rad(N) by [15,
Proposition 2].

Proposition 2.15. Let M be an R-module. Then we have the following.

(a) If N is a 2-absorbing (resp. strongly 2-absorbing) secondary submod-
ule of an R-module M, then sec(N) is a 2-absorbing (resp. strongly 2-
absorbing) second submodule of M.

(b) If N is a second radical submodule of M, then N is a 2-absorbing (resp.
strongly 2-absorbing) second submodule if and only if N is a 2-absorbing
(resp. strongly 2-absorbing) secondary submodule.

Proof. (a) This follows from the fact that sec(sec(N)) = sec(N) by [4, 2.1].
(b) This follows from part (a)

Let N and K be two submodules of an R-module M. The coproduct of N
and K is defined by (0 :M AnnR(N)AnnR(K)) and denoted by C(NK) [6].

Theorem 2.16. Let N be a submodule of an R-module M such that sec(N) is a
second submodule of M. Then we have the following.

(a) N is a strongly 2-absorbing secondary submodule of M.

(b) If M is a comultiplication R-module, then C(Nt) is a strongly 2-absorbing
secondary submodule of M for every positive integer t ≥ 1, where C(Nt)
means the coproduct of N, t times.
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Proof. (a) Let a,b ∈ R, K be a submodule of M such that abN ⊆ K, and let
b(sec(N)) 6⊆ K. Then as sec(N) is a second submodule and a(sec(N))⊆ aN ⊆
(K :M b), we have a(sec(N)) = 0 by [3, 2.10]. Thus a(sec(N))⊆ K, as needed.

(b) Let M be a comultiplication R-module. Then there exists an ideal I of R
such that N = (0 :M I). Thus by [4, 2.1],

sec(c(Nt)) = sec((0 :M It)) = sec((0 :M I)) = sec(N).

Now the results follows from to the proof of part (a).

Theorem 2.17. Let M be a comultiplication R-module. Then we have the fol-
lowing.

(a) If N1,N2, ...,Nn are strongly 2-absorbing secondary submodules of M with
the same second radical, then N = ∑

n
i=1 Ni is a strongly 2-absorbing sec-

ondary submodule of M.

(b) If N1,N2, ...,Nn are 2-absorbing secondary submodules of M with the
same second radical, then N = ∑

n
i=1 Ni is a 2-absorbing secondary sub-

module of M.

(c) If N1 and N2 are two secondary submodules of M, then N1 + N2 is a
strongly 2-absorbing secondary submodule of M.

(d) If M is finitely generated, N is a submodule of M which possess a sec-
ondary representation, and sec(N) = K1 +K2, where K1 and K2 are two
minimal submodules of M, then N is a strongly 2-absorbing secondary
submodule of M.

Proof. (a) Let a,b∈ R and K be a submodule of M such that abN ⊆K. Thus for
each i = 1,2, ...,n, abNi ⊆ K. If there exists 1≤ j ≤ n such that a(sec(N j))⊆ K
or b(sec(N j)) ⊆ K, then a(sec(N)) ⊆ K or b(sec(N)) ⊆ K (note that sec(N) =
sec(∑n

i=1 Ni) = ∑
n
i=1 sec(Ni) = sec(Ni) by [11, 2.6]). Otherwise, abNi = 0 for

each i = 1,2, ...,n. Hence abN = 0, as desired.
(b) The proof is similar to the part (a).
(c) As N1 and N2 are secondary submodules of M, AnnR(N1) and AnnR(N2)

are primary ideals of R. Hence AnnR(N1 +N2) = AnnR(N1)∩AnnR(N2) is a 2-
absorbing primary ideal of R by [9, 2.4]. Thus by Theorem 2.12, N1 +N2 is a
strongly 2-absorbing secondary submodule of M.

(d) Let N = ∑
n
i=1 Ni be a secondary representation. By [4, 2.6], sec(N) =

∑
n
i=1 sec(Ni). Since sec(Ni)’s are second submodules of M by [4, 2.13], we have

{sec(N1),sec(N2), ...,sec(Nn)}= {K1,K2}.
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Without loss of generality, we may assume that for some 1≤ t < n,

{sec(N1), ...,sec(Nt)}= {K1}

and {sec(Nt+1), ...,sec(Nn)}= {K2}. Set H1 := N1 + ...+Nt and H2 := Nt+1 +
...Nn. By [4, 2.12], H1 and H2 are secondary submodules of M. Therefore, by
part (c), N = H1+H2 is a strongly 2-absorbing secondary submodule of M.

The following example shows that the direct sum of two strongly 2-absorbing
secondary R-modules is not a strongly 2-absorbing secondary R-module in gen-
eral.

Example 2.18. Clearly, the Z-modules Z6 and Z10 are strongly 2-absorbing
secondary Z-modules. Let M = Z6⊕Z10. Then M is not a strongly 2-absorbing
second Z-module. By [3, 2.1], sec(M) = M. Thus M is not a strongly 2-
absorbing secondary Z-module by Proposition 2.15.

Lemma 2.19. Let f : M→ Ḿ be a monomorphism of R-modules. Then we have
the following.

(a) If N is a submodule of M, then sec( f (N)) = f (sec(N)).

(b) If Ń is a submodule of Ḿ such that Ń ⊆ f (M), then sec( f−1(Ń)) =
f−1(sec(Ń)).

Proof. (a) Let Ś be a second submodule of f (N). Then one can see that f−1(Ś)
is a second submodule of N. Hence f ( f−1(Ś))⊆ f (sec(N)). Thus sec( f (N))⊆
f (sec(N)). The reverse inclusion is clear.

(b) Let S be a second submodule of f−1(Ń). Then one can see that f (S) is
a second submodule of Ń. Hence f−1(S)⊆ f−1(sec(Ń)). Thus sec( f−1(Ń))⊆
f−1(sec(Ń)). To see the reverse inclusion, let Ś be a second submodule of Ń.
Then f−1(Ś) is a second submodule of f−1(Ń). It follows that f−1(sec(Ń)) ⊆
sec( f−1(Ń)).

Theorem 2.20. Let f : M → Ḿ be a monomorphism of R-modules. Then we
have the following.

(a) If N is a strongly 2-absorbing secondary submodule of M, then f (N) is a
strongly 2-absorbing secondary submodule of Ḿ.

(b) If Ń is a strongly 2-absorbing secondary submodule of Ḿ and Ń ⊆ f (M),
then f−1(Ń) is a strongly 2-absorbing secondary submodule of M.
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Proof. (a) Since N 6= 0 and f is a monomorphism, we have f (N) 6= 0. Let
a,b ∈ R, Ḱ be a submodule of Ḿ, and ab f (N) ⊆ Ḱ. Then abN ⊆ f−1(Ḱ).
As N is strongly 2-absorbing secondary submodule, a(sec(N)) ⊆ f−1(Ḱ) or
b(secN))⊆ f−1(Ḱ) or abN = 0. Therefore, by Lemma 2.19 (a),

a(sec( f (N))) = a( f (sec(N)))⊆ f ( f−1(Ḱ)) = f (M)∩ Ḱ ⊆ Ḱ

or
b(sec( f (N))) = b( f (sec(N)))⊆ f ( f−1(Ḱ)) = f (M)∩ Ḱ ⊆ Ḱ

or ab f (N) = 0, as needed.
(b) If f−1(Ń) = 0, then f (M)∩ Ń = f ( f−1(Ń)) = f (0) = 0. Thus Ń = 0, a

contradiction. Therefore, f−1(Ń) 6= 0. Now let a,b ∈ R, K be a submodule of
M, and ab f−1(Ń)⊆ K. Then

abŃ = ab( f (M)∩ Ń) = ab f f−1(Ń)⊆ f (K).

As Ń is strongly 2-absorbing secondary submodule, we have a(sec(Ń)⊆ f (K)
or b(sec(Ń)⊆ f (K) or abŃ = 0. Hence by Lemma 2.19 (b),

a(sec( f−1(Ń))) = a f−1(sec(Ń))⊆ f−1( f (K)) = K

or
b(sec( f−1(Ń))) = b f−1(sec(Ń))⊆ f−1( f (K)) = K

or ab f−1(Ń) = 0, as desired.

Corollary 2.21. Let M be an R-module and let N ⊆ K be two submodules of M.
Then N is a strongly 2-absorbing secondary submodule of K if and only if N is
a strongly 2-absorbing secondary submodule of M.

Proof. This follows from Theorem 2.20 by using the natural monomorphism
K→M.

Proposition 2.22. Let M be a cocyclic R-module with minimal submodule K and
N be a submodule of M such that rN 6= K for each r ∈ R. If N/K is a strongly
2-absorbing secondary submodule of M/K, then N is a strongly 2-absorbing
secondary submodule of M.

Proof. Let a,b ∈ R and H be a submodule of M such that abN ⊆ H. Then
ab(N/K) ⊆ H/K implies that a(sec(N/K)) ⊆ H/K or b(sec(N/K)) ⊆ H/K
or ab(N/K) = 0. If ab(N/K) = 0, then abN = 0 because rN 6= K for each
r ∈ R. Otherwise, since a(sec(N))/K ⊆ sec(N/K), we have a(sec(N)) ⊆ H or
b(sec(N))⊆ H as required.
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Let Ri be a commutative ring with identity and Mi be an Ri-module, for i =
1,2. Let R = R1×R2. Then M = M1×M2 is an R-module and each submodule
of M is in the form of N = N1×N2 for some submodules N1 of M1 and N2 of
M2. In addition, Mi is a comultiplication Ri-module, for i = 1,2 if and only if M
is a comultiplication R-module by [19, 2.1].

Lemma 2.23. Let R = R1×R2 and M = M1×M2, where M1 is an R1-module
and M2 is an R2-module. If N = N1×N2 is a submodule of M, then we have the
following.

(a) N is a second submodule of M if and only if N = S1× 0 or N = S2× 0,
where S1 is a second submodule of N1 and S2 is a second submodule of
M2.

(b) sec(N) = sec(N1)× sec(N2).

Proof. (a) This is straightforward.
(b) This follows from part (a).

Theorem 2.24. Let R = R1×R2 and M = M1×M2, where M1 is a comultipli-
cation R1-module and M2 is a comultiplication R2-module. Then we have the
following.

(a) If M1 be a finitely generated R1-module, then a non-zero submodule K1
of M1 is a strongly 2-absorbing secondary submodule if and only if N =
K1×0 is a strongly 2-absorbing secondary submodule of M.

(b) If M2 be a finitely generated R2-module, then a non-zero submodule K2
of M2 is a strongly 2-absorbing secondary submodule if and only if N =
0×K2 is a strongly 2-absorbing secondary submodule of M.

(c) If K1 is a secondary submodule of M1 and K2 is a secondary submodule
of M2, then N = K1×K2 is a strongly 2-absorbing secondary submodule
of M.

Proof. (a) Let K1 be a strongly 2-absorbing secondary submodule of M1. Then
AnnR1(K1) is a 2-absorbing primary ideal of R1 by Theorem 2.11. Now since
AnnR(N) = AnnR1(K1)×R2, we have AnnR(N) is a 2-absorbing primary ideal
of R by [9, 2.23]. Thus the result follows from Theorem 2.12. Conversely,
let N = K1× 0 be a strongly 2-absorbing secondary submodule of M. Then
AnnR(N) = AnnR1(K1)× R2 is a primary ideal of R by Theorem 2.11. Thus
AnnR1(K1) is a primary ideal of R1 by [9, 2.23]. Thus by Theorem 2.12, K1 be a
strongly 2-absorbing secondary submodule of M1.

(b) We have similar arguments as in part (a).
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(c) Let K1 be a secondary submodule of M1 and K2 be a secondary submod-
ule of M2. Then AnnR1(K1) and AnnR2(K2) are primary ideals of R1 and R2,
respectively. Now since AnnR(N) = AnnR1(K1)×AnnR2(K2), we have AnnR(N)
is a 2-absorbing primary ideal of R by [9, 2.23]. Thus the result follows from
Theorem 2.12.

Lemma 2.25. Let N be a submodule of a comultiplication R-module M. Then
N is a secondary module if and only if AnnR(N) be a primary ideal of R.

Proof. The necessity is clear. For converse, let r ∈ R. As M is a comultiplica-
tion module, rN = (0 :M I) for some ideal I of R. Now rI ⊆ AnnR(N) implies
that I ⊆ AnnR(N) or rt ∈ AnnR(N) for some positive integer t. Thus as M is a
comultiplication R-module, N = rN or rtN = 0 for some positive integer t.

Theorem 2.26. Let R = R1×R2 be a decomposable ring and M = M1×M2 be
a finitely generated comultiplication R-module, where M1 is an R1-module and
M2 is an R2-module. Suppose that N = N1×N2 is a non-zero submodule of M.
Then the following conditions are equivalent:

(a) N is a strongly 2-absorbing secondary submodule of M;

(b) Either N1 = 0 and N2 is a strongly 2-absorbing secondary submodule of
M2 or N2 = 0 and N1 is a strongly 2-absorbing secondary submodule of
M1 or N1, N2 are secondary submodules of M1, M2, respectively.

Proof. (a)⇒ (b). Let N = N1×N2 be a strongly 2-absorbing secondary sub-
module of M. Then AnnR(N) = AnnR1(N1)×AnnR2(N2) is a 2-absorbing pri-
mary ideal of R by Theorem 2.11. By [9, 2.23], we have AnnR1(N1) = R1
and AnnR2(N2) is a 2-absorbing primary ideal of R2 or AnnR2(N2) = R2 and
AnnR1(N1) is a 2-absorbing primary ideal of R1 or AnnR1(N1) and AnnR2(N2)
are primary ideals of R1 and R2, respectively. Suppose that AnnR1(N1) = R1
and AnnR2(N2) is a 2-absorbing primary ideal of R2. Then N1 = 0 and N2 is a
strongly 2-absorbing secondary submodule of M2 by Theorem 2.12. Similarly,
if AnnR2(N2) = R2 and AnnR1(N1) is a 2-absorbing primary ideal of R1, then
N2 = 0 and N1 is a strongly 2-absorbing secondary submodule of M1. If the last
case hold, then as M1 (resp. M2) is a comultiplication R1 (resp. R2) module, N1
(resp. N2) is a secondary submodule of M1 (resp. M2) by Lemma 2.25.

(b)⇒ (a). This follows from Theorem 2.25.
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