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MANIFOLDS WITH INTEGRABLE

AFFINE SHAPE OPERATOR

DANIEL A. JOAQUÍN

This work establishes the conditions for the existence of vector fields
with the property that theirs covariant derivative, with respect to the affine
normal connection, be the affine shape operatorS in hypersurfaces. Some
results are obtained from this property and, in particular, for some kind of
affine decomposable hypersurfaces we explicitely get the actual vector fields.

1. Introduction.

When making an analysis of the affine hypersurfaces with constant Pick
invariant that had been studied in [1], [2] we run into the existence of a special
type of vector fields V , (tensors of type (1, 0)), for which ∇V = S , where ∇ is
the connection induced by the affine normal and S is the affine shape operator
(the Weingarten operator).

We also noticed that this was possible and obtained explicit expression for
the affine hypersurfaces of decomposable type studied in [4].

Is the existence of these vector firlds possible in the general case of affine
hypersurfaces? And if this is so, which are the necessary conditions for that to
happen?

These matters are treated in the present work, after developing briefly the
necessary basic theory and establishing the notation to be used. With this
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purpose, we took into consideration the exposition made in K. Nomizu and
T. Sasaki book. [5].

Consider an n-dimensional manifold M of class C∞ and F : M → R
n+1

an immersion of class C∞ , where we assume the affine space R
n+1 endowed

with its usual flat connection D and a fixed volume form ω.
The Weingarten’s structural equation DX ξ = −SX establish the existence

of a tensor S which is of type (1, 1), called the shape operator and the structural
Gauss’ equation DXY = ∇XY + h(X, Y )ξ give us ∇ , the so called normal
connection.

Considering the vector fields as tensors of type (1, 0), if we apply them the
covariant derivative, they become tensors of type (1, 1).

We begin establishing the basic theory of affine immersions geometry in
Section 2.

Section 3 is devoted to establishing the conditions for the existence of the
mentioned vector fields.

In Section 4 we give some results derivated from the existence of these
vector fields and in the fifth and last section we apply the theory developed for
the particular case of affines hypersurfaces of decomposable type with some
special properties.

2. Geometry of affine immersions.

Let M be an n-dimensional manifold of class C∞ and F : M → R
n+1

an immersion of class C∞ . We assume the affine space R
n+1 with its usual flat

affine connection D and a fixed parallel volume element ω.
A differentiable vector field η it said transversal to F(M) if at each

point p ∈ M and for any referential (X1, . . . , Xn) the vectors (F∗)p(X1), (F∗)p
(X2), . . . , (F∗)p(Xn), ηp form a basis of TF (p)(Rn+1) ∼= R

n+1 . Obviously, this
condition is equivalent to ω(X1, ..., Xn, η) �= 0. For the sake of simplicity, we
shall identify F∗(X ) with X for each X ∈ I 10 (M).

For an arbitrary transversal vector field η we have the following structures:
A non trivial volumes form θ given by

(2.1) θ (X1, ..., Xn) = ω(X1, ..., Xn, η)

A tensor S of type (1, 1) and a 1-form τ by means of theWeingarten’s structural
equation

(2.2) DXη = −SX + τ (X )η (Weingarten equation)
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A bilinear form h and a connection ∇ for the Gauss formula

(2.3) DXY = ∇XY + h(X, Y )η (Gauss equation)

The symmetric bilinear form h is called the affine fundamental form relative to
the transversal vector field η.

We are interested in verifying if the couple (∇, θ ) defines an affine uni-
modular structure, that is, if ∇θ = 0. Since ∇θ = θ ⊗ τ , the condition ∇θ = 0
is equivalent to τ = 0. [5].

If the affine fundamental form h is nondegenerate we have a volume form
ωh defined by

ωh(X1, ..., Xn) = |det(hi j )|1/2, where hi j = h(Xi , Xj ) and θ (X1, ..., Xn) = 1

If we choos an arbitrary transversal vector field η, then we obtain on M the
affine fundamental form h, the induced connection ∇ and the induced volume
element θ . We want to achieve, by an appropriate choice of η, the following
two goals:

(I) ∇θ = 0

(II) θ = ωh

For each point p ∈ M , there is a transversal vector field ξ defined in a
neighborhood of p satisfying the conditions (I) and (II) above [5]. Such a
transversal vector field is unique up to sign.

This transversal vector field is called the affine normal field and the induced
connection ∇ , the affine fundamental form h, and the affine shape operator S
make up the so called Blaschke structure (∇, h, S) on the hypersurface M . The
induced connection ∇ is independent of the choice of the sign of ξ and is called
the Blaschke connection.

For an immersion of this type we have the following equations:

(2.4) (∇Xh)(Y, Z ) = (∇Y h)(X, Z ) Codazzi equation for h

(2.5) (∇X S)Y = (∇Y S)X Codazzi equation for S

(2.6) h(SX, Y ) = h(X, SY ) Ricci equation

(2.7) ∇θ = 0 Equiaffine condition



16 DANIEL A. JOAQUÍN

(2.8) θ = ωh Volume condition

(2.9) ∇ωh = 0 Apolarity condition

Definition 2.10. The torsion tensor field T , associated with a given affine
connection ∇ , which is a tensor of type (1, 2) is given by:
(2.11) T (X, Y ) = ∇XY − ∇Y X − [X, Y ].

For the connection ∇ induced by the affine normal field, the torsion tensor field
is zero. We say in this case that ∇ is torsion free.

Definition 2.12. The curvature tensor field R, associated with a connection ∇ ,
which is of type (1, 3), is given by

(2.13) R(X, Y )Z = ∇X∇Y Z − ∇Y∇X Z − ∇[X,Y ]Z .

If the connection ∇ is torsion free, the tensor field R hold the first and the
second Bianchi identities:

(2.14) R(X, Y )Z + R(Y, Z )X + R(Z , X )Y = 0.

(∇X R)(Y, Z ,W )+ (∇Y R)(Z ,W, X )+ (∇Z R)(W, X, Y )+(2.15)

+ (∇W R)(X, Y, Z ) = 0.

Definition 2.16. The Ricci tensor field, which is of type (0, 2) is given by

(2.17) Ric(Y, Z ) = trace {X → R(X, Y )Z }.
The tensor field R satisfies the fundamental equation

(2.18) R(X, Y )Z = h(Y, Z )SX − h(X, Z )SY (Gauss equation)

from which we obtain

(2.19) Ric(Y, Z ) = Tr(S)h(Y, Z )− h(SY, Z )

where Tr(S) is the trace of the shape operator S .
From Codazzi equation (2.4) it is seen that the cubic form C given by

(2.20) C(X, Y, Z ) = (∇h)(X, Y, Z )

is symmetric on X and Z .
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If we denote ∇̃ the Levi-Civita connection of h, we can consider the tensor
field K given by the difference between the connections ∇ and ∇̃ . This tensor
field, which is of type (1, 2), called difference tensor is given by

K (X, Y ) = ∇XY − ∇̃XY

Since ∇ and ∇̃ are free torsion we have K (X, Y ) = K (Y, X ). Moreover, it can
be seen that C(X, Y, Z ) = −2h(K (X, Y ), Z ), therefore, the cubic form C is
symmetric in all three arguments. [5].

3. The form vector field.

Let M be a C∞ manifold of dimension n, connected and 1-connected, and
F : M → R

n+1 an immersion of class C∞ .
For each p ∈ M the set

Qp = {Zp ∈ Tp(M)|Rp(Xp, Yp)Zp = 0 for all Xp, Yp ∈ Tp(M)}

is a subspace of Tp(M), thus, the assignement p → Qp for each p ∈ M defines
a distribution Q in M . We assume that dim(Q) ≥ 1.

Let V be a vector field and (U, x = (x 1, ..., xn)) a coordinate neighbor-
hood around a point p ∈ M . If we put Xi = ∂/∂x i , we can write the vector field
V as V = ∑

k
ak Xk , where ak ∈C∞(U ).

The vector field is a tensor field of type (1, 0), therefore ∇V is a tensor
field of type (1, 1) and we make ourselves the following question: Is it possible
that ∇V = S for some vector field V ? The answer is affirmative if V ∈ Q .

The equality ∇V = S is equivalent to (∇V )X = SX or

(3.1) ∇XV = SX for all X ∈ X(U ).

If we consider (3.1) for X = Xi , i = 1, 2, ..., n we obtain

(3.2) ∂i a
k = Ski −

∑
m

�k
ima

m, i, k = 1, 2, ..., n

where Ski are the components of the tensor field S with respect to the local
coordinate system x = (x 1, ..., xn) and �k

im are the Christoffel’s symbols of the
normal connection ∇ .
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To use the Frobenius’ theorem that guaranteed the existence of solution for
the system (3.2) we must check the integrability conditions given by

(3.3) ∂j

(
Ski −

∑
k

�k
ima

m

)
− ∂i

(
Skj −

∑
k

�k
jma

m

)
= 0

Calling A the first term in the left side of (3.3) we have

A = ∂j S
k
i −

∑
m

(∂j�
k
im )a

m −
∑
m

�k
im (∂j a

m)− ∂i S
k
j +

∑
m

(∂i�
k
jm )a

m +

+
∑
m

�k
jm (∂i a

m)

Replacing ∂j am and ∂i am obtained from (3.2) and reordering we have

A = ∂j Ski −
∑
m

�k
im

(
Smj −

∑
l

�m
jl a

l

)
− ∂i Skj +

∑
m

�k
jm

(
Smi −

∑
l

�m
il a

l

)
+

+
∑
m

{
∂i�

k
jm − ∂j�

k
im

}
am

= ∂j Ski −
∑
m

�k
im S

m
j +

∑
l,m

�k
im�m

jl a
l − ∂i Skj +

∑
m

�k
jm S

m
i −

∑
l

�k
jm�m

il a
l +

+
∑
m

{
∂i�

k
jm − ∂j�

k
im

}
am

=
[
∂j Ski − ∂i Skj +

∑
m

{
�k
jm S

m
i − �k

im S
m
j

}] +
[∑

m

{
∂i�

k
jm − ∂j�

k
im +

+
∑
l

(
�k
il�

l
jm − �k

jl�
l
im

)}
am

]
Now, we see that every one of the brackets in the above expression are zero.

For the first, by codazzi equation for S we have

0 = ωk
((∇Xj S

)
Xi − (∇Xi S

)
Xj

)
= ωk

(∑
l

(∂j S
l
i )Xl +

∑
l,m

�l
jm S

m
i Xl −

∑
l,m

�m
ji S

l
m Xl)+ ωk −

∑
l

(∂i S
l
j )Xl −
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−
∑
l,m

�l
im S

m
j Xl +

∑
l,m

�m
ji S

l
m Xl

)

= ωk

(∑
l

(∂j S
l
i )Xl +

∑
l,m

�l
jm S

m
i Xl −

∑
l

(∂i S
l
j )Xl −

∑
l,m

�l
im S

m
j Xl

)

= ∂j Ski − ∂i Skj +
∑
m

(
�k
jm S

m
i − �k

im S
m
j

)
where ωk = dxk , which shows that the first bracket is zero.
For the second we proceed as follows:

the term ∂i�
k
jm − ∂j�

k
im + ∑

l

(
�k
il�

l
jm − �k

jl�
l
im

)
is the component Rkjim of

the curvature tensor R respect to the local coordinate system x = (x 1, ..., xn),
and since V ∈ Q we have

0 = R(Xj , Xi)V = R(Xj , Xi)

(∑
m

amXm

)

=
∑
m

am R(Xj , Xi)Xm =
∑
k,m

Rkjima
mXk

and hence,
∑
m
Rkjim a

m = 0, which shows the second bracket is zero too.

Since the integrability conditions are held, the Frobenius’ theorem guaran-
tee us the existence of solution for the system (3.2) and moreover, it can be seen
that the system does not suffer any alterations by coordinate changes in such
manner that V can be extended globally.

The next proposition shows that the existence of nonzero vector field V
such that ∇V = S guarantee us that dim(Q) ≥ 1.

Proposition 3.4. Let V ∈ X(M) be such that ∇V = S, and V �= 0. Then
R(X, Y )V = 0 for all X, Y ∈ X(M).

Proof. Let X, Y ∈ X(M), then

R(X, Y )V = ∇X∇Y V − ∇Y∇X V − ∇[X,Y ]V(3.5)

= ∇X (SY )− ∇Y (SX )− S[X, Y ]

From Codazzi’s equation we have

(3.6) 0 = (∇X S
)
Y − (∇Y S

)
X = ∇X (SY )− S

(∇XY
) − ∇Y (SX )+ S

(∇Y X
)
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from which

(3.7) ∇X (SY )− ∇Y (SX ) = S
(∇XY

) − S
(∇Y X

) = S
(∇XY − ∇Y X

)
.

Replacing in (3.5)

R(X, Y )V = S(∇XY − ∇Y X )− S[X, Y ]
= S(∇XY − ∇Y X − [X, Y ])
= S(T (X, Y ))
= 0

since ∇ is torsion free.

4. Some results.

In this section we prove some results based in the existence of the vector
field V with the property ∇V = S .

An immediate consequence of this condition is that the trace of S is the
divergence of V . In fact, remembering that the divergence div(X ) of a vector
field X (relative to a connection ∇ ) is given by

div(X ) = trace{Z → ∇Z X }
we have

div(V ) = trace{Z → ∇Z V } = trace{Z → SZ } = Tr(S).

Proposition 4.1. Let V ∈ X(M) be such that ∇V = S, then the covariant
derivative and the Lie derivative of S respect to V are the same, that is,
LV S = ∇V S.

Proof. Let Y ∈ X(M) be, then

(∇V S)Y = ∇V (SY )− S(∇VY )
= ∇SYV + [V , SY ]− S(∇YV + [V , Y ])
= S(SY )+ [V , SY ]− S(SY )− S[V , Y ]
= [V , SY ]− S[V , Y ]
= LV (SY )− S(LVY )
= (LV S)Y

from which LV S = ∇V S since Y was arbitrary.

Next, we give a relation that involves the cubic form C , the Lie derivative
of the first fundamental form h respect to V and the tensor S , whenever V is
one of the arguments of the cubic form.
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Proposition 4.2. Let V ∈ X(M) be such that ∇V = S, then

C(X, Y, V ) = (LV h)(X, Y )− 2h(SX, Y )

for all X, Y ∈ X(M).

Proof. Let X, Y ∈ X(M) be, then

C(X, Y, V ) = (∇h)(X, Y, V ) = (∇V h)(X, Y )
= V (h(X, Y )) − h(∇V X, Y )− h(X, ∇VY )

= V (h(X, Y )) − h(∇XV + [V , X ], Y )− h(X, ∇VY + [V , Y ])
= V (h(X, Y )) − h([V , X ], Y )− h(X, [V , Y ])− h(SX, Y )− h(X, SY )

Now, since S is selfadjoint with respect to h (Ricci’s equation), we have,
h(SX, Y ) = h(X, SY ), therefore

C(X, Y, V ) = (LV h)(X, Y ) − 2h(SX, Y ).

Proposition 4.3. Let V ∈ X(M) be such that ∇V = S and A a tensor field of
type (1, r), then

SA = (∇V − LV )A

where SA is given by

(SA)(Y1, ..., Yr ) = S(A(Y1, ..., Yr ))−
r∑

k=1
A(Y1, ..., SYk , ..., Yr )

Proof. Let Y1, ..., Yr ∈ X(M) be arbitrary vector fields on M , then

(∇V A)(Y1, ..., Yr ) = ∇V (A(Y1, ..., Yr ))−
r∑

k=1
A(Y1, ..., ∇V Yk , ..., Yr )

= ∇A(Y1,...,Yr)V + [V , A(Y1, ..., Yr )] −
r∑

k=1
A(Y1, ..., ∇Yk V + [V , Yk], ..., Yr )

= S(A(Y1, ..., Yr ))+ LV (A(Y1, ..., Yr )) −
r∑

k=1
A(Y1, ..., SYk , ..., Yr ) −

−
r∑

k=1
A(Y1, ..., LV Yk, ..., Yr )
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= (SA)(Y1, ..., Yr )+ (LV A)(Y1, ..., Yr )

that is, ∇V A = SA + LV A, and hence

SA = (∇V − LV )A.

Proposition 4.4. Let V be a vector field on M such that ∇V = S and let
XV (M) = {Y ∈ X(M)|h(V , Y ) = 0}, that is, XV (M) is the submodule of
X(M) make up of all orthogonal fields to V with respect to h. Then XV (M) is
invariant by S.

Proof. Let Y ∈ X(M) be an arbitrary vector field, then

(4.5) Ric(Y, V ) = trace{Z → R(Z , Y )V } = 0

since R(Z , Y )V = 0 by proposition (3.4).
On the other hand, (2.19) give

(4.6) Ric(Y, V ) = Tr(S)h(Y, V )− h(SY, V )

Combining (4.5) and (4.6) we obtain

(4.7) h(SY, V ) = Tr(S)h(Y, V )

from which is immediate that h(SY, V ) = 0 if h(Y, V ) = 0, that is, SY ∈
XV (M) if Y ∈ XV (M). We conclude that XV (M) is invariant for S .

5. The decomposable case.

In this section we develop the theory for the affine hypersurfaces of
decomposable type, some of which, have been studied in [1], [3], [4].

We start with a special case. In [4] we have a hypersurface M of decom-
posable type for which ∇K = λR, with λ = −1

2 . It is parametrized by

(t1, ..., tn) →
(
t1, ..., tn,

t−n1
n(n + 1)

+ t22
2

+ · · · + t2n
2

)
, (t1 > 0).

In this case, the expressions for Ski and �k
i j in (3.2) are

S11 = −ntn−11 and Sij = 0 in all other cases.
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�111 = −t−11 , �1kk = −t n+11 if k > 1 and �k
i j = 0 in all other cases.

The system (3.2) becomes

(5.1) ∂1a1 = −ntn−11 + t−11 a1

(5.2) ∂ka
1 = t n+11 ak k = 2, 3, ..., n

(5.3) ∂ka
j = 0 k = 1, 2, ..., n. j = 2, 3, ..., n.

From (5.3) we see that a2, ..., an are constant functions. Now, we verify the
integrability conditions for (5.1) and (5.2).

For j, k ≥ 2, the conditions in (5.2) are ∂j (t
n+1
1 ak)−∂k (t

n+1
1 a j ) = 0 which

are satisfied trivially since ak is constant for k ≥ 2.
If k ≥ 2, the conditions in (5.1) are ∂k(−ntn−11 + t−11 a1)− ∂1(t

n+1
1 ak) = 0,

that is,

t−11 ∂ka
1 − (n + 1)t n1 a

k = t n1 a
k − (n + 1)t n1 a

k = −ntn1 ak = 0

which implies that ak = 0 for k ≥ 2 and from (5.2) we see that a1 only depends
on the variable t1.

On the other hand, from (5.1) the function a1 holds with the ordinary
differential equation

(5.4) ∂1a
1 − t−11 a1 = −ntn−11

whose solution (with normalized constants) is

a1(t1) = − n

n − 1
t n1

The vector field V is therefore

(5.5) V = − n

n − 1
t n1

(
1, 0, ..., 0, − t−n−11

n + 1

)

Now, we make us the following question: What happens if as above, we have
n−1 functions of parabolic type, but the remaining one is an arbitrary function?

For the sake of simplicity we take f1(t1) = f (t1) and fi (ti ) = t2i
2 for

i = 2, 3, ..., n.
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On one hand, S11 = 1
(n+2)2 ( f

′′)1/(n+2)[(n+ 2)h− (2n+ 3)g] and Sij = 0 for

all other cases, where h = f (4)

( f ′′)2 and g = ( f ′′′)2
( f ′′)3 . [3].

On the other hand, �111 = 1
n+2

f ′′′
f ′′ , �1kk = 1

n+2
f ′′′
( f ′′)2 if k ≥ 2 and �k

i j = 0 for
all other cases.

Moreover, note that �1kk = �111
f n .

In this case, the system (3.2) becames

(5.6) ∂1a
1 = S11 − �111a

1

(5.7) ∂ka
1 = −�1kk a

k k = 2, 3, ..., n

(5.8) ∂ka j = 0 k = 1, 2, ..., n, j = 2, 3, ..., n

From (5.8) we see that the functions a2, ..., an are constant. For (5.7) the
integrability conditions for j, k ≥ 2 are

∂j (−�1kk a
k)− ∂k(−�1j j a

j ) = 0

which are trivially satisfied since ak is constant and �1kk only depend on the
variable t1 for k ≥ 2.

For the remaining ones, with k ≥ 2, we have that

(5.9) ∂k(S11 − �111a
1) − ∂1(−�1kk a

k) = 0

or equivalently

(5.10) (�111�
1
kk + ∂1�

1
kk )a

k = 0 k = 2, 3, ..., n

So, we have two possible cases:

(i) �111�
1
kk + ∂1�

1
kk �= 0 or (ii) �111�

1
kk + ∂1�

1
kk = 0

(i) �111�
1
kk + ∂1�

1
kk �= 0

This implies that ak = 0 for k = 2, 3, ..., n, therefore, from (5.7) we see that
the function a1 only depends on the variable t1 and from (5.6), a1 is solution
for the ordinary differential equation of first order

(5.11) y ′ + �111y = S11 .

Moreover, it is immediate to see that

(5.12) �111�
1
kk + ∂1�

1
kk = ( f ′′)1/(n+2)S11

therefore S11 = 0.
The solution of (5.11), (after normalizing constants) is given by

(5.13) a1 = ( f ′′)−1/(n+2)
∫
( f ′′)1/(n+2)S11

We can summarize this case in the following theorem:
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Theorem 5.13. Let M be an affine hypersurface of decomposable type para-
metrized by

(t1, ..., tn) → (t1, ..., tn, f (t1) + t22
2

+ · · · + t2n
2
)

If the non parabolic component function f satisfies (n + 2)h − (2n + 3)g �= 0,
where h = f (4)

( f ′′)2 and g = ( f ′′′)2
( f ′′)3 , then there exists a vector field V such that

∇V = S. This vector field is given by V = a1X1, where

a1 = ( f ′′)−1/(n+2)
∫
( f ′′)1/(n+2)S11

and
X1 = F∗(∂1)

with S11 given by

S11 = 1

(n + 2)2
( f ′′)1/(n+2)[(n + 2)h − (2n + 3)g].

(ii) �111�
1
kk + ∂1�

1
kk = 0

This implies that the ak are either constants and for (5.12) we have S11 = 0,
therefore S = 0, so M is an improper affine hypersphere.

From S11 = 0 we obtain h = 2n+3
n+2 g, from which f (t1) = t n/(n+1)

(normalizing constants). In this case, the equations (5.6) and (5.7) are:

(5.15) ∂1a
1 = 1

n + 1
t−11 a1

(5.16) ∂ka
1 = −n + 1

n
t1/(n+1)1 ak, k ≥ 2, ak constant.

From (5.16) we see that a1 is

(5.17) a1(t1, ..., tn) = β(t1)− n + 1

n
t1/(n+1)1

n∑
k=2

ak tk

Using the equation (5.15) we obtain α(t1) since

α′(t1)− 1

n
t−n/(n+1)1

n∑
k=2

aktk = 1

n + 1
t−11

[
α(t1)− n + 1

n
t1/(n+1)1

n∑
k=2

aktk

]
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from which, rearranging and simplifying we have

α′(t1) = 1

n + 1
t−11 β(t1).

Hence,
α(t1) = t1/(n+1)1

Finally, the function a1 is given by

a1(t1, ..., tn) = t1/(n+1)1 − n + 1

n
t1/(n+1)1

n∑
k=2

aktk

= t1/(n+1)1

[
1− n + 1

n

n∑
k=2

aktk

]
.

We summarize this case in the following theorem:

Theorem 5.18. Let M be an affine hypersurface of decomposable type para-
metrized by

(t1, ..., tn) →
(
t1, ..., tn, f (t1) + t22

2
+ · · · + t2n

2

)

where the non parabolic component function f satisfies (n+2)h−(2n+3)g = 0
with h and g as in the Theorem 5.13. Then M is an improper affine hypersphere,
f is of the type t → t n/(n+1) and there exists a vector field V such that∇V = S,
which is given by

V = a1X1 +
n∑

k=2
ak Xk

where a1(t1, ..., tn) = t1/(n+1)1

[
1 − n+1

n

n∑
k=2

aktk

]
, with ak constant for k ≥ 2

and X j = F∗(∂j ) for j = 1, 2, ..., n.

As a final illustration we apply the above development for the affine hy-
persurface of decomposable type whose unimodular Pick invariant is a nonzero
constant [1].

For this hypersurface,

f (t1) = (n + 1)2

2(n + 3)
t−2/(n+1)1



MANIFOLDS WITH INTEGRABLE. . . 27

therefore

g(t1) = 4(n + 2)2

(n + 1)2
t2/(n+1)1

h(t1) = 2(n + 2)(3n + 5)

(n + 1)2
t2/(n+1)1

and using these, S11 = − 2
n+1 . Since S

1
1 �= 0 we apply the Theorem 5.14. From

(5.13) we have

a1(t1) = 2

n − 1
t1

so that, the vector field V is given by

V = 2

n − 1
t1

(
1, 0, 0, ..., 0, −n + 1

n + 3
t−(n+3)/(n+1)1

)
.
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