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ENTROPY APPROXIMATION FOR THE SYSTEM OF

MOMENT EQUATIONS DESCRIBING CHARGE

TRANSPORT IN SEMICONDUCTORS

A. M. BLOKHIN - I. G. SOKOVIKOV

The question of possibility to build additional entropy conservation law
for the system of moment equations, which appear in mathematical modelling
of the charge transport in semiconductors, is discussed.

Introduction.

It is well known that so called hydrodynamic models are widely used
nowadays in mathematical modelling of the physical phenomena related to
charge transport in semiconductors. Last years, a lot of new mathematical
models of hydrodynamic type were proposed for describing similar phenomena.
Notice, however, that mathematical basis for most models of this type is not
ideal.

One of the last models of hydrodynamic type was proposed recently in the
papers [1], [8]. This model is a quasilinear system of equations written in the
form of the conservation laws. These conservation laws were obtained from the
system of moment equations for Boltzmann transport equation by the use of a
certain closing procedure.

However, additional entropy conservation law was not found for the
equations system obtained in [1], [8]. In this work, we propose so called entropy
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approximation for this mathematical model. We discuss here one of the methods
of such approximation application — construction of calculation models for
finding of approximate solutions to the conservation laws system from [1], [8].

1. Preliminary information.

Remind that in [1], [8] the system of moment equations describing charge
transport in semiconductors was proposed. That system was obtained from
the Boltzmann transport equation with use of entropy maximum principle.
Application of this principle is, in essence, closing procedure (just diversity
of closing procedures defines a large number of various mathematical models,
which are used to describe charge transport in semiconductor devices).

Following [3], write down a quasilinear nonstationary system of mentioned
above moment equations for two-dimensional case and in the dimensionless
form (the process of obtaining dimensionless form is described in detail in [3]):

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Rτ + divJ = 0,

Jτ + ∇(R + P) = RQ+ c11J+ c22θ,

3

2
Pτ + div(J+ θ ) = (J,Q)+ cP,

2

5
θτ + ∇

(
P + P2

R

)
= PQ+ c12J+ c22θ.

Here R is an electron density;
J = (J (x), J (y)) is a electron flow vector with components J (x) , J (y) (Cartesian
coordinates (x , y) are taken as a base);

P = R
(2
3
E − 1

)
;

E is electron energy;
θ = (θ (x), θ (y)) is a electron energy flow vector;
Q = ∇ϕ; ϕ = ϕ(τ, x , y)) is an electric potential, satisfying Poisson equation:

(1.2) ε2�ϕ = R − ρ, ε2 = 1

β
;

coefficients c, c11, . . ., c22 in (1.1) are smooth functions of E (exact form of
them is presented in [1], [3], [8]);
ρ = ρ(x , y) is an doping density;
β > 0 is some constant (see [3]).
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It was shown in works [3], [7] that hyperbolicity condition of the system
(1.1) is formulated as:

E > 0.

This inequality is physically defensible.
Remind again that system of moment equations (1.1) (see. [3]), written

in the form of conservation laws, was obtained in [1, 8] with use of entropy
maximum principle. However, additional entropy conservation law

(1.3) ητ + div� = G,

where η = η(U), � = (
(x), 
(y)), 
(x),(y) = 
(x),(y)(U), G = G(U,Q), and
which would be consequence of all equations of the system (1.1) and fulfilled
on any its smooth solution, was not obtained in works mentioned above.
Here η is entropy function;
� is entropy flow vector;
G is entropy production;

U =
⎛
⎜⎝
R
J
P
θ

⎞
⎟⎠.

We failed to obtain additional entropy conservation law for conservation
laws system (1.1) as well. Therefore, in this work, we propose to consider the
following system instead of the system (1.1):

(1.4)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Rτ + divJ = 0,

Jτ + ∇(R + P) = RQ+ c11J+ c22θ,

3

2
Pτ + div(J+ θ ) = (J,Q) + cP,

2

5
θτ + ∇(P + F ′(D, x , y)) = PQ+ c12J+ c22θ,

where

D = 3

2
P − R + D0(x , y),

F(D, x , y), D0(x , y) are some functions,

F ′(D, x , y) = ∂F

∂D
.

We call this system entropy approximation of initial system (1.1).
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Remark 1.1. With use of simple but bulky computations, it could be shown
that hyperbolic condition of the system (1.4) is formulated as:

(1.5) F ′′ = ∂2F

∂D2
(D, x , y) > −2

5
.

2. Obtaining of additional entropy conservation law for the system (1.4).

Rewrite the system (1.4) as:

(1.4) Pτ +Mx + Ny = F .

Here

P =

⎛
⎜⎜⎜⎜⎝

R
J
3

2
P

2

5
θ

⎞
⎟⎟⎟⎟⎠ , M =

⎛
⎜⎜⎜⎜⎜⎝

J (x)

R + P
0

J (x) + θ (x)

P + F ′
0

⎞
⎟⎟⎟⎟⎟⎠ , N =

⎛
⎜⎜⎜⎜⎜⎝

J (y)

0
R + P

J (y) + θ (y)

0
P + F ′

⎞
⎟⎟⎟⎟⎟⎠ ,

F =
⎛
⎜⎝

0
RQ+ c11J+ c12θ
(J,Q)+ cP

PQ+ c12J+ c22θ

⎞
⎟⎠ .

Multiply now the system (1.4) by the vector 2U scalar. We obtain as a result:

(2.1)
{
R2 + |J|2 + 3

2
P2 + 2

5
|θ |2

}
τ
+

+ div{2(R + P)J + 2Pθ} + 2(θ, ∇F ′) =
= ([2RJ + 2PJ + 2Pθ ],Q)+ 2cP2 + 2{c11|J|2 + μ12(J, θ )+ c22|θ |2},

μ12 = c12 + c21.

Extracting the first equation of the system (1.4) from the fourth one, we obtain:

(2.2) divθ = (J,Q) + cP − Dτ .
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Since

(2.3) (θ, ∇F ′) = div(F ′θ )− F ′divθ,

then in view of (2.2), (2.3) we rewrite (2.1) in the form (1.3) with the following
expressions for η, �, G :

(2.4)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η = R2 + |J|2 + 3

2
P2 + 2

5
|θ |2 + 2F,

� = 2(R + P)J+ 2(P + F ′)θ,

G = ([2(R + P + F ′)J+ 2Pθ ],Q)+ 2(P + F ′)cP +
+ 2{c11|J|2 + μ12(J, θ )+ c22|θ |2}.

3. Symmetrization of the system (1.4).

It is known (see [4], [5]), that existence of additional conservation law
(1.3) allows rewriting the system (1.4) in the form of symmetric t-hyperbolic
(by Friedrichs) system. Symmetrization formalism is described in detail in [4],
[5], and we present here just some essential remarks. Let’s define components
of the vector q:

q =

⎛
⎜⎜⎜⎜⎜⎝

q1
q2
q3
q4
q5
q6

⎞
⎟⎟⎟⎟⎟⎠ ,

such as
(q, Pτ +Mx + Ny − F ) = ητ + div� − G = 0.

To gain this we present differential dη in the following form (see (2.4)):

dη = 2(R − F ′)dR + 2(J, dJ) +

+ 2(P + F ′)d
(3
2
P

)
+ 2

(
θ, d

(2
5

θ
))

= (q, dP).

Consequently, components of the vector q (so caleed canonic variables) could
be defined as:

(3.1)
q1 = 2(R − F ′), q2 = 2J (x), q3 = 2J (y),

q4 = 2(P + F ′), q5 = 2θ (x), q6 = 2θ (y).
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Now define so called generating functionsL, M, N :

(3.2)

{ L = (q, P)− η,

M = (q,M)− 
(x),

N = (q,N)− 
(y).

Then, in view of (3.2), we obtain:

(3.3) Lq =
⎛
⎝ Lq1

...

Lq6

⎞
⎠ = P, Mq = M, Nq = N.

Taking into account (3.3), we rewrite the system (1.4) as:

(Lq)τ + (Mq)x + (Nq)y = F ,

and then in the following form:

(3.4) Aqτ + Bqx + Cq y = F ,

where A = (Lqiqj ), B = (Mqiqj ), C = (Nqiqj ), i, j = 1, 6 are symmetric
matrices.

Let’s obtain matrices A, B, C. For this, we use the method described in
[4], [5]. We find at first matrices I , I0, I (x) , I (y) , such as:

dq =
⎛
⎝ dq1

...

dq6

⎞
⎠ = IdU (see (3.1)),

dLq =
⎛
⎝ dLq1

...

dLq6

⎞
⎠ = I0dU,

dMq = I (x)dU,

dNq = I (y)dU.

Then

A = I0 I
−1 = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2+ 3F ′′

2+ 5F ′′ 0 0
3F ′′

2+ 5F ′′ 0 0

0 1 0 0 0 0
0 0 1 0 0 0
3F ′′

2+ 5F ′′ 0 0
3(1+ F ′′)
2+ 5F ′′ 0 0

0 0 0 0 2
5 0

0 0 0 0 0 2
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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B = I (x) I−1 = 1

2

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 1 0 0
0 0 0 0 0 0
0 1 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

C = I (y) I−1 = 1

2

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 1 0 0
0 0 1 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

Notice, that matrix A > 0 when hyperbolicity condition (1.5) is fulfilled (it
could be verified directly). Hence, the system (3.4) is symmetric t -hyperbolic
(by Friedrichs).

4. Another form of the system (1.4) when function F specially selected.

Symmetric system (3.4) is one of the forms of the system (1.4). One can
easy find with simple calculations that:

(4.1)

Aq = P + �,

Bq =M,

Cq = N,

where

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2[F ′′(D − D0)− F ′]
2+ 5F ′′

0
0

−2[F
′′(D − D0)− F ′]
2+ 5F ′′
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let

(4.2)
F ′′(D − D0) − F ′

2+ 5F ′′ = 1

5
D1.

Here D1 = D1(x , y) is a certain function.
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Considering (4.2) as equation to find function F , we take such its solution:

(4.3) F(D, x , y) = − 2D1
5(D0 + D1)

· D
2

2
,

i.e.

F ′ = − 2D1
5(D0 + D1)

D, F ′′ = − 2D1
5(D0 + D1)

.

Introduce into consideration functions R∗(x , y) > 0, E∗(x , y) > 0 and

P∗(x , y) = R∗(x , y)
(
2
3E

∗(x , y) − 1
)
. Assume that P(τ ∗, x , y) = P∗(x , y),

R(τ ∗, x , y) = R∗(x , y) are valid for solution to the system (1.1) under certain
τ = τ ∗ .

Choose functions D0, D1 such as:

(4.4) − 2D1
5(D0 + D1)

(3
2
P∗ − R∗ + D0

)
= (P∗)2

R∗ .

If D1 = −P∗ , D0 = R∗ + P∗ , then equality (4.4) is fulfilled. Hence, if function
F ′ in the system (1.4) is selected as:

(4.5) F ′ = 2

5

P∗

R∗
(3
2
P − R + R∗ + P∗

)
,

then this aggregate is linear approximation of the function P2/R in neighbor of
τ = τ ∗ (see (4.4)). We call system (1.4) entropy approximation of the system
(1.1) by this reason namely. Notice, that F ′′ = 2

5
P∗
R∗ = − 2

5

(
1− 2

3 E
∗
)

> − 2
5

in this case in view of natural physical restriction: E∗ > 0.
So, let aggregate F ′ in the system (1.4) is found with use the formula (4.5).

Then, in view of (4.1), (4.2), the system (1.4) can be rewritten as follows:

(4.6) (Aq)τ + (Bq)x + (Cq)y = F .

System (4.6) is another form of the system (1.4) (when function F ′ is specially
selected).
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5. Predictor-corrector type difference scheme for the system (1.1).

The fact that the system (1.4) can be written in the form (4.6), suggests
an idea to use this fact when constructing finite-difference schemes to initial
system (1.1). Let’s describe, for example, possible construction of the finite-
difference scheme of the predictor-corrector type for the system (1.1). We
plot difference grid with steps � = �τ , hx = �x , hy = �y in the domain
R3+ = {τ > 0, (x , y)∈ R2}. Introduce new designations:

Un
i j = U(n�, ihx , j hy) = Un,

�x , �y, �−1
x , �−1

y are shift operators:

�±1
x U

n = Un
i±1, j , �±1

y U
n = Un

i, j±1;

ξx , ξ x , ξy, ξ y, Lx , Ly, ξ0, η0 are difference operators:

ξx = �x − 1, ξ x = 1− �−1
x , ξy = �y − 1, ξ y = 1− �−1

y ,

Lx = �x + �−1
x

2
, Ly = �y + �−1

y

2
,

ξ0 = �x − �−1
x

2
, η0 = �y − �−1

y

2
,

rx = �

hx
, ry = �

hy
.

Besides, we assume, that

(5.1) B = B+ − B−, C = C+ − C−,

where B± , C± are symmetric positive-definite matrices. It is known, that
expansion (5.1) for arbitrary symmetric matrix is always fulfilled.

We can take

B± = 1

2

⎛
⎜⎜⎜⎜⎜⎝

1 ±1/2 0 0 0 0
±1/2 1 0 ±1/2 0 0
0 0 1 0 0 0
0 ±1/2 0 1 ±1/2 0
0 0 0 ±1/2 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ ,
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C± = 1

2

⎛
⎜⎜⎜⎜⎜⎝

1 0 ±1/2 0 0 0
0 1 0 0 0 0

±1/2 0 1 ±1/2 0 0
0 0 ±1/2 1 0 ±1/2
0 0 0 0 1 0
0 0 0 ±1/2 0 1

⎞
⎟⎟⎟⎟⎟⎠ .

for matrices B, C. Notice, thatB+ + B− = I6, C+ + C− = I6 , where I6 is
unitary matrix of the order 6. Eigen values of matrices B± , C± can be easy
found:

lk (B±, C±) = 1

2
(1− cos(kl)), l = π

5
, k = 1, 4;

l5,6(B±, C±) = 1

2
.

Calculational model, which we will use to find approximate solution to initial
system (1.1), is build as follows. At the predictor stage we use the system (1.4),
written in the form (4.6). Using difference scheme from the work [6] (see also
[2]), we find auxiliary quantities q∗

1,...,6:

Aq∗ − Aqn + r∗
x ξ x{B+qn} + r∗

y ξ y{C+qn} −

− r∗
x ξx {B−qn} − r∗

y ξ y{C−qn} = �∗F n
i j

or

(5.2) Aq∗ = (A − (r∗
x + r∗

y )I6)q
n + r∗

x (B+qni−1, j + B−qni+1, j )+

+ r∗
y (C+qni, j−1 + C−qni, j+1)+ �∗F n

i j .

Here (see sec. 3 and sec. 4):

A = A(F ′′), F ′′ = 2

5

Pn
i j

Rni j
,

q∗ =
⎛
⎝ q∗

1
...

q∗
6

⎞
⎠ is the vector of auxiliary quantites,

0 < �∗ ≤ �, r∗
x = �∗hx , r∗

y = �∗hy .
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Using formulae (3.1), we find components of auxiliary vector U∗ by compo-
nents of the vector q∗ , and as F ′ we take the following expression:

F ′ = 2

5

Pn
i j

Rni j

(3
2
P∗
i j − R∗

i j + Rni j + Pn
i j

)
.

At the corrector stage we use initial system (1.1), which we rewrite as:

(5.3) Uτ + Vx +Wy = Z,

where

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

J (x)

0
R + P

2

3
(J (x) + θ (x))

5

2

(
P + P2

R

)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, W =

⎛
⎜⎜⎜⎜⎜⎝

J (y)

R + P
2

3
(J (y) + θ (y))

0
5

2

(
P + P2

R

)

⎞
⎟⎟⎟⎟⎟⎠ ,

Z =

⎛
⎜⎜⎜⎜⎝

0
RQ+ c11J+ c12θ
2

3
(J,Q)+ 2

3
cP

5

2
(PQ+ c21J+ c22θ )

⎞
⎟⎟⎟⎟⎠ .

To find numeric solution to the system (5.3), we use, for example, modified Lax
scheme (see [2]):

(5.4) Un+1 = Lx LyUn − rx Lyξ0V∗ − ry Lxη0W∗ + �Lx LyZ∗,

where V∗ = V(U∗), etc.
Described above difference model (5.2), (5.4) is one of the possible vari-

ants of using entropy approximation of the system (1.1) when finding its approx-
imate solution. In the future, authors plan to make the series of computational
experiments on using entropy approximation to find numeric solutions to typical
problems of semiconductors physics.

Authors appreciate V. Romano for useful discussions of this work materi-
als. The work is supported by RFFI (project N. 04-01-00900); INTAS, project
N. 868.
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