CURVILINEAR SCHEMES AND MAXIMUM RANK OF FORMS

EDOARDO BALLICO - ALESSANDRA BERNARDI

We define the *curvilinear rank* of a degree d form P in n+1 variables as the minimum length of a curvilinear scheme, contained in the d-th Veronese embedding of \mathbb{P}^n , whose span contains the projective class of P. Then, we give a bound for rank of any homogenous polynomial, in dependance on its curvilinear rank.

1. Introduction

The rank r(P) of a homogeneous polynomial $P \in \mathbb{C}[x_0, \dots, x_n]$ of degree d, is the minimum $r \in \mathbb{N}$ such that P can be written as sum of r pure powers of linear forms $L_1, \dots, L_r \in \mathbb{C}[x_0, \dots, x_n]$:

$$P = L_1^d + \dots + L_r^d. \tag{1}$$

A very interesting open question is to determine the maximum possible value that the rank of a form (i.e. a homogeneous polynomial) of given degree in a certain number of variables can have.

At our knowledge, the best general achievement on this problem is due to J.M. Landsberg and Z. Teitler that in [16, Proposition 5.1] proved that the rank of a degree d form in n+1 variables is smaller than or equal to $\binom{n+d}{d}-n$. Unfortunately this bound is sharp only for n=1 if $d\geq 2$; in fact, for example, if

Entrato in redazione: 21 ottobre 2016

Keywords: Maximum rank, curvilinear rank, curvilinear schemes, cactus rank.

n=2 and d=3,4, then the maximum ranks are 5 and 7 respectively (see [7, Theorem 40 and 44]). More recently G. Blekherman and Z. Teitler proved in [9] that the maximum rank is always smaller than or equal to twice the generic rank that is the rank of a generic polynomial, i.e. the minimum r s.t. the r-th secant variety to the Veronese variety fills up the ambient space (such a secant variety is classically defined to be the Zariski closure of the set of all r-th secant spaces to a Veronesean). In the celebrated Alexander and Hischowitz paper [1] they computed the dimensions of all such secant varieties, so the generic rank is nowadays considered a classical result. Clearly finding a bound for the rank of any polynomial given the number of variables and the degree is a very different and difficult problem.

Few more results were obtained by focusing the attention on limits of forms of given rank. When a form P is in the Zariski closure of the set of forms of rank s, it is said that P has border rank $\underline{r}(P)$ equal to s. For example, the maximum rank of forms of border ranks 2, 3 and 4 are known (see [7, Theorems 32 and 37] and [3, Theorem 1]). In this context, in [2] we posed the following:

Question 1 ([2]). Is it true that $r(P) \le d(\underline{r}(P) - 1)$ for all degree d forms P? Moreover, does the equality hold if and only if the projective class of P belongs to the tangential variety of a Veronese variety?

The Veronese variety $X_{n,d} \subset \mathbb{P}^{N_{n,d}}$, with $n \geq 1$, $d \geq 2$ and $N_{n,d} := \binom{n+d}{d} - 1$ is the image of the classical d-uple Veronese embedding $v_d : \mathbb{P}^n \to \mathbb{P}^{N_{n,d}}$ and parameterizes projective classes of degree d pure powers of linear forms in n+1 variables. Therefore the rank r(P) of $[P] \in \mathbb{P}^{N_{n,d}}$ is the minimum r for which there exists a length r smooth zero-dimensional scheme $Z \subset X_{n,d}$ whose span contains [P] (with an abuse of notation we are extending the definition of rank of a form P given in (1) to its projective class [P]). More recently, other notions of polynomial rank have been introduced and widely discussed ([10], [17], [8], [6], [4]). They are all related to the minimal length of a certain zero-dimensional schemes embedded in $X_{n,d}$ whose span contains the given form. Here we recall only the notion of $smoothable\ rank\ smr(P)$ of a form P with $[P] \in \mathbb{P}^{N_{n,d}}$ (see [6, 10]):

$$\operatorname{smr}(P) = \min \{ \operatorname{deg}(Z) \mid Z \text{ limit of smooth schemes } Z_i, \operatorname{deg}(Z_i) = \operatorname{deg}(Z),$$

$$Z, Z_i \subset X_{n.d}, \operatorname{dim}_K Z = \operatorname{dim}_K Z_i = 0 \text{ and } [P] \in \langle Z \rangle \}.$$

With this definition, it seems more reasonable to state Question 1 as follows:

Question 2. Fix
$$[P] \in \mathbb{P}^{N_{n,d}}$$
. Is it true that $r(P) \leq (\operatorname{smr}(P) - 1)d$?

In this paper we want to deal with a more restrictive but easier to handle notion of rank, namely the "curvilinear rank". We say that a scheme $Z \subset \mathbb{P}^N$

is *curvilinear* if it is a finite union of schemes of the form $\mathcal{O}_{\mathcal{C}_i,P_i}/\mathfrak{m}_{P_i}^{e_i}$ for smooth points P_i on reduced curves $\mathcal{C}_i \subset \mathbb{P}^N$, or equivalently that the tangent space at each connected component of Z supported at the P_i 's has Zariski dimension ≤ 1 . We define the *curvilinear rank* Cr(P) of a degree d form P in n+1 variables as:

$$Cr(P) := min \{ deg(Z) \mid Z \subset X_{n,d}, Z \text{ curvilinear, } [P] \in \langle Z \rangle \}.$$

The main result of this paper is the following:

Theorem 1. For any degree d form P we have that

$$r(P) \le (\operatorname{Cr}(P) - 1)d + 2 - \operatorname{Cr}(P).$$

Theorem 1 is sharp if Cr(P) = 2,3 ([7, Theorem 32 and 37]).

Clearly if a scheme is curvilinear is also smoothable, so the next question will be to understand if Theorem 1 holds even though we substitute the curvilinear rank with the smoothable rank:

Question 3. Fix
$$[P] \in \mathbb{P}^{N_{n,d}}$$
. Is it true that $r(P) \leq (\operatorname{smr}(P) - 1)d + 2 - \operatorname{smr}(P)$?

This paper is organized as follows: Section 2 is entirely devoted to the proof of Theorem 1 with a lemma; in Section 3 we study the case of ternary forms and we prove that, in such a case, Question 2 has an affirmative answer.

We will always work with an algebraically closed field K of characteristic 0.

2. Proof of Theorem 1

Let us begin this section with a Lemma that will allow us to give a lean proof of the main theorem.

We say that an irreducible curve $\mathcal T$ is *rational* if its normalization is isomorphic to $\mathbb P^1$.

Lemma 2.1. Let $Z \subset \mathbb{P}^r$, $r \geq 2$, be a zero-dimensional curvilinear scheme of degree k. Then there is an irreducible and rational curve $\mathcal{T} \subset \mathbb{P}^r$ such that $\deg(\mathcal{T}) \leq k-1$ and $Z \subset \mathcal{T} \subseteq \langle Z \rangle$.

Proof. If the scheme Z is in linearly general position, namely $\langle Z \rangle \simeq \mathbb{P}^{k-1}$, then there always exists a rational normal curve of degree k-1 passing through it (this is a classical fact, see for instance [13, Theorem 1]). If Z is not in linearly general position, consider $\mathbb{P}(H^0(Z,\mathcal{O}_Z(1))) \simeq \mathbb{P}^{k-1}$. In such a \mathbb{P}^{k-1} there exists a curvilinear scheme W of degree k in linearly general position such that the projection $\ell_V : \mathbb{P}^{k-1} \setminus V \to \langle Z \rangle$ from a $(k-\dim(\langle Z \rangle)-2)$ -dimensional vector

space V induces an isomorphism between W and Z. Consider now the degree k-1 rational normal curve $\mathcal{C} \subset \mathbb{P}^{k-1}$ passing through W, its projection $\ell_V(\mathcal{C})$ contains Z and it is irreducible and rational since \mathcal{C} is irreducible and rational and, by construction, $\deg(\ell_V(\mathcal{C})) \leq \deg(\mathcal{C}) = k-1$.

We do not claim that the curve \mathcal{T} is smooth, because we only need that its normalization is \mathbb{P}^1 .

Let $X \subset \mathbb{P}^r$ be an integral non-degenerate variety. For any $P \in \langle X \rangle$ the *X-rank* $r_X(P)$ is the minimal cardinality of a subset $S \subset X$ such that $P \in \langle S \rangle$.

We are now ready to prove the main theorem of this paper.

Proof of Theorem 1: Let $X_{n,d}$ be the Veronese image of \mathbb{P}^n into $\mathbb{P}^{\binom{n+d}{d}-1}$ via $\mathcal{O}(d)$, let $Z \subset X_{n,d}$ be a minimal degree curvilinear scheme such that $P \in \langle Z \rangle$, and let $U \subset \mathbb{P}^n$ be the curvilinear scheme such that $v_d(U) = Z$. The minimality of Z gives $P \notin \langle Z' \rangle$ for any $Z' \subsetneq Z$. Say that $\operatorname{Cr}(P) = \deg(Z) = \deg(U) := k \geq 2$. If Z is reduced, then $\operatorname{r}(P) = k$ and the statement of the theorem in this case is trivial. Hence we may assume that Z is not reduced. By Lemma 2.1, there exists a rational curve $\mathcal{T} \subset \mathbb{P}^n$ such that $U \subset \mathcal{T}$ and $c := \deg(\mathcal{T}) \leq k-1$. Set $\mathcal{Y} := v_d(\mathcal{T})$:

$$\begin{array}{ccc} \mathbb{P}^n & \stackrel{\mathbf{v}_d}{\hookrightarrow} & \mathbb{P}^{\binom{n+d}{d}-1} \\ U \subset \mathcal{T} & \mapsto & Z \subset \mathcal{Y} \end{array}.$$

The curve $\mathcal{Y} \subset \mathbb{P}^{N_{n,d}}$ has degree cd and $Z \subset \mathcal{Y}$. Hence $P \in \langle \mathcal{Y} \rangle$. Since $\mathcal{Y} \subset X_{n,d}$, we have $\mathbf{r}(P) \leq r_{\mathcal{Y}}(P)$. Hence it is sufficient to prove that $r_{\mathcal{Y}}(P) \leq d(k-1) + 2 - k$. Since the function $t \mapsto dt$ is increasing and $c \leq k-1$, it is sufficient to prove that $r_{\mathcal{Y}}(P) \leq dc + 2 - k$. Since \mathcal{T} is a degree c rational curve, there are a rational normal curve $\mathcal{D} \subset \mathbb{P}^c$ such that \mathcal{T} is obtained from \mathcal{D} using the linear projection from a linear subspace $E \subset \mathbb{P}^c$ with $\dim(E) = c - \dim(\langle E \rangle) - 1$ and $E \cap \mathcal{D} = \emptyset$. We use the embedding v_d also for any projective space. We need to use it for \mathbb{P}^s with $s := \max\{n, c\}$. Now let $\mathcal{C} := v_d(\mathcal{D})$.

$$\begin{array}{cccc} \mathbb{P}^c & \stackrel{\mathbf{V}_d}{\hookrightarrow} & \mathbb{P}^{\binom{c+d}{d}-1} \\ \mathcal{D} & \mapsto & \mathcal{C} \\ \\ \downarrow & & \downarrow \ell_M \\ \\ \mathbb{P}^n & \stackrel{\mathbf{V}_d}{\hookrightarrow} & \mathbb{P}^{\binom{n+d}{d}-1} \\ \mathcal{T} & \mapsto & \mathcal{Y} \end{array}.$$

The curve \mathcal{C} is a degree cd rational normal curve in its linear span $\langle \mathcal{C} \rangle \cong \mathbb{P}^{dc}$. Since \mathcal{Y} is embedded in $\mathbb{P}^{N_{n,d}}$ by the restriction of the degree d forms, \mathcal{Y} is a linear projection of $\mathcal C$ from a linear subspace $M\subset \mathbb P^{dc}$ such that $\mathcal C\cap M=\emptyset$ and $\dim(M)=cd-\dim(\langle\mathcal Y\rangle)-1$ (we have $M\cap\mathcal C=\emptyset$, because $\deg(\mathcal Y)=cd$). Call $\ell_M\colon \mathbb P^{dc}\setminus M\to \langle\mathcal Y\rangle$ the linear projection from M. Since $\mathcal C\cap M=\emptyset$, the morphism ℓ_M is surjective. Since $M\cap\mathcal C=\emptyset$, the map $\ell_M|_{\mathcal C}$ is a degree one morphism $\ell:\mathcal C\to\mathcal Y$. Set $W:=\ell^{-1}(Z)$ (scheme-theoretic counterimage). Since ℓ is proper and surjective, $\ell(W)=Z$ and hence $\deg(W)=k$.

$$\begin{array}{cccc} \mathbb{P}^c & \stackrel{\boldsymbol{v}_d}{\hookrightarrow} & \mathbb{P}^{\binom{c+d}{d}-1} \\ \mathcal{D} & \mapsto & W \subset \mathcal{C} \\ \\ \downarrow & & \downarrow \ell_M \\ \\ \mathbb{P}^n & \stackrel{\boldsymbol{v}_d}{\hookrightarrow} & \mathbb{P}^{\binom{n+d}{d}-1} \\ U \subset \mathcal{T} & \mapsto & Z \subset \mathcal{Y} \end{array}.$$

Set $\ell' := \ell_M | (\langle W \rangle \setminus M \cap \langle W \rangle)$ and notice that even though by construction we clearly have that $W \cap M = \emptyset$, we cannot assume that also $M \cap \langle W \rangle = \emptyset$. Since $\ell(W) = Z$ and ℓ_M is surjective, ℓ' is surjective. Fix $O \in \langle W \rangle \setminus M \cap \langle W \rangle$ such that $\ell'(O) = P$. Since $P \notin \langle Z' \rangle$ for each $Z' \subseteq Z$ and $W = \ell^{-1}(Z)$, then $O \notin \langle W' \rangle$ for any $W' \subseteq W$.

- (a) First assume $\deg(W) \leq \lfloor (dc+2)/2 \rfloor$. This implies that O has border rank $\deg(W)$ and that either $\mathrm{r}_{\mathcal{C}}(O) = \deg(W)$ or $\mathrm{r}_{\mathcal{C}}(O) = dc+2-\deg(W)$ ([12], [16, Theorem 4.1], [7, Theorem 23]). Take $S \subset \mathcal{C}$ evincing $\mathrm{r}_{\mathcal{C}}(O)$. Since $P = \ell_M(O)$, we have $P \in \langle \ell(S) \rangle$. Since $\sharp(\ell(S)) \leq \sharp(S) \leq cd+2-k$, we get $\mathrm{r}_{\mathcal{V}}(P) \leq cd+2-k$.
- (b) Now assume $\deg(W) > \lfloor (dc+2)/2 \rfloor$. A classical result attributed to JJ. Sylvester gives the relation between the length of two 0-dimensional subschemes contained in the rational normal curve and such that their spans contain the same point (see e.g. [7, 12]). If $P \in \langle A \rangle \cap \langle B \rangle$ with A, B two 0-dimensional schemes on the rational normal curve of degree d then the sum of the degrees $\deg(A) + \deg(B) = d+2$. Since $P \notin \langle W' \rangle$ for any $W' \subsetneq W$ and any zero-dimensional subscheme of $\mathcal C$ with degree at most dc+2 is linearly independent, Sylvester's theorem gives $r_{\mathcal C}(O) \leq \deg(W)$. As in step (a) we get $r_{\mathcal V}(P) \leq k < d(k-1)+2-k$.

3. Superficial case

In this section we show that Question 2 has an affirmative answer in the case n = 2 of ternary forms and that the bound in Question 2 is seldom sharp in this

case (for large cr(P) the upper bound in Question 2 is worst than the true one by [9]).

More precisely, we prove the following result.

Proposition 1. Let P be a ternary form of degree d with $2 \le \operatorname{cr}(P) \le d$. If $\operatorname{cr}(P) \le d$, then $\operatorname{r}(P) \le \binom{d+2}{2} - \binom{d-\operatorname{cr}(P)+1}{2} - 1$.

Before giving the proof of Proposition 1, we need the following result.

Proposition 2. Let $Z \subset \mathbb{P}^2$ be a degree $k \geq 4$ zero-dimensional scheme.

There is an integral curve $C \subset \mathbb{P}^2$ such that $\deg(C) = k-1$ and $Z \subset C$ if and only if Z is not contained in a line.

Proof. First assume that Z is contained in a line \mathcal{D} . Bézout theorem gives that \mathcal{D} is the only integral curve of degree < k containing Z.

Now assume that *Z* is not contained in a line.

Claim 1. The linear system $|\mathcal{I}_Z(k-1)|$ has no base points outside Z_{red} .

Proof of Claim 1. Fix $P \in \mathbb{P}^2 \setminus Z_{\text{red}}$. Since $\deg(Z \cup \{P\}) = k+1$, we have $h^1(\mathcal{I}_{Z \cup \{P\}}(k-1)) > 0$ if and only if there is a line \mathcal{D} containing $Z \cup \{P\}$, but, since in our case Z is not contained in a line, we get $h^1(\mathcal{I}_{Z \cup \{P\}}(k-1)) = 0$. Hence $h^0(\mathcal{I}_{Z \cup \{P\}}(k-1)) = h^0(\mathcal{I}_Z(k-1)) - 1$, i.e. P is not a base point of $|\mathcal{I}_Z(k-1)|$.

By Claim 1, the linear system $|\mathcal{I}_Z(k-1)|$ induces a morphism $\psi \colon \mathbb{P}^2 \setminus Z_{\mathrm{red}} \to \mathbb{P}^x$.

Claim 2. We have $\dim(Im(\psi)) = 2$.

Proof of Claim 2. It is sufficient to prove that the differential $d\psi(Q)$ of ψ has rank 2 for a general $Q \in \mathbb{P}^2$. Assume that $d\psi(Q)$ has rank ≤ 1 , i.e. assume the existence of a tangent vector \mathbf{v} at Q in the kernel of the linear map $d\psi(Q)$. Since $h^1(\mathcal{I}_{Z \cup \{P\}}(k-1)) = 0$ (see proof of Claim 1), this is equivalent to $h^1(\mathcal{I}_{Z \cup \mathbf{v}}(k-1)) > 0$. Since $\deg(Z \cup \mathbf{v}) = k+2 \leq 2(k-1)+1$, there is a line $\mathcal{D} \subset \mathbb{P}^2$ such that $\deg(\mathcal{D} \cap (Z \cup \mathbf{v})) \geq k+1$ ([7, Lemma 34]). Hence $\deg(Z \cap \mathcal{D}) \geq k-1$. Since $k \geq 4$ there are at most finitely many lines $\mathcal{D}_1, \ldots, \mathcal{D}_s$ such that $\deg(\mathcal{D}_i \cap Z) \geq k-1$ for all i. If $Q \notin \mathcal{D}_1 \cup \cdots \cup \mathcal{D}_s$, then $\deg(\mathcal{D} \cap (Z \cup \mathbf{v})) \leq k$ for every line \mathcal{D} .

By Claim 2 and Bertini's second theorem ([15, Part 4 of Theorem 6.3]) a general $C \in |\mathcal{I}_Z(k-1)|$ is irreducible.

Any degree 2 zero-dimensional scheme $Z \subset \mathbb{P}^n$, $n \geq 2$ is contained in a unique line and hence it is contained in a unique irreducible curve of degree 2-1. Now we check that in case our form has curvilinear rank equal to 3, then Proposition 2 fails in a unique case.

Remark 1. Let $Z \subset \mathbb{P}^2$ be a zero-dimensional scheme such that $\deg(Z) = 3$. Since $h^1(\mathcal{I}_Z(2)) = 0$ ([7], Lemma 34), we have $h^0(\mathcal{I}_Z(2)) = 3$. A dimensional count gives that Z is not contained in a smooth conic if and only if there is $P \in \mathbb{P}^2$ with $I_Z = I_P^2$ (in this case $|\mathcal{I}_Z(2)|$ is formed by the unions $\mathcal{R} \cup \mathcal{L}$ with \mathcal{R} and \mathcal{L} lines through P).

We conclude our paper with the Proof of Proposition 1.

Proof of Proposition 1. Let us recall that the cactus rank of a point $P \in \langle v_d(\mathbb{P}^n) \rangle$ is the minimum length of a 0-dimensional scheme $Z \subset \mathbb{P}^n$ such that $P \in \langle v_d(Z) \rangle$.

Take $Z \subset \mathbb{P}^2$ evincing the cactus rank. If Z is contained in a line \mathcal{L} , then $P \in \langle v_d(\mathcal{L}) \rangle$ and hence $\mathrm{r}(P) \leq d$ by a theorem of Sylvester that we have already recalled in item (b) of the proof of our Theorem 1 (see [7, 12] for modern and precise proof of Sylvester's theorem) or by [16, Proposition 5.1]. Now assume that Z is not contained in a line. Let $\mathcal{C} \subset \mathbb{P}^2$ be an integral curve of degree $\mathrm{cr}(P)-1$ containing Z. We have $P \in \langle v_d(\mathcal{C}) \rangle$ and $\dim(\langle v_d(\mathcal{C})) \rangle = \binom{d+2}{2} - \binom{d+1-Cr(P)}{2} - 1$. Apply [16, Proposition 5.1].

REFERENCES

- [1] J. Alexander, A. Hirschowitz, *Polynomial interpolation in several variables*, J. Algebraic Geom. 4 (1995), 201–222.
- [2] E. Ballico, A. Bernardi, *Decomposition of homogeneous polynomials with low rank*, Math. Z. 271 (2012), 1141–1149.
- [3] E. Ballico, A. Bernardi, Stratification of the fourth secant variety of Veronese variety via the symmetric rank, Adv. Pure Appl. Math. 4 (2013), 215–250.
- [4] E. Ballico, A. Bernardi, A Partial stratification of secant varieties of Veronese varieties via curvilinear subschemes, Sarajevo J. Math. 8 (2012), 33–52.
- [5] E. Ballico, J. Migliore, *Smooth curves whose hyperplane section is a given set of points*, Comm. Algebra 18 (1990), 3015–3040.
- [6] A. Bernardi, J. Brachat, B. Mourrain, *A comparison of different notions of ranks of symmetric tensors*, Linear Algebra Appl. 460 (2014), 205–230.
- [7] A. Bernardi, A. Gimigliano, M. Idà, *Computing symmetric rank for symmetric tensors*, J. Symbolic Comput. 46 (2011), 34–53.
- [8] A. Bernardi, K. Ranestad, *On the cactus rank of cubic forms*, J. Symbolic Comput. 50 (2013), 291–297.
- [9] G. Blekherman, Z. Teitler, *On maximum, typical and generic ranks*, arXiv:1402.237v1; Math. Ann., http://dx.doi.org/10.1007/s00208-014-1150-3.

- [10] W. Buczyńska, J. Buczyński, Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes, J. Algebraic Geom. 23 (2014), 63-90.
- [11] J. Buczyński, J. M. Landsberg, Ranks of tensors and a generalization of secant varieties, Linear Algebra Appl. 438 (2013), no. 2, 668–689.
- [12] G. Comas, M. Seiguer, On the rank of a binary form, Found. Comput. Math. 11 (2011), 65-78.
- [13] D. Eisenbud, J. Harris, Finite projective schemes in linearly general position, J. Algebraic Geom. 1 (1992), 15-30.
- [14] A. Iarrobino, V. Kanev, Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999, Appendix C by Iarrobino and Steven L. Kleiman.
- [15] J.-P. Jouanolou, Théoremes de Bertini et Applications, Progress in Math. 42, Birkhäuser, Basel, 1983.
- [16] J. M. Landsberg, Z. Teitler, On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10 (2010), 339–366.
- [17] K. Ranestad, F.-O. Schreyer, On the rank of a symmetric form, J. Algebra 346 (2011), 340-342.

EDOARDO BALLICO

Dept. of Mathematics University of Trento e-mail: edoardo.ballico@unitn.it

ALESSANDRA BERNARDI Dept. of Mathematics University of Trento e-mail: alessandra.bernardi@unitn.it