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CURVILINEAR SCHEMES AND MAXIMUM RANK OF FORMS

EDOARDO BALLICO - ALESSANDRA BERNARDI

We define the curvilinear rank of a degree d form P in n+1 variables
as the minimum length of a curvilinear scheme, contained in the d-th
Veronese embedding of Pn, whose span contains the projective class of
P. Then, we give a bound for rank of any homogenous polynomial, in
dependance on its curvilinear rank.

1. Introduction

The rank r(P) of a homogeneous polynomial P ∈ C[x0, . . . ,xn] of degree d, is
the minimum r ∈N such that P can be written as sum of r pure powers of linear
forms L1, . . . ,Lr ∈ C[x0, . . . ,xn]:

P = Ld
1 + · · ·+Ld

r . (1)

A very interesting open question is to determine the maximum possible
value that the rank of a form (i.e. a homogeneous polynomial) of given de-
gree in a certain number of variables can have.
At our knowledge, the best general achievement on this problem is due to J.M.
Landsberg and Z. Teitler that in [16, Proposition 5.1] proved that the rank of
a degree d form in n+ 1 variables is smaller than or equal to

(n+d
d

)
− n . Un-

fortunately this bound is sharp only for n = 1 if d ≥ 2; in fact, for example, if
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n = 2 and d = 3,4, then the maximum ranks are 5 and 7 respectively (see [7,
Theorem 40 and 44]). More recently G. Blekherman and Z. Teitler proved in
[9] that the maximum rank is always smaller than or equal to twice the generic
rank that is the rank of a generic polynomial, i.e. the minimum r s.t. the r-th
secant variety to the Veronese variety fills up the ambient space (such a secant
variety is classicaly defined to be the Zariski closure of the set of all r-th secant
spaces to a Veronesean). In the celebrated Alexander and Hischowitz paper [1]
they computed the dimensions of all such secant varieties, so the generic rank is
nowadays considered a classical result. Cleary finding a bound for the rank of
any polynomial given the number of variables and the degree is a very different
and difficult problem.

Few more results were obtained by focusing the attention on limits of forms
of given rank. When a form P is in the Zariski closure of the set of forms of rank
s, it is said that P has border rank r(P) equal to s. For example, the maximum
rank of forms of border ranks 2, 3 and 4 are known (see [7, Theorems 32 and
37] and [3, Theorem 1]). In this context, in [2] we posed the following:

Question 1 ([2]). Is it true that r(P) ≤ d(r(P)− 1) for all degree d forms P?
Moreover, does the equality hold if and only if the projective class of P belongs
to the tangential variety of a Veronese variety?

The Veronese variety Xn,d ⊂ PNn,d , with n≥ 1, d ≥ 2 and Nn,d :=
(n+d

d

)
−1

is the image of the classical d-uple Veronese embedding νd : Pn → PNn,d and
parameterizes projective classes of degree d pure powers of linear forms in n+1
variables. Therefore the rank r(P) of [P] ∈ PNn,d is the minimum r for which
there exists a length r smooth zero-dimensional scheme Z ⊂ Xn,d whose span
contains [P] (with an abuse of notation we are extending the definition of rank
of a form P given in (1) to its projective class [P]). More recently, other notions
of polynomial rank have been introduced and widely discussed ([10], [17], [8],
[6], [4]). They are all related to the minimal length of a certain zero-dimensional
schemes embedded in Xn,d whose span contains the given form. Here we recall
only the notion of smoothable rank smr(P) of a form P with [P] ∈ PNn,d (see
[6, 10]):

smr(P) = min{deg(Z) | Z limit of smooth schemes Zi,deg(Zi) = deg(Z),

Z,Zi ⊂ Xn,d , dimK Z = dimK Zi = 0 and [P] ∈ 〈Z〉} .

With this definition, it seems more reasonable to state Question 1 as follows:

Question 2. Fix [P] ∈ PNn,d . Is it true that r(P)≤ (smr(P)−1)d ?

In this paper we want to deal with a more restrictive but easier to handle
notion of rank, namely the “ curvilinear rank ”. We say that a scheme Z ⊂ PN
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is curvilinear if it is a finite union of schemes of the formOCi,Pi/m
ei
Pi

for smooth
points Pi on reduced curves Ci ⊂ PN , or equivalently that the tangent space at
each connected component of Z supported at the Pi’s has Zariski dimension≤ 1.
We define the curvilinear rank Cr(P) of a degree d form P in n+1 variables as:

Cr(P) := min{deg(Z) | Z ⊂ Xn,d , Z curvilinear, [P] ∈ 〈Z〉} .

The main result of this paper is the following:

Theorem 1. For any degree d form P we have that

r(P)≤ (Cr(P)−1)d +2−Cr(P).

Theorem 1 is sharp if Cr(P) = 2,3 ([7, Theorem 32 and 37]).
Clearly if a scheme is curvilinear is also smoothable, so the next question

will be to understand if Theorem 1 holds even though we substitute the curvi-
linear rank with the smoothable rank:

Question 3. Fix [P] ∈ PNn,d . Is it true that r(P)≤ (smr(P)−1)d+2− smr(P) ?

This paper is organized as follows: Section 2 is entirely devoted to the proof
of Theorem 1 with a lemma; in Section 3 we study the case of ternary forms and
we prove that, in such a case, Question 2 has an affirmative answer.

We will always work with an algebraically closed field K of characteristic
0.

2. Proof of Theorem 1

Let us begin this section with a Lemma that will allow us to give a lean proof of
the main theorem.

We say that an irreducible curve T is rational if its normalization is isomor-
phic to P1.

Lemma 2.1. Let Z ⊂ Pr, r ≥ 2, be a zero-dimensional curvilinear scheme of
degree k. Then there is an irreducible and rational curve T ⊂ Pr such that
deg(T )≤ k−1 and Z ⊂ T ⊆ 〈Z〉.

Proof. If the scheme Z is in linearly general position, namely 〈Z〉 ' Pk−1, then
there always exists a rational normal curve of degree k− 1 passing through it
(this is a classical fact, see for instance [13, Theorem 1]). If Z is not in linearly
general position, consider P(H0(Z,OZ(1)))' Pk−1. In such a Pk−1 there exists
a curvilinear scheme W of degree k in linearly general position such that the
projection `V : Pk−1 \V → 〈Z〉 from a (k− dim(〈Z〉)− 2)-dimensional vector
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space V induces an isomorphism between W and Z. Consider now the degree
k− 1 rational normal curve C ⊂ Pk−1 passing through W , its projection `V (C)
contains Z and it is irreducible and rational since C is irreducible and rational
and, by construction, deg(`V (C))≤ deg(C) = k−1.

We do not claim that the curve T is smooth, because we only need that its
normalization is P1.

Let X ⊂ Pr be an integral non-degenerate variety. For any P ∈ 〈X〉 the X-
rank rX(P) is the minimal cardinality of a subset S⊂ X such that P ∈ 〈S〉.

We are now ready to prove the main theorem of this paper.

Proof of Theorem 1: Let Xn,d be the Veronese image of Pn into P(
n+d

d )−1 via
O(d), let Z ⊂ Xn,d be a minimal degree curvilinear scheme such that P ∈ 〈Z〉,
and let U ⊂ Pn be the curvilinear scheme such that νd(U) = Z. The minimality
of Z gives P /∈ 〈Z′〉 for any Z′ ( Z. Say that Cr(P) = deg(Z) = deg(U) := k≥ 2.
If Z is reduced, then r(P) = k and the statement of the theorem in this case is
trivial. Hence we may assume that Z is not reduced. By Lemma 2.1, there ex-
ists a rational curve T ⊂ Pn such that U ⊂ T and c := deg(T ) ≤ k− 1. Set
Y := νd(T ):

Pn νd
↪→ P(

n+d
d )−1

U ⊂ T 7→ Z ⊂ Y
.

The curve Y ⊂ PNn,d has degree cd and Z ⊂Y . Hence P ∈ 〈Y〉. Since Y ⊂ Xn,d ,
we have r(P) ≤ rY(P). Hence it is sufficient to prove that rY(P) ≤ d(k− 1)+
2− k. Since the function t 7→ dt is increasing and c ≤ k− 1, it is sufficient to
prove that rY(P)≤ dc+2− k. Since T is a degree c rational curve, there are a
rational normal curve D ⊂ Pc such that T is obtained from D using the linear
projection from a linear subspace E ⊂ Pc with dim(E) = c−dim(〈E〉)−1 and
E ∩D = /0. We use the embedding νd also for any projective space. We need to
use it for Ps with s := max{n,c}. Now let C := νd(D).

Pc νd
↪→ P(

c+d
d )−1

D 7→ C

↓ ↓ `M

Pn νd
↪→ P(

n+d
d )−1

T 7→ Y

.

The curve C is a degree cd rational normal curve in its linear span 〈C〉 ∼= Pdc.
Since Y is embedded in PNn,d by the restriction of the degree d forms, Y is
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a linear projection of C from a linear subspace M ⊂ Pdc such that C ∩M = /0
and dim(M) = cd−dim(〈Y〉)−1 (we have M∩C = /0, because deg(Y) = cd).
Call `M : Pdc \M → 〈Y〉 the linear projection from M. Since C ∩M = /0, the
morphism `M is surjective. Since M ∩ C = /0, the map `M|C is a degree one
morphism ` : C → Y . Set W := `−1(Z) (scheme-theoretic counterimage). Since
` is proper and surjective, `(W ) = Z and hence deg(W ) = k.

Pc νd
↪→ P(

c+d
d )−1

D 7→ W ⊂ C

↓ ↓ `M

Pn νd
↪→ P(

n+d
d )−1

U ⊂ T 7→ Z ⊂ Y

.

Set `′ := `M|(〈W 〉 \M ∩ 〈W 〉) and notice that even though by construction
we clearly have that W ∩M = /0, we cannot assume that also M∩〈W 〉= /0. Since
`(W ) = Z and `M is surjective, `′ is surjective. Fix O ∈ 〈W 〉\M∩〈W 〉 such that
`′(O) = P. Since P /∈ 〈Z′〉 for each Z′ ⊆ Z and W = `−1(Z), then O /∈ 〈W ′〉 for
any W ′ (W .

(a) First assume deg(W ) ≤ b(dc+ 2)/2c. This implies that O has border rank
deg(W ) and that either rC(O) = deg(W ) or rC(O) = dc+2−deg(W ) ([12],
[16, Theorem 4.1], [7, Theorem 23]). Take S ⊂ C evincing rC(O). Since
P = `M(O), we have P ∈ 〈`(S)〉. Since ](`(S))≤ ](S)≤ cd +2− k, we get
rY(P)≤ cd +2− k.

(b) Now assume deg(W ) > b(dc+ 2)/2c. A classical result attributed to JJ.
Sylvester gives the relation between the length of two 0-dimensional sub-
schemes contained in the rational normal curve and such that their spans
contain the same point (see e.g. [7, 12]). If P ∈ 〈A〉∩ 〈B〉 with A,B two 0-
dimensional schemes on the rational normal curve of degree d then the sum
of the degrees deg(A)+ deg(B) = d + 2. Since P /∈ 〈W ′〉 for any W ′ ( W
and any zero-dimensional subscheme of C with degree at most dc+2 is lin-
early independent, Sylvester’s theorem gives rC(O) ≤ deg(W ). As in step
(a) we get rY(P)≤ k < d(k−1)+2− k.

3. Superficial case

In this section we show that Question 2 has an affirmative answer in the case
n = 2 of ternary forms and that the bound in Question 2 is seldom sharp in this
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case (for large cr(P) the upper bound in Question 2 is worst than the true one by
[9]).

More precisely, we prove the following result.

Proposition 1. Let P be a ternary form of degree d with 2 ≤ cr(P) ≤ d. If
cr(P)≤ d, then r(P)≤

(d+2
2

)
−
(d−cr(P)+1

2

)
−1.

Before giving the proof of Proposition 1, we need the following result.

Proposition 2. Let Z ⊂ P2 be a degree k ≥ 4 zero-dimensional scheme.
There is an integral curve C ⊂ P2 such that deg(C) = k−1 and Z ⊂ C if and

only if Z is not contained in a line.

Proof. First assume that Z is contained in a line D. Bézout theorem gives that
D is the only integral curve of degree < k containing Z.

Now assume that Z is not contained in a line.
Claim 1. The linear system |IZ(k−1)| has no base points outside Zred.
Proof of Claim 1. Fix P ∈ P2 \ Zred. Since deg(Z ∪ {P}) = k + 1, we

have h1(IZ∪{P}(k−1)) > 0 if and only if there is a line D containing Z ∪{P},
but, since in our case Z is not contained in a line, we get h1(IZ∪{P}(k− 1)) =
0. Hence h0(IZ∪{P}(k− 1)) = h0(IZ(k− 1))− 1, i.e. P is not a base point of
|IZ(k−1)|.

By Claim 1, the linear system |IZ(k− 1)| induces a morphism ψ : P2 \
Zred→ Px.

Claim 2. We have dim(Im(ψ)) = 2.
Proof of Claim 2. It is sufficient to prove that the differential dψ(Q) of

ψ has rank 2 for a general Q ∈ P2. Assume that dψ(Q) has rank ≤ 1, i.e.
assume the existence of a tangent vector v at Q in the kernel of the linear map
dψ(Q). Since h1(IZ∪{P}(k− 1)) = 0 (see proof of Claim 1), this is equivalent
to h1(IZ∪v(k−1))> 0. Since deg(Z∪v) = k+2≤ 2(k−1)+1, there is a line
D ⊂ P2 such that deg(D∩ (Z ∪ v)) ≥ k+ 1 ([7, Lemma 34]). Hence deg(Z ∩
D) ≥ k− 1. Since k ≥ 4 there are at most finitely many lines D1, . . . ,Ds such
that deg(Di∩Z)≥ k−1 for all i. If Q /∈D1∪·· ·∪Ds, then deg(D∩(Z∪v))≤ k
for every line D.

By Claim 2 and Bertini’s second theorem ([15, Part 4 of Theorem 6.3]) a
general C ∈ |IZ(k−1)| is irreducible.

Any degree 2 zero-dimensional scheme Z ⊂ Pn, n ≥ 2 is contained in a
unique line and hence it is contained in a unique irreducible curve of degree
2−1. Now we check that in case our form has curvilinear rank equal to 3, then
Proposition 2 fails in a unique case.
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Remark 1. Let Z ⊂ P2 be a zero-dimensional scheme such that deg(Z) = 3.
Since h1(IZ(2)) = 0 ([7], Lemma 34), we have h0(IZ(2)) = 3. A dimensional
count gives that Z is not contained in a smooth conic if and only if there is
P ∈ P2 with IZ = I2

P (in this case |IZ(2)| is formed by the unions R∪L with R
and L lines through P).

We conclude our paper with the Proof of Proposition 1.
Proof of Proposition 1. Let us recall that the cactus rank of a point

P ∈ 〈νd(Pn)〉 is the minimum length of a 0-dimensional scheme Z ⊂ Pn such
that P ∈ 〈νd(Z)〉.
Take Z ⊂ P2 evincing the cactus rank. If Z is contained in a line L, then P ∈
〈νd(L)〉 and hence r(P) ≤ d by a theorem of Sylvester that we have already
recalled in item (b) of the proof of our Theorem 1 (see [7, 12] for modern and
precise proof of Sylvester’s theorem) or by [16, Proposition 5.1]. Now assume
that Z is not contained in a line. Let C ⊂ P2 be an integral curve of degree
cr(P)− 1 containing Z. We have P ∈ 〈νd(C)〉 and dim(〈νd(C))〉 =

(d+2
2

)
−(d+1−Cr(P)

2

)
−1. Apply [16, Proposition 5.1].
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