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EXISTENCE OF PERIODIC SOLUTIONS FOR A
SECOND-ORDER NONLINEAR NEUTRAL DIFFERENTIAL

EQUATION BY THE KRASNOSELSKII’S FIXED POINT
TECHNIQUE

RABAH KHEMIS - ABDELOUAHEB ARDJOUNI - AHCENE DJOUDI

The objective of this work is the application of Krasnoselskii’s fixed
point technique to prove the existence of periodic solutions of the second-
order nonlinear neutral differential equation

d2

dt2 x(t)+ p(t)
d
dt

x(t)+q(t)x(t)

=
d2

dt2 g(t,x(t− τ(t)))+ f (t,x(t),x(t− τ(t))).

The idea of this technique is based on the inverting of the considered equa-
tion into an integral equation whose solution is recourse to Krasnoselskii’s
fixed point theorem. In addition, by application of the Banach principle
on the inverted integral equation and under certain specified constraints
we proved the uniqueness of the periodic solution.

1. Introduction

Delay differential equations are often more realistic in describing natural phe-
nomena compared to those without delay (EDO). They model many natural
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phenomena and appear in many fields such as physics, chemistry, biology, dy-
namics of populations, medicine, ... etc.

For these reasons, this type of equations was given a great importance in
the work of many researchers. There has been recently many activities con-
cerning the existence, uniqueness, stability and positivity of solutions for delay
differential equations, see [1]–[20], [22] and references therein.

But it is often difficult to prove the existence of such solutions because there
is no specific way to solve this kind of problems. Where some researchers used
the theory of differential equations while others used the fixed point theory, ...
etc.

We know that a slight change perturbation in the delay term may lead to
completely change the modeled phenomena. So we can represent several phe-
nomena using a single equation model with the proviso that we make some
changes in the delay term. In this context and using Krasnoselskii’s fixed point
theorem we find several works concerning the existence and the uniqueness of
the periodic solutions of delay second-order differential equations as it is shown
in the work of Wang, Lian and Ge [22] on the equation

d2

dt2 x(t)+ p(t)
d
dt

x(t)+q(t)x(t)

= r (t)x′(t− τ(t))+ f (t,x(t),x(t− τ(t))),

and the work of Ardjouni and Djoudi [3] on the equation

d2

dt2 x(t)+ p(t)
d
dt

x(t)+q(t)x(t)

=
d
dt

g(t,x(t− τ(t)))+ f (t,x(t),x(t− τ(t))).

In this work, we concentrate on the existence and uniqueness of periodic solu-
tions for the second order nonlinear neutral differential equation

d2

dt2 x(t)+ p(t)
d
dt

x(t)+q(t)x(t)

=
d2

dt2 g(t,x(t− τ(t)))+ f (t,x(t),x(t− τ(t))), (1)

where p and q are positive continuous real-valued functions. The functions
g : R×R−→ R and f : R×R×R−→ R are continuous with respect to its ar-
guments. To attain our desired end we have to transform (1) into an integral
equation and then use Krasnoselskii’s fixed point theorem to show the existence
of periodic solutions. The obtained integral equation is the sum of two map-
pings, one is a contraction and the other is compact. Also, the transformation
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of equation (1) enables us to show the uniqueness of the periodic solution by
invoking the contraction mapping principle.

We note that the study of this one is more complicated compared to the equa-
tions considered in [3] and [22] since the delay here, further it’s nonlinear and
variable it also contains a differentiability of second order. As a consequence,
our analysis is different from that in [3].

The organization of this article is as follows. In the first, we introduce some
notations and lemmas, and state some preliminary results needed later. After
we give the Green’s function of our equation which plays an important role in
this paper. Also, we present the inversion of (1) and state Krasnoselskii’s fixed
point theorem. For details on Krasnoselskii theorem we refer the reader to [21].
Finally, we present our main results on existence and uniqueness.

2. Preliminaries

For T > 0, let PT be the set of all continuous scalar functions x, periodic in t of
period T . Then (PT ,‖.‖) is a Banach space with the supremum norm

‖x‖= sup
t∈R
|x(t)|= sup

t∈[0,T ]
|x(t)| .

Since we are searching for the existence of periodic solutions for equation (1),
it is natural to assume that

p(t +T ) = p(t) , q(t +T ) = q(t) , τ (t +T ) = τ (t) , (2)

with τ being scalar function, continuous, and τ (t)≥ τ∗ > 0. Also, we assume∫ T

0
p(s)ds > 0,

∫ T

0
q(s)ds > 0. (3)

Functions g(t,x) and f (t,x,y) are periodic in t of period T . They are also
supposed to be globally Lipschitz continuous in x and in x and y, respectively.
That is

g(t +T,x) = g(t,x) , f (t +T,x,y) = f (t,x,y) , (4)

and there are positive constants k1, k2, k3 such that

|g(t,x)−g(t,y)| ≤ k1 ‖x− y‖ , (5)

and
| f (t,x,y)− f (t,z,w)| ≤ k2 ‖x− z‖+ k3 ‖y−w‖ . (6)
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Lemma 2.1 ([16]). Suppose that (2) and (3) hold and

R1

[
exp
(∫ T

0 p(u)du
)
−1
]

Q1T
≥ 1, (7)

where

R1 = max
t∈[0,T ]

∣∣∣∣∣∣
∫ t+T

t

exp(
∫ s

t p(u)du)

exp
(∫ T

0 p(u)du
)
−1

q(s)ds

∣∣∣∣∣∣ ,
Q1 =

(
1+ exp

(∫ T

0
p(u)du

))2

R2
1.

Then there are continuous T -periodic functions a and b such that b(t) > 0,∫ T
0 a(u)du > 0 and

a(t)+b(t) = p(t) ,
d
dt

b(t)+a(t)b(t) = q(t) , for t ∈ R.

Lemma 2.2 ([22]). Suppose the conditions of Lemma 2.1 hold and φ ∈PT . Then
the equation

d2

dt2 x(t)+ p(t)
d
dt

x(t)+q(t)x(t) = φ (t) ,

has a T -periodic solution. Moreover, the periodic solution can be expressed by

x(t) =
∫ t+T

t
G(t,s)φ (s)ds,

where

G(t,s) =
∫ s

t exp [
∫ u

t b(v)dv+
∫ s

u a(v)dv]du[
exp
(∫ T

0 a(u)du
)
−1
][

exp
(∫ T

0 b(u)du
)
−1
]

+

∫ t+T
s exp

[∫ u
t b(v)dv+

∫ s+T
u a(v)dv

]
du[

exp
(∫ T

0 a(u)du
)
−1
][

exp
(∫ T

0 b(u)du
)
−1
] .
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Corollary 2.3 ([22]). Green’s function G satisfies the following properties

G(t, t +T ) = G(t, t) , G(t +T,s+T ) = G(t,s) ,

∂

∂ s
G(t,s) = a(s)G(t,s)−

exp(
∫ s

t b(v)dv)

exp
(∫ T

0 b(v)dv
)
−1

,

∂

∂ t
G(t,s) =−b(t)G(t,s)+

exp(
∫ s

t a(v)dv)

exp
(∫ T

0 a(v)dv
)
−1

,

∂ 2

∂ s2 G(t,s) =
(
a′(s)+a2(s)

)
G(t,s)− (a(s)+b(s))

exp(
∫ s

t b(v)dv)

exp
(∫ T

0 b(v)dv
)
−1

.

The following lemma is essential to our results.

Lemma 2.4. Suppose (2)–(4) and (7) hold. If x ∈ PT , then x is a solution of
equation (1) if and only if

x(t) =
∫ t+T

t

{(
a′(s)+a2(s)

)
g(s,x(s− τ(s)))

+ f (s,x(s),x(s− τ(s)))}G(t,s)ds

+g(t,x(t− τ(t)))−
∫ t+T

t
p(s)E (t,s)g(s,x(s− τ(s)))ds (8)

where

E (t,s) =
exp(

∫ s
t b(v)dv)

exp
(∫ T

0 b(v)dv
)
−1

. (9)

Proof. Let x ∈ PT be a solution of (1). From Lemma 2.2, we have

x(t) =
∫ t+T

t
G(t,s)

[
∂ 2

∂ s2 g(s,x(s− τ (s)))+ f (s,x(s) ,x(s− τ (s)))
]

ds. (10)

Using the twice integration by parts, we have∫ t+T

t
G(t,s)

∂ 2

∂ s2 g(s,x(s− τ (s)))ds

=−
∫ t+T

t

(
∂

∂ s
G(t,s)

)(
∂

∂ s
g(s,x(s− τ (s)))

)
ds

−
[(

∂

∂ s
G(t,s)

)
g(s,x(s− τ (s)))

]t+T

t

+
∫ t+T

t

(
∂ 2

∂ s2 G(t,s)
)

g(s,x(s− τ (s)))ds.
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Since

−
[(

∂

∂ s
G(t,s)

)
g(s,x(s− τ(s)))

]t+T

t

=−

a(s)G(t,s)−
exp(

∫ s
t b(v)dv)

exp
(∫ T

0 b(v)dv
)
−1

g(s,x(s− τ(s)))

t+T

t

=−

a(t +T )G(t, t +T )−
exp
(∫ t+T

t b(v)dv
)

exp
(∫ T

0 b(v)dv
)
−1


×g(t +T,x(t +T − τ(t +T )))

+

a(t)G(t, t)−
exp
(∫ t

t b(v)dv
)

exp
(∫ T

0 b(v)dv
)
−1

g(t,x(t− τ(t)))

=−

a(t)G(t, t)−
exp
(∫ T

0 b(v)dv
)

exp
(∫ T

0 b(v)dv
)
−1

g(t,x(t− τ(t)))

+

a(t)G(t, t)− 1

exp
(∫ T

0 b(v)dv
)
−1

g(t,x(t− τ(t)))

= g(t,x(t− τ(t))),

and ∫ t+T

t

(
∂ 2

∂ s2 G(t,s)
)

g(s,x(s− τ(s)))ds

=
∫ t+T

t

{(
a′(s)+a2(s)

)
g(s,x(s− τ(s)))G(t,s)

−p(s)E (t,s)g(s,x(s− τ(s)))}ds,

we obtain ∫ t+T

t
G(t,s)

∂ 2

∂ s2 g(s,x(s− τ(s)))ds

= g(t,x(t− τ(t)))

+
∫ t+T

t

{(
a′(s)+a2(s)

)
g(s,x(s− τ(s)))G(t,s)

−p(s)E (t,s)g(s,x(s− τ(s)))}ds, (11)

where E is given by (9). Then substituting (11) in (10) completes the proof.
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Lemma 2.5 ([22]). Let A =
∫ T

0 p(u)du, B = T 2 exp
(

1
T
∫ T

0 ln(q(u))du
)

. If

A2 ≥ 4B, (12)

then we have

min
{∫ T

0
a(u)du,

∫ T

0
b(u)du

}
≥ 1

2

(
A−

√
A2−4B

)
:= l,

max
{∫ T

0
a(u)du,

∫ T

0
b(u)du

}
≤ 1

2

(
A+

√
A2−4B

)
:= m.

Corollary 2.6 ([22]). Functions G and E satisfy

T

(em−1)2 ≤ G(t,s)≤
T exp

(∫ T
0 p(u)du

)
(el−1)2 , E (t,s)≤ em

el−1
.

Lastly in this section, we state Krasnoselskii’s fixed point theorem which
enables us to prove the existence of periodic solutions to equation (1). For its
proof we refer the reader to [21].

Theorem 2.7 (Krasnoselskii). Let M be a closed convex nonempty subset of a
Banach space (B,‖.‖). Suppose that A and B map M into B such that

(i) x,y ∈M, implies Ax+By ∈M,

(ii) A is compact and continuous,
(iii) B is a contraction mapping.

Then there exists z ∈M with z =Az+Bz.

3. Main results

We present our existence results in this section. To this end, we first define the
operator H : PT → PT by

(Hϕ)(t) =
∫ t+T

t
G(t,s)

{(
a′ (s)+a2 (s)

)
g(s,ϕ (s− τ (s)))

+ f (s,ϕ (s) ,ϕ (s− τ (s)))}ds

+g(t,ϕ (t− τ (t)))−
∫ t+T

t
p(s)E (t,s)g(s,ϕ (s− τ (s)))ds. (13)

From Lemma 2.4, we see that fixed points of H are solutions of (1) and vice
versa. In order to employ Theorem 2.7 we need to express the operator H as
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the sum of two operators, one of which is compact and the other of which is a
contraction. Let (Hϕ)(t) = (Aϕ)(t)+(Bϕ)(t) where

(Aϕ)(t) =
∫ t+T

t
G(t,s)

{(
a′ (s)+a2 (s)

)
g(s,ϕ (s− τ (s)))

+ f (s,ϕ (s) ,ϕ (s− τ (s)))}ds, (14)

and

(Bϕ)(t) = g(t,ϕ (t− τ (t)))−
∫ t+T

t
p(s)E (t,s)g(s,ϕ (s− τ (s)))ds. (15)

To simplify notations, we introduce the following constants

α =
T exp

(∫ T
0 p(u)du

)
(el−1)2 , β =

em

el−1
, γ = max

t∈[0,T ]
|a(t)| ,

γ
′ = max

t∈[0,T ]

∣∣a′ (t)∣∣ , λ = max
t∈[0,T ]

{b(t)} , θ = max
t∈[0,T ]

{p(t)} . (16)

Lemma 3.1. Suppose that conditions (2)–(7) and (12) hold. Then A : PT → PT

is compact.

Proof. Let A be defined by (14). Obviously, Aϕ is continuous and it is easy to
show that (Aϕ)(t +T ) = (Aϕ)(t). To see that A is continuous, we let ϕ,ψ ∈
PT . Given ε > 0, take η = ε/N with N = αT

((
γ ′+ γ2

)
k1 + k2 + k3

)
where k1,

k2 and k3 are given by (5) and (6). Now, for ‖ϕ−ψ‖< η , we obtain

‖Aϕ−Aψ‖ ≤ α

∫ t+T

t

[(
γ
′+ γ

2)k1 ‖ϕ−ψ‖+(k2 + k3)‖ϕ−ψ‖
]

ds

≤ N ‖ϕ−ψ‖< ε.

This proves that A is continuous. To show that the image of A is contained in a
compact set, we consider D = {ϕ ∈ PT : ‖ϕ‖ ≤ L}, where L is a fixed positive
constant. Let ϕn ∈ D, where n is a positive integer. Observe that in view of (5)
and (6) we have

|g(t,x)|= |g(t,x)−g(t,0)+g(t,0)|
≤ |g(t,x)−g(t,0)|+ |g(t,0)|
≤ k1 ‖x‖+ρ1,

similarly,

| f (t,x,y)|= | f (t,x,y)− f (t,0,0)+ f (t,0,0)|
≤ | f (t,x,y)− f (t,0,0)|+ | f (t,0,0)|
≤ k2 ‖x‖+ k3 ‖y‖+ρ2,
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where ρ1 = max
t∈[0,T ]

|g(t,0)| and ρ2 = max
t∈[0,T ]

| f (t,0,0)|. Hence, if A is given by

(14) we obtain that
‖Aϕn‖ ≤ D,

for some positive constant D. Next we calculate
d
dt

(Aϕn)(t) and show that it is
uniformly bounded. By making use of (2), (3) and (4) we obtain by taking the
derivative in (14) that

d
dt

(Aϕn)(t)

=
∫ t+T

t

−b(t)G(t,s)+
exp(

∫ s
t a(v)dv)

exp
(∫ T

0 a(v)dv
)
−1


×
{(

a′ (s)+a2 (s)
)

g(s,ϕn (s− τ (s)))+ f (s,ϕn (s) ,ϕn (s− τ (s)))
}

ds.

Consequently, by invoking (5), (6) and (16), we obtain∣∣∣∣ d
dt

(Aϕn)(t)
∣∣∣∣≤ T (λα +β )

[(
γ
′+ γ

2)(k1L+ρ1)+(k2 + k3)L+ρ2
]

≤M,

for some positive constant M. Hence the sequence (Aϕn) is uniformly bounded
and equicontinuous. The Ascoli-Arzela theorem implies that a subsequence
(Aϕnk) of (Aϕn) converges uniformly to a continuous T -periodic function.
Thus A is continuous and A(D) is contained in a compact subset of PT .

Lemma 3.2. If B is given by (15) with

k1 (1+θβT )< 1, (17)

then B : PT → PT is a contraction.

Proof. Let B be defined by (15). It is easy to show that (Bϕ)(t +T ) = (Bϕ)(t).
To see that B is a contraction. Let ϕ,ψ ∈ PT we have

|(Bϕ)(t)− (Bψ)(t)|
≤ |g(t,ϕ (t− τ (t)))−g(t,ψ (t− τ (t)))|

+
∫ t+T

t
p(s)E (t,s) |g(s,ϕ (s− τ (s)))−g(s,ψ (s− τ (s)))|ds

≤ k1 (1+θβT )‖ϕ−ψ‖ .

Then, we get
‖Bϕ−Bψ‖ ≤ k1 (1+θβT )‖ϕ−ψ‖ .

Thus B : PT → PT is a contraction by (17).
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Theorem 3.3. Let α, β , γ and γ ′ be given by (16). Suppose that conditions
(2)–(7), (12) and (17) hold. Suppose there exists a positive constant J satisfying
the inequality{[

α
(
γ
′+ γ

2)+θβ
]

ρ1 +αρ2
}

T +ρ1

+
{[(

α
(
γ
′+ γ

2)+θβ
)

k1 +α (k2 + k3)
]

T + k1
}

J ≤ J.

Then (1) has a solution x ∈ PT such that ‖x‖ ≤ J.

Proof. Define M= {ϕ ∈ PT : ‖ϕ‖ ≤ J}. By Lemma 3.1, the operator A : M→
PT is compact and continuous. Also, from Lemma 3.2, the operator B : M→ PT

is a contraction. Conditions (ii) and (iii) of Theorem 2.7 are satisfied. We need
to show that condition (i) is fulfilled. To this end, let ϕ,ψ ∈M. Then

|(Aϕ)(t)+(Bψ)(t)|

≤ α

∫ t+T

t

[(
γ
′+ γ

2)(k1 ‖ϕ‖+ρ1)+(k2 + k3)‖ϕ‖+ρ2
]

ds

+ k1 ‖ψ‖+ρ1 +θβ

∫ t+T

t
(k1 ‖ψ‖+ρ1)ds

≤
{[

α
(
γ
′+ γ

2)+θβ
]

ρ1 +αρ2
}

T +ρ1

+
{[(

α
(
γ
′+ γ

2)+θβ
)

k1 +α (k2 + k3)
]

T + k1
}

J ≤ J.

Thus ‖Aϕ +Bψ‖ ≤ J and so Aϕ +Bψ ∈M. All the conditions of Theorem
2.7 are satisfied and consequently the operator H defined in (13) has a fixed
point in M. By Lemma 2.4 this fixed point is a solution of (1) and the proof is
complete.

Theorem 3.4. Let α, β , γ and γ ′ be given by (16). Suppose that conditions
(2)–(7), (12) and (17) hold. If[(

α
(
γ
′+ γ

2)+θβ
)

k1 +α (k2 + k3)
]

T + k1 < 1,

then (1) has a unique T -periodic solution.

Proof. Let the mapping H be given by (13). For ϕ,ψ ∈ PT , we have

|(Hϕ)(t)− (Hψ)(t)|

≤ α

∫ t+T

t

[(
γ
′+ γ

2)k1 ‖ϕ−ψ‖+(k2 + k3)‖ϕ−ψ‖
]

ds

+ k1 ‖ϕ−ψ‖+θβ

∫ t+T

t
k1 ‖ϕ−ψ‖ds.
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Hence,

‖Hϕ−Hψ‖ ≤
{[(

α
(
γ
′+ γ

2)+θβ
)

k1 +α (k2 + k3)
]

T + k1
}
‖ϕ−ψ‖ .

By the contraction mapping principle, H has a fixed point in PT and by Lemma
2.4, this fixed point is a solution of (1). The proof is complete.
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