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MIXED TYPE OF FREDHOLM-VOLTERRA

INTEGRAL EQUATION

M. A. ABDOU - G. M. ABD AL-KADER

In this paper, under certain conditions, the solution of mixed type of
Fredholm-Volterra integral equation is discussed and obtained in the space
L2(−1, 1)×C[0, T ], T < ∞. Here, the singular part of kernel of Fredholm-
Volterra integral term is established in a logarithmic form, while the kernel
of Fredholm-Volterra integral term is a positive continuous function in time
and belongs to the class C[0, T ], T < ∞. The solution, when the mixed
type integral, takes a system form of Fredholm integral equation of the first
or second kind are discussed.

1. Introduction.

Many problem of mathematical physics, engineering and contact problems
in the theory of elasticity lead to the integral equation of the first kind, see
[1], [2]. Mkhitarian and Abdou, using Krein’s method, obtained the spectral
relationships for the FIE with logarithmic kernel and Carleman kernel, see [3],
[4], respectively. The importance of Carleman kernel came from the work of
Arytiunian [5] who has shown that, the contact problem of nonlinear theory
of plasticity, in its first approximation reduce to a FIE of the first kind with
Carleman kernel. Using potential theory method [6] Abdou and Hassan, in [7],
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obtained the spectral relationships for the FIE of the first kind with logarithmic
kernel. Also, in [8] the eigenvalue and eigenfunction are obtained for the FIE of
the first kind with Carleman kernel. Abdou, in [9], [10], using potential theory
method, obtained the spectral relationships for the FIE of the first kind with
generalized potential kernel and Macdonold kernel, respectively.

In this work, and the following work, we will consider the mixed integral
equation

(1.1)
∫ t

0

∫ ∫
�

F(t, τ )k(x , y)φ(y, τ ) dydτ +
∫ t

0
G(t, τ )φ(x , τ ) dτ = f (x , t),

x = x̄(x1, x2, x3), y = ȳ(y1, y2, y3), (x , y)∈ �, t, τ ∈ [0, T ], T < ∞
under the condition

(1.2)
∫

�

φ(x , t) dx = P(t).

Here, the two given functions F(t, τ ) and G(t, τ ) which represent the kernels
of Volterra integral term, are positive and continuous in the class C[0, T ], for all
values of the time t, τ ∈ [0, T ], T < ∞. The function k(x , y), which has a term
behavied badly in the domain �, is called the kernel of Fredholm integral term.
The given function f (x , t) is continuous with its partial dervatives with respect
to position and time and belongs to the space L2(�) × C[0, T ]. The unknown
function φ(x , t) is called the potential function of the mixed integral equations,
and its result will be discussed in the space L2(�) × C[0, T ].

In order to guarantee the existance of unique solutions of (1.1), under the
condition (1.2), we assume the following conditions:

(i) The kernel of position k(x , y)∈C([�]× [�]), and satisfies the following

{ ∫ ∫
�

k2(x , y)dxdy
}1/2 = A, A is a constant,

where x = x̄(x1, x2, x3), y = ȳ(y1, y2, y3).
(ii) For all values of t, τ ∈ [0, T ] the functions F(t, τ ) and G(t, τ ) belong to

C([0, T ] × [0, T ]) and satisfy |F(t, τ )| < B , |G(t, τ )| < D where B and
D are constants.

(iii) The function f (x , t)∈ L2(�)× C[0, T ].
(iv) The unknown function φ(x , t) will satisfy Hölder condition with respect to

time

|φ(x , t1)− φ(x , t2)| ≤ E(x )|t1 − t2|α, (0 < α < 1)
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and Lipschitz condition with respect to position

|φ(x1, t)− φ(x2, t)| ≤ H (t)|x1 − x2|,

where E(x ) and H (t) are continuous functions in x and t respectively.

2. Formulation of the problem.

Consider the integral equation

(2.1)
∫ t

0

∫ 1

−1
F(t, τ )k(

x − y

λ
)φ(y, τ ) dydτ +

+
∫ t

0
G(t, τ )φ(x , τ ) dτ = [γ (t)− f (x )] = f (x , t), λ ∈ (0, ∞)

(2.2) k(v) =
(1
2

)∫ ∞

−∞
tanhu

u
eiuv du, i = √−1

under the condition

(2.3)
∫ 1

−1
φ(x , t) dx = P(t)

As in [3], p. 32, the kernel of (2.2) can be written in the form

(2.4) k(v) = 1/2

∞∫
−∞

tanhu

u
eiuvdu = −ln|tanhπv

4
|, v = x − y

λ
, λ ∈ (0, ∞)

If λ −→ ∞ and (x − y) is very small, so that the condition tanhz � z, then we
have

(2.5) ln| tanhπv

4
| = ln|v| − d, d = ln

4λ

π
,

In this case, the integral equation (2.1) will take the form

(2.6) −
∫ t

0

∫ 1

−1
F(t, τ )(ln|x − y| − d)φ(y, τ ) dydτ +
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+
∫ t

0
G(t, τ )φ(x , τ ) dτ = f (x , t),

The integral equation (2.6) can be investigated from the contact problem of a
rigid surface (G, ν) having an elastic material where G is the displacement
magnitude, ν is Poisson’s cofficient. If the stamp of length 2 unit, and its
surface is describing by the formula g(x ), is impressed into an elastic layer
surface of a strip by a variable force P(t), 0 ≤ t ≤ T < ∞, whose eccentricity
of application e(t), that cases rigid displacement γ (t). If the function F(t, τ )
represents the resistance force ofmaterial in the domain contact through the time
t ∈ [0, T ], while G(t, τ ) is the external force of resistance, which is supplied
through the contact domain.

3. Method of solution.

To obtain the solution of (2.6) under the condition (2.3) we divide the
interval [0, T ], 0 ≤ t ≤ T < ∞ as 0 = t0 ≤ t1 < ... < tN = T , where
t = tl , l = 1, 2, ..., N , to get

(3.1) −
∫ tl

0

∫ 1

−1
F(tl, τ )(ln|x − y| − d)φ(y, τ ) dydτ +

+
∫ tl

0
G(tl, τ )φ(x , τ ) dτ = f (x , tl).

Hence, we have

(3.2) −
l∑

j=0
uj F(tl, tj )

∫ 1

−1
(ln|x − y| − d)φ(y, tj ) dy+

+ O(hP+1
l )+

l∑
j=0

vj G(tl, tj )φ(x , tj )+ O(hP+1
l ) = f (x , tl),

(hP+1
l −→ 0, h P̃+1

l −→ 0, P > 0, P̃ > 0)

where hl̄ , hl̄ = Max0≤ j≤l,0≤ j≤l̄ hj ; hj = tj+1 − tj .

The values of uj ,P ,vj and P̃ are depending on the number of drivatives of
F(t, τ ) and G(t, τ ) with respect to t . For example, if F(t, τ )∈ C4[0, T ], then
we have P = 4, l � 4 in the first term of (3.2), so we get u0 = 1

2h0, u4 = 1
2h4,

ui = hi ,i = 1, 2, 3. While, if G(t, τ ) ∈ C3[0, T ], then we have P̃ = 3, ĺ and



MIXED TYPE OF FREDHOLM-VOLTERRA. . . 45

v0 = 1
2h0, v3 = 1

2h3, v1 = h1, v2 = h2. More information for the characteristic
points and the quadrature cofficients are found in [11], [12].

Using the following notations

(3.3)
F(tl , tj ) = Fl, j , G(tl, tj = Gl, j ,

φ(y, tj ) = φj (y) and f (x , tl) = fl (x ), l = 0, 1, ...N; 0 ≤ j ≤ l,

the formula (3.2) can be adapted in the form

(3.4)
l∑

j=0
vj Gj,lφj (x )−

l∑
j=0

uj Fj,l

∫ 1

−1
(ln|x − y| − d)φj (y) dy = fl (x ).

Also, the boundary condition of (2.3) becomes

(3.5)
∫ 1

−1
φl (x )dx = Pl .

The formula (3.4) represents a linear system of FIE of the second kind or of
the first kind according to the relations between the number of derivatives of
F(t, τ ), G(t, τ ) with respect to t for all values of τ ∈ [0, T ]. So we must study
the following cases:

Case (1): If G(t, τ ) has i derivatives, i < l , we have

(3.6) −
l∑

j=i+1
uj Fj,l

∫ 1

−1
(ln|x − y| − d)φj (y) dy = fl (x )−

i∑
j=0

μjφj (x )

The formula (3.6) represents a linear system of FIE of the first kind, where μi ,
0 ≤ i < l are constants and φj (x ), 0 ≤ j ≤ i can be obtained from the
following integral equation

(3.7)
i∑

j=0
ujGj,lφj (x )−

i∑
j=0

uj Fj,l

∫ 1

−1
(ln|x − y| − d)φj (y) dy = fi (x )

The formula (3.7) represents a linear system of FIE of the second kind.

Case (2): If the number of derivatives of F(t, τ ) and G(t, τ ) is equal, the
integral equation (3.4) for all values of j , 0 ≤ j ≤ l , represents a FIE of
the second kind.
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Case (3): If F(t, τ ) has i derivatives, i < l , we have the following system

(3.8)
i∑

j=0
vj Gj,lφj (x ) == fi+1(x )−

i∑
j=0

μ∗
j φj (x ) fi (x )

where μ∗
j ,0 ≤ j ≤ l , are constants and ψj (x ), 0 ≤ j ≤ l is the solution of the

integral equation

(3.9)
i∑

j=0
vj Gj,lψj (x )−

i∑
j=0

uj Fj,l

∫ 1

−1
(ln|x − y| − d)ψj (y) dy = fi (x )

4. Fredholm integral equation of the second kind.

To obtain the solution of (3.4) for all values of j , when the two functions
F(t, τ ) and G(t, τ ) have the same number of derivatives, we write it in the
following

(4.1) μlφl (x )− μ́l

∫ 1

−1
(ln|x − y| − d)φl (y) dy = fl (x )−

l−1∑
j=0

vj Gl, jφj (x )

+
l−1∑
j=0

uj Fj,l

∫ 1

−1
(ln|x − y| − d)φj (y) dy

(μl = hl
2
Gl,l , μ́l = hl

2
Fl,l , Gl,l 	= 0, Fl,l 	= 0)

where h̄l , h̄ĺ = Max0≤ j≤l,0≤ j≤ĺ hj ; hj = tj+1 − tj
The solution of (4.1) can be obtained by the recurrence relation. For l = 0,

we have the integral equation

(4.2) μ0φ0(x )− μ́0

∫ 1

−1
(ln|x − y| − d)φ0(y)dy = f0(x )

Differentiating (4.2) with respect to x , we get
(4.3)

μ
dφ0(x )

dx
−

1∫
−1

φ0(y)

x − y
dy = g0(x ), (μ = μ0

μ́0
, g0(x ) = 1

μ́0

d f0(x )

dx
, μ́0 	= 0)
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The formula (4.3) represents a FIE of the second kind with Cauchy kernel.
Using, in (4.3), the substitution y = 2u − 1, x = 2v − 1, we have

(4.4)
d�

dx
− λ

∫ 1

0

�(u)

u − v
du = h(u), (λ = 2

μ
, h(u) = 2

μ
g0(2u − 1))

Under the boundary conditions �(0) = �(1) = 0, Frankel in his work [13],
obtained the solution of (4.4) in the form of Chebyshev polynomials. Equation
(4.4) has appeared in both combined infrared gaseous radiation and molecular
conduction. A numerical method, Toeplitz matrices, is used, in [14], to obtain
the solution of (4.2) and the error estimate is calculated. A series form of
Legendre polynomial is used, in [15] to obtain the solutionof (4.2) and the result
is used to obtain the solution of the F-VIE of the second kind with logarithmic
kernel with respect to Fredholm integral term and continuous function with
respect to Volterra integral term.

To obtain the solution of (4.1), we will use a series in the Chebyshev
polynomials form. For this, set the function R(x ) which charactrizes the
singular behaviour of φl (x ) in the form

R(x ) = (1+ x )−
1
2+α(1− x )

1
2+β

where α, β = −1, 0, 1 such that −1 < −1
2 + α < 1, −1 < 1

2 + β < 1. Let

α = 0, β = −1, then R(x ) = (1 − x 2)−
1
2 , which is called the weight function

of the Chebyshev polynomials Tn(x ), n = 0, 1, 2, .... Introduce new unknown
functions Gl(x ), 0 ≤ l ≤ N , where φl (x ) will behave like

(4.6) φl (x ) = R(x ) Gl (x ), R(x ) = (1− x 2)−
1
2

Now, for the numerical solution of (4.1), we express Gl(x ) as

(4.7) Gl(x ) =
∞∑
nl=0

anl Tnl (x )

Hence, we have

(4.8) φl (x ) =
∞∑
nl=0

anl
Tnl (x )√
(1− x 2)

which can be truncated to

(4.9) φM
l (x ) =

M∑
nl=0

anl
Tnl (x )√
(1− x 2)
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So, (4.1) tends to

(4.10) μl

M∑
nl=0

anl
Tnl (x )√
(1− x 2)

− μ́l

{
πa0i (ln2− d) nl = 0

π
∑M

nl=1 anl
Tnl (x)
nl

nl ≥ 1

=
M∑

nl=0
fnl

Tnl (x )√
(1− x 2)

−
l−1∑
j=0

vj Gl, j

M∑
nl=0

anl
Tnl (x )√
(1− x 2)

+
l−1∑
j=0

uj Fj,l

{
πa0j (ln2− d) nj = 0

π
∑M

nj=1 anj
Tnj (x)

nj
nj ≥ 1

where

(4.11a) fnl = 2

π

∫ 1

−1
fl (x ) Tnl (x )√
(1− x 2)

dx , nl ≥ 1

and

(4.11b) fnl = 1

π

∫ 1

−1
fl (x )√
(1− x 2)

dx

The previous results of (4.10) is obtained after using the following spectral
relation [16]

(4.12)
∫ 1

−1
(ln|x − y| − d)

Tn(y)√
(1− y2)

dy =
{

π (ln2− d) n = 0
π
n Tn(x ) n ≥ 1

The formula (4.10) leads us to discuss the following cases:

Case (i): For nl = 0, l = 1, 2, ..., we have

(4.13)
μl a0l√
(1− x 2)

− μ́lπa0l (ln2− d) = f0l√
(1− x 2)

+ π (ln2− d)
l−1∑
j=0

a0j uj Fj,l −
l−1∑
j=0

vj Gl, j
a0l√
(1− x 2)

, 0 ≤ l ≤ N.

Integrating (4.13) with respect to x , we get

(4.14) a0l =
f0l + 2(ln2− d)

l−1∑
j=0

a0j uj Fj,l −
l−1∑
j=0

vj Gl, j a0j

μl − 2(ln2− d)μ́l
, 0 ≤ l ≤ N.
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Eq. (4.14) represents the zero level of the eigenvalue of the potential function
φl (x ), 0 ≤ l ≤ N , and must satisfy the relations for all values of l

(4.15)
μl

μ́l
	= 2(ln2− d)

a) when G(t, τ ) and F(t, τ ) have the same order of derivatives, the formula
(4.14) becomes

(4.16) a0l = f0l + ∑l−1
j=0 bj Hj,la0j

hlGl,l (1− 2(ln2− d))
, d 	= 1

2
[1− 2ln2]

where bj Hj,l = 2(ln2− d)uj Fj,l − vj Gl, j .
b) If G(t, τ ) = 0 for all values of t, τ ∈ [0, T ], we get

(4.17) a0l = f0l + 2(ln2− d)
∑l−1

j=0 a0j uj Fj,l
−hl (ln2− d)Fl,l

, hl = tl+1 − tl

c) If F(t, τ ) = 1, G(t, τ ) = 0, we have

(4.18) a0l = f0l + 2(ln2− d)
∑l−1

j=0 Hj

−hl (ln2− d)
, d 	= 1

2
[1− 2ln2]

Case (ii): For nl = 0, l = 0, the formula (4.13) becomes

(4.19)
μl a00√
(1− x 2)

− μ́lπa00 (ln2− d) = f0l√
(1− x 2)

Integrating (4.19) with respect to x , finally, we have

(4.20) a00 = f00
μ0 − 2(ln2− d)μ́0

,

Case (iii): For nl ≥ 1, l = 0, 1, ..., N , the formula (4.10) becomes

(4.21) μl

M∑
nl=0

anl
Tnl (x )√
(1− x 2)

− μ́lπ

M∑
nl=1

anl
Tnl (x )

nl

=
M∑

nl=0
fnl

Tnl (x )√
(1− x 2)

−
l−1∑
j=0

M∑
nl=0

vj Gl, j anl
Tnl (x )√
(1− x 2)
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+ π

l−1∑
j=0

M∑
nj=1

uj Fj,lanj
Tnj (x )

nj

Multiplying both sides of (4.21) by the term Tnj (x )dx , and integrating with
respect to x from -1 to 1, then using the following [17]

(4.22) Tm(x ) Tn(x ) = 1

2
[Tm+n(x )+ Tm−n(x )],

∫ 1

−1
Tn(x ) dx =

{
2

1−n2 , n = 0, 2, 4, ...

0 n = 1, 3, 5, ...

we get

(4.23) μl aml − 2μ́l

M∑
nl=0

Anl ,ml

nl
anl = Hml ,

where

(4.24) Hml = fml −
l−1∑
j=0

vj Gl, j aml + 2
l−1∑
j=0

M∑
nj=1

uj Fj,l
Anl ,ml

nl
anj ,

ml , nl = 1, 2, ..., M; 0 ≤ l ≤ N

and

(4.25) Anl ,ml =
{

1
1−(nl+ml)2

+ 1
1−(nl−ml )2

nl + ml even
0 nl + ml odd

Abdou and Bassen, in [18] proved that, for the system (4.23), for l = 0, is
bounded and has a unique solution. By following the same way of Abdou
and Bassen, in [18], we can prove that the system of (4.23), for all values of
0 ≤ l ≤ N , is bounded, when M −→ ∞. To prove that the system (4.26) has a
unique solution for M −→ ∞, we write it in the form

(4.26) aml = Lml + λl

∞∑
nl=1

Rnl ,mlanl

where

Lml = 1

μl
Hml , λl = 2μ́l

μl
, Rnl ,ml = 1

nl
Anl ,ml
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Assume

Śm = λ́l

∞∑
n=1

|Rnl ,ml | = λl

∞∑
nl=1

1

nl
|Anl ,ml |

Applying Caudy- Minkowski inequality, we get

(4.27) Sm ≤ λl [
∞∑
n=1

1

n2
]
1
2

∞∑
nl=1

[A2nl ,ml
]
1
2

Finally, we get

(4.28) μ́l ≤ 0.3gμl,

which represents the condition to have a unique solution, and the values of |aml |
must satisfy the inequality

(4.29) |aml | ≤ μl |Lml |
μl − 2μ́l

As special case, when nl = ml , 0 ≤ l ≤ M , using uniqueness condition
μ́l
μl

< 1
‖k‖ to determine ‖ k ‖, we get

(4.30) | μ́l

μl
| <

nl (4n2l − 1)

4(n2l − 1)

Therefore

(4.31) ‖ k ‖ = max

{
4(2n2l −1)
nl (4n2l −1)

, n ≥ 1, 0 ≤ l ≤ M
1

ln2−d , n = 0

Lemma 4.1. This method is said to be convergent of order r in [-1, 1], if and
only if for N sufficiently large, there exist a constant D > 0 independent of N
such that

(4.32) ‖ 
(x )− 
N (x ) ‖≤ DN−r

Also, the error term EN can be given by the relation

EN = |
 − 
N |
where 
N −→ 
 as N −→ ∞.
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5. Fredholm Integral Equation of the first kind..

According to case (1), in Section 3, when the derivatives of G(t, τ ), will
respect to t , for all τ ∈ [0, T ] is less than the derivatives of G(t, τ ) with respect
to the same argument, we have the integral equation

(5.1)
l∑

j=i+1
uj Fj,l

∫ 1

−1
[ln

1

|x − y| + d]φj (y) dy = Hl(x ) l ≥ i + 1

where

Hl = fl (x )−
i∑

j=0
μi�i (x )

and �i (x ) represent the potential function of the integral equation (3.7).
The integral equation (5.1) represents a FIE of the first kind with logarith-

mic kernel, and its solution will be discussed, using potential theory method,
under the condition

(5.2)
∫ 1

−1
φl (x ) dx = Pl, 0 ≤ l ≤ N

Introduce the logarithmic potential function

(5.3) Ul (x , z) =
l∑

j=i+1
uj Fj,l

∫ 1

−1
[ln

1√
(x − y)2 + z2

+ d]φj (y) dy

Eq. (5.3), under the condition (5.2) reduces to the Dirichlet boundary value
problem

(5.4)

�Ul (x , z) = 0, � = ∂2

∂x 2
+ ∂2

∂z2
, (x , z) 	 ∈ (−1, 1)

Ul (x , z)|z=0 = Hl(x ) x ∈ (−1, 1)
Ul (x , z) � Pl(ln

1

r
+ d), r =

√
x 2 + z2

Pl(ln
1

r
+ d) −→ finite term, as r −→ ∞

The solution of the integral equation (5.1) is equivalent to the solution of the
Dirichlet problem (5.4). After constructing the functions Ul (x , z), the potential
functions φj (x ), i + 1 ≤ j ≤ l , will be determined from the formula

(5.5) φl (x ) = − 1

π
lim
z−→0

sgn z
∂Ul (x , z)

∂z
, x ∈ (−1, 1)
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Assume the density source functions

(5.6) Wl(x , z) = Ul (x , z) − Pl(ln
1

r
+ d)

So, the boundary value problem (5.4) becomes

(5.7)

�Wl (x , z) = 0, (x , z) 	 ∈ (−1, 1)
Wl (x , z)|z=0 = Hl(x )− Pl(ln r − d)

Wl (x , z) −→ 0, as r −→ ∞
Consequently, Eq. (5.5) takes the form

(5.8) φl (x ) = − 1

π
sgnz−→0 {z[∂Wl (x , z)

∂z
− Pl δ(x )]}, x ∈ (−1, 1)

where δ(x ) is the Dirac-delta function.
The boundary value problem (5.7) can be constructed by the method of

conformal mapping, see [9], that transforms a given complicated region into a
simpler one. For this aim, we use the mapping function,

(5.9) v = 1

2
ω(ζ ) = 1

2
(ζ + ζ −1), v = x + iy,

i = √−1, v = ρeiθ , 0 ≤ θ ≤ 2π,

which maps the region in (x , y) plane into the region outside the unit circle γ ,
such that dω(ζ )

dζ does not vanish or becomes infinite outside γ . The mapping
function (5.9) maps the upper and the lower half-plane (x , z) ∈ (−1, 1) into the
lower and the upper of the semi-circle ρ = 1, respectively. Moreover the point
v −→ ∞ will be mapped into the point ζ = 0. Using the mapping (5.9), the
function of Eq. (5.6) takes the following form

(5.10) Nl (ρ, θ ) = Ml (ρ, θ )− Pl (2ρ + d)

where Nl (ρ, θ ) = Wl(x , y) = Wl (
1
2 (ρ + 1

ρ
) cos θ, 1

2 (ρ − 1
ρ
) sin θ ) and

Ml (ρ, θ ) = Ul ( 12 (ρ + 1
ρ
) cos θ, 1

2 (ρ − 1
ρ
) sin θ ).

In view of Eq. (5.10), the boundary value problems of (5.7) will be
transformed to

(5.11)

∂2Nl
∂ρ2

+ 1

ρ

∂Nl
∂ρ

+ 1

ρ2

∂2Nl
∂θ 2

, (ρ ≤ 1, −π ≤ θ ≤ π )

Nl (0, θ ) = 0,

Nl (1, θ )| = H̃l(θ )− Pl (ln2+ d)

H̃l(θ ) = Hl(x ) = Hl(ρ cos θ ), ρ = 1.
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Consequently, after using the chain rule, Eq. (5.8) is transformed to

(5.12) φl (cos θ ) = (π | sin θ |)−1[Pl + ∂Nl
∂ρ
]ρ=1

To solve the Dirichlet problem of (5.11), we use the Fourier series method, see
[7]

Nl (ρ, θ ) =
∞∑
nl=0

anlρ
nl cos nlθ, (0 ≤ l ≤ N )

where
(5.13)

a0l = 1

2π

∫ π

−π

Nl (θ ) dθ, nl = 0 a0l = 1

2π

∫ π

−π

Nl (θ ) cos nlθ dθ, nl ≥ 0.

substitute (5.13) in (5.11) after setting the given function Hl(x ) = νnl Tnl (x ),
where νnl are known constants, Tnl (x ) are the Chebyshev polynomials of the
first type of order n; n = 0, 1, 2, ..., then use the result in (5.12), we get

(5.14) φl (cos θ ) =
{
nlνnl cos nlθ(π sin θ )−1, nl = 1, 2, ...

νnl Pl (π sin θ )−1 nl = 0
(0 ≤ l ≤ N )

and

Pl = [π (ln2+ d)]−1
∫ π

−π

Hl(cos θ ) dθ, nl = 0

. Using (5.14) in (5.1), where, θ = cos−1 x , we have the following spectral
relationships

(5.15)
l∑

j=i+1
uj Fj,l

1∫
−1

1√
1− y2

[ln
1

|x − y| + d]Tnl (y) dy =

=
{

π (ln2+ d), nl = 0
π
nl
Tnl (x )

which represents the spectral relationships for the Fredholm integral equations
of the first kind with logarithmic kernl.

Numerical Results. To consider the behaviour of the solution function φl (x )
which is represented numerically by φM

l (x ) in Eqn (4.9) with Eqns (4.14), (4.21)
and (4.24). The general behaviour can be described in figure 1.

Little difference may be occurred for changing the parameter values.
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FIGURE 1.

Conclusion.

From the above results and discussions, the following may be concluded:
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(1) The contact problem of a rigid surface having an elastic material, when a
stamp of length 2 unit is impressed into an elastic layer surface of a strip by
a variable force P(t), 0 ≤ t ≤ T < ∞, whose eccentricity of application
e(t), represents a Fredholm-Volterra integral equation of mixed type.

(2) The numerical method used gives us a system of Fredholm integral equa-
tion, which it’s solution can be obtained using the recurrence relations.

(3) The kind of the system of Fredholm integral equation depends on the
relation between the number of derivatives of F(t, τ ), which represents
the resistance force of material in the domain contact through the time
t ∈ [0, T ] and G(t, τ ), which represents the external force of resistance
supplied through the material of contact domain.

(4) When the value of G(t, τ ) −→ 0, t ∈ [0, T ], T < ∞, i.e., their is no
external force of resistance, the integral equation of mixed type takes a
form of a system of Fredholm integral equation of the first kind.

(5) The displacement problems of antiplane deformation of an infinite rigid
strip with width 2 unit, putting on an elastic layer of thickness h is
considered as a special case of this work, when

G(t, τ ) = 0, F(t, τ ) = 1, t = 1, F(x , t) = H.

where H represents the displacement magnitude and φ(x , 1) = ψ(x ) is the
unknown displacement stress.

(6) The problems of infinite rigid strip, with width 2 unit immpresed in a
viscous liquid layer of thickness h, when the strip has a velocity resulting
from the impulsive force v − v0e−iωt , i = √−1, where v0 is the constant
velocity, ω is the angular velocity resulting from rotating the strip about
z-axis, are considered as special case of our work, when G(t, τ ) =
0, F(t, τ ) =contant.

In the discussion (5) and (6), we note that, when h −→ ∞, this means the
depth of the liquid or the thickness of the elastic material becomes an infinite

.
(7) The three kinds of the displacement problems, in the theory of elasticity

and mixed contact problem which discussed in [1] are considered special
case of this work.

(8) The potential function method has a large application in mathematical
physics problems, where the integral equation becomes equivalent to a
boundary value problem, which can be soved easily. Also the potential
function method enables us to discuss the spectral relation of the integral
equation.
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(9) The conformal mapping, in the theory of elasticity, or in the applied
sciences transforms a given complicated region into a simpler one.

(10) The mixed integral equation with Carleman kernel can be established from
this work, using the following relation

ln|x − y| = h(x , y)|x − y|−ν, 0 ≤ ν < 1,

where h(x , y) = |x − y|ν ln|x − y| is a smooth function.
(11) The Fredholm integral equation of the first or second kind with logarithmic

and Carleman kernels, are considered, now, as special cases of this work.
(12) Many spectral relations, that has a large applications in mathematical

physics, were established from this work.
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