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ZERO DIVISOR GRAPHS OF SKEW HURWITZ SERIES
RINGS

KAMAL PAYKAN - HOSSEIN DANESHMAND

For a ring endomorphism α , we investigate the interplay between the
ring-theoretical properties of the skew Hurwitz series ring (HR,α) and
the graph-theoretical properties of its zero-divisor graph Γ((HR,α)). Fur-
thermore, we examine the preservation of diameter and girth of the zero-
divisor graph under extension to skew Hurwitz series rings.

1. Introduction

The concept of a zero-divisor graph of a commutative ring was introduced by
Beck in [7]. In his work all elements of the ring were vertices of the graph
(see also [3]). In [4], Anderson and Livingston introduced and studied the zero-
divisor graph whose vertices are the non-zero zero-divisors of a ring. This graph
turns out to best exhibit the properties of the set of zero-divisors of a commuta-
tive ring. In [30], Redmond studied the zero-divisor graph of a non-commutative
ring. Several papers are devoted to studying the relationship between the zero-
divisor graph and algebraic properties of rings (cf.[2], [3], [5], [7], [30], [34]).

The zero-divisors of R, denoted by Z(R), is the set of elements a ∈ R such
that there exists a non-zero element b ∈ R with ab = 0 or ba = 0. Let Z∗(R)
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denote the (nonempty) set of nonzero zero divisors. The directed graph Γ(R) is
a graph with vertices in Z∗(R), where x→ y is an edge between distinct vertices x
and y if and only if xy = 0. Recently Redmond in [30] has extended this concept
to any arbitrary ring. Redmond in [30] defined an undirected zero-divisor graph
of a non-commutative ring R, denoted by Γ(R), with vertices in the set Z(R)∗

and such that two distinct vertices a and b are adjacent if and only if ab = 0 or
ba = 0. Note that for a commutative ring R, the definition of the zero-divisor
graph of R in [4] coincides with the definition of Γ(R).

According to Cohn [10], a ring R is called reversible if ab = 0 implies that
ba = 0 for a,b ∈ R. So, in view of [30, Theorem 2.3], over a reversible ring R,
the simple (undirected) graph Γ(R) is connected with diam(Γ(R)) ≤ 3, where
diam(Γ(R)) is the diameter of Γ(R). In [30] it has been shown that for any ring
R, every two vertices in Γ(R) are connected by a path of length at most 3. Note
that using the proof of this result in the commutative case, one can establish that
for any arbitrary ring R, if there exists a path between two vertices x and y in
the directed graph Γ(R), then the length of the shortest path between x and y is
at most 3. Moreover, in [30] it is shown that for any ring R, if Γ(R) contains
a cycle, then the length of the shortest cycle in Γ(R) is at most 4. There is a
considerable interest in studying if and how certain graph-theoretic properties
of rings are preserved under various ring-theoretic extensions.

The zero-divisor graphs offer a graphical representation of rings so that we
may discover some new algebraic properties of rings that are hidden from the
viewpoint of classical ring theorists. For instance, using the notion of a zero-
divisor graph, it has been proven in [31] that for any finite ring R, the sum
∑

x∈R
|| rR(x) | − | `R(x) || is even, where rR(x) and `R(x) denote the right and left

annihilators of the element x in R, respectively. More recently, Axtell, Coyk-
endall and Stickles, in [6], examined the preservation of diameter and girth of
zero-divisor graphs of commutative rings under extensions to polynomial and
power series rings. Also, Lucas, in [23], continued the study of the diameter of
polynomial and power series of commutative rings. Moreover, Anderson and
Mulay, in [5], studied the girth and diameter of a commutative ring and inves-
tigated the girth and diameter of polynomial and power series of commutative
rings. For a commutative ring R with a monomorphism α and an α-derivation
δ , Afkhami, Khashyarmanesh and Khorsandi, in [1], compare the diameter (and
girth) of the zero-divisor graphs of R and the Ore extension R[x;α,δ ], when
R[x;α,δ ] is assumed to be reversible.

In [25], the authors studied the interaction between the ring-theoretical prop-
erties of a skew generalized power series ring and the graph-theoretical proper-
ties of its zero-divisor graph. Motivated by results in [25], we examine the
preservation and lack thereof of the diameter and girth of the zero-divisor graph
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of a non-commutative ring under extension to skew Hurwitz series ring con-
struction (HR,α), where R is a ring and α is an endomorphism of R (the defi-
nition of the ring (HR,α) will be recalled in Section 2). In Section 3, we prove
that if R is an α-compatible ring which is torsion free as a Z-module, then Γ(R)
is complete if and only if Γ((HR,α)) is complete. Furthermore, we compare the
diameter (and girth) of the zero-divisor graphs Γ(R) and Γ((HR,α)). Finally we
give a complete characterization for the girth of Γ((HR,α)).

For two distinct vertices a and b in the simple (undirected) graph Γ, the dis-
tance between a and b, denoted by d(a,b), is the length of the shortest path con-
necting a and b, if such a path exists; otherwise we put d(a,b) := ∞. The diame-
ter of a graph Γ is diam(Γ) := sup{d(a,b) | a and b are distinct vertices of Γ}.
The diameter is 0 if the graph consists of a single vertex and a connected graph
with more than one vertex has diameter 1 if and only if it is complete; i.e.,
each pair of distinct vertices forms an edge. The girth of a simple (undirected)
connected graph Γ, denoted by gr(Γ), is the length of the shortest cycle in Γ,
provided Γ contains a cycle; otherwise gr(Γ) := ∞. Also, we use A∗ to denote
the nonzero elements of A, and Z, N and Zn for the integers, positive integers
and the integers modulo n, respectively. For a nonempty subset X of a ring R,
rR(X) (resp. `R(X)) is used for the right (resp. left) annihilator of X over R.

2. Preliminaries

Rings of formal power series have been of interest and have had important appli-
cations in many areas, one of which has been differential algebra. In an earlier
paper by Keigher [16], the ring of Hurwitz series, a variant of the ring of formal
power series, was considered, and some of its properties, especially its cate-
gorical properties, were studied. In the papers [17], [18] Keigher demonstrated
that the ring of Hurwitz series has many interesting applications in differential
algebra and in the discussion about weak normalization. Its product, a product
of sequences using binomial coefficients, was studied in papers by Fleiss [11]
and Taft [32]. While there are many studies of these rings over a commutative
ring, very little is known about them over a noncommutative ring. The ring-
theoretical properties of skew Hurwitz series rings have been investigated by
many authors (see [16], [17], [18], [21], [27], [28] and [29]). In the present pa-
per we study Hurwitz series over a noncommutative ring with identity, examine
its structure and properties.

Throughout this paper, R denotes an associative ring with unity and α :
R→ R is an endomorphism such that α(1) = 1. The ring (HR,α) of skew
Hurwitz series over a ring R is defined as follows: the elements of (HR,α) are
functions f : N→ R, where N is the set of integers greater or equal than zero.
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The operation of addition in (HR,α) is componentwise and the operation of
multiplication is defined, for every f ,g ∈ (HR,α), by:

f g(n) =
n

∑
k=0

(
n
k

)
f (k)αk(g(n− k)) for each n ∈ N,

where
(

n
k

)
is the binomial coefficient. In the case where the endomorphism

α is the identity, we write HR instead of (HR,α). If one identifies a skew

formal power series
∞

∑
n=0

anxn ∈ R[[x;α]] with the function f such that f (n) = an,

then multiplication in (HR,α) is similar to the usual product of skew formal
power series, except that binomial coefficients appear in each term in the product
introduced above. To each r ∈ R and n ∈ N, we associate elements hr,h

′
n ∈

(HR,α) defined by

hr(x) =
{

r x = 0
0 x 6= 0,

h
′
n(x) =

{
1 x = n
0 x 6= n.

It is clear that r 7→ hr is a ring embedding of R into (HR,α) and also (HR,α) is
a ring with identity h1. For every nonempty subset X of R, we set:

(HX ,α) = { f ∈ (HR,α) | f (n) ∈ X ∪{0} for every n ∈ N}.

Proposition 2.1. Let R be a ring containing the field of rational numbers Q and
α a left Q-algebra homomorphism of R. Then the rings (HR,α) and R[[x;α]]
are isomorphic.

Proof. We define a map ψ : (HR,α)→ R[[x;α]], given by ψ( f ) =
∞

∑
n=0

f (n)
n! xn. It

is easy to show that ψ is an isomorphism.

Remark 2.2. Note that, since some of the results in this manuscript are already
known for skew power series ring R[[x;α]], throughout the paper we assume that
R is a ring not containing the field of rational numbers.

According to Krempa [15], an endomorphism α of a ring R is said to be
rigid if aα(a) = 0 implies a = 0, for a ∈ R. A ring R is said to be α-rigid if
there exists a rigid endomorphism α of R.

Remark 2.3. Let I be an index set, Di a domain for each i ∈ I, and R = ∏
i∈I

Di.

Also assume that αi is an endomorphism of Di for each i ∈ I. Then we get an
endomorphism α of R defined by the assignments α({ri}i∈I) = {(αi)(ri)}i∈I . If
αi is injective for all i ∈ I, then R is an α-rigid ring.
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In [13], the authors introduced α-compatible rings and studied their proper-
ties. A ring R is said to be α-compatible if for each a,b ∈ R, ab = 0 if and only
if aα(b) = 0. Basic properties of rigid and compatible endomorphisms, proved
by Hashemi and Moussavi in [13, Lemmas 2.1 and 2.2], are summarized in the
following lemma. It is used repeatedly in the sequel.

Lemma 2.4. Let α be an endomorphism of a ring R. Then:

(i) if α is compatible, then α is injective;

(ii) α is compatible if and only if for all a,b ∈ R, α(a)b = 0⇔ ab = 0;

(iii) the following conditions are equivalent:

(1) α is rigid;

(2) α is compatible and R is reduced;

(3) for every a ∈ R, α(a)a = 0 implies that a = 0.

In the proof of Theorems 3.1, 3.7, 3.9 and 3.14, we will need the following
lemma.

Lemma 2.5. Let R be an α-rigid ring such that it is torsion free as a Z-module.
Suppose that f ,g ∈ (HR,α) are such that f g = 0. Then f (n)g(m) = 0 for all
n,m ∈ N.

Proof. Since f g = 0, we obtain f (0)g(0) = 0, f (0)g(1) + f (1)α(g(0)) = 0,
f (0)g(2)+ 2 f (1)α(g(1))+ f (2)α2(g(0)) = 0, . . .. Now, we have f (0)g(1)+
f (1)α(g(0)) = 0, so multiplying from left by g(0), we get g(0) f (1)α(g(0)) =
0, since g(0) f (0) = 0. Thus g(0) f (1)α(g(0))α( f (1)) = 0. Since R is α-rigid
ring, g(0) f (1) = 0. So f (1)g(0) = 0, and f (1)α(g(0)) = 0, by Lemma 2.4.
Hence f (0)g(1) = 0. Since f (0)g(2)g(0) = 0 and f (1)α(g(1))g(0) = 0, we
have f (2)α2(g(0))g(0) = 0. Thus f (2)g(0) = 0, by Lemma 2.4. So f (0)g(2)+
2 f (1)α(g(1)) = 0. Multiplying this equality on the left-hand side by g(1), we
get g(1) f (0)g(2)+2g(1) f (1)α(g(1)) = 0. Thus 2g(1) f (1)α(g(1)) = 0. Since
R is α-rigid and torsion free as a Z-module, g(1) f (1) = 0 and f (1)g(1) = 0,
and hence f (0)g(2) = 0. Continuing in this way, we get f (n)g(m) = 0 for each
n,m ∈ N, and the proof is complete.

Corollary 2.6. Let R be a ring which is torsion free as a Z-module and α an
endomorphism of R. Then (HR,α) is reduced if and only if R is α-rigid.

Let R be a ring, Ei j an elementary matrix, n any positive integer, σ an en-
domorphism of R and In the identity matrix in Mn(R). In [9] J. Chen, X. Yang
and Y. Zhou introduced the skew triangular matrix ring denoted by Tn(R,σ)
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as a set of all triangular matrices with addition pointwise and a new multipli-
cation subject to the condition Ei jr = σ j−i(r)Ei j. So (ai j)(bi j) = (ci j), where
ci j = aiibi j +ai,i+1σ(bi+1, j)+ · · ·+ai jσ

j−i(b j j), for each i≤ j.
The subring of the skew triangular matrices with constant main diagonal

is denoted by S(R,n,σ). Also, the subring of the skew triangular matrices
with constant diagonals is denoted by T (R,n,σ) (see [20]). We can denote
A = (ai j) ∈ T (R,n,σ) by (a0, . . . ,an−1). Then T (R,n,σ) is a ring with addition
pointwise and multiplication given by:
(a0, . . . ,an−1)(b0, . . . ,bn−1) = (a0b0,a0 ∗b1+a1 ∗b0, . . . ,a0 ∗bn−1+ · · ·+an−1 ∗
b0), with multiplication subject to the condition ai ∗ b j = aiσ

i(b j), for each
i and j. On the other hand, there is a ring isomorphism ϕ : R[x;σ ]/(xn)→

T (R,n,σ), given by ϕ(
n−1
∑

i=0
aixi) = (a0,a1, . . . ,an−1), with ai ∈ R, 0≤ i≤ n−1.

So T (R,n,σ) ∼= R[x;σ ]/(xn), where R[x;σ ] is the skew polynomial ring with
multiplication subject to the condition xr = σ(r)x for each r ∈ R, and (xn) is the
ideal generated by xn.

Also, we consider the following subrings of S(R,n,σ):

A(R,n,σ) =


b n

2 c

∑
j=1

n− j+1

∑
i=1

a jEi,i+ j−1 +
n

∑
j=b n

2 c+1

n− j+1

∑
i=1

ai,i+ j−1Ei,i+ j−1 |ai,k ∈ R


and

B(R,n,σ) := {A+ rE1k |A ∈ A(R,n,σ) , r ∈ R and n = 2k ≥ 4} .

In the special case when σ = idR, we use S(R,n), A(R,n), B(R,n) and
T (R,n) (see [20]) instead of S(R,n,σ), A(R,n,σ), B(R,n,σ) and T (R,n,σ),
respectively.

Let R be a ring, α an endomorphism of R, n a positive integer, and Mn(R)
the ring of n×n matrices over R. Then α : Mn(R)→Mn(R), given by α((ai j)) =
(α(ai j)) is endomorphism of Mn(R).

Proposition 2.7. [12, Theorems 4.4 and 4.5] Let σ be a rigid endomorphism of
R and A = (ai j), B = (bi j) ∈ T , where T ∈ {A(R,n,σ),B(R,n,σ),T (R,n,σ)}.
If AB = 0, then aikbk j = 0, for each 1≤ i, j,k ≤ n.

By the following proposition, we provide various examples of non-reduced
rings which satisfy the α-compatible condition.

Proposition 2.8. Let σ be a rigid endomorphism of a ring R and α an endomor-
phism of R. If R is α-rigid, then for every positive integer n, the rings A(R,n,σ),
B(R,n,σ) and T (R,n,σ) are α-compatible rings.
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Proof. Let A = (ai j) and B = (Bi j) ∈ A(R,n,σ). By Proposition 2.7, we have
AB= 0 if and only if aikbk j = 0, for each 1≤ i, j,k≤ n if and only if aikα(bk j) =
0 if and only if Aα(B) = 0. Thus A(R,n,σ) is α-compatible. The proof of the
other cases are similar.

3. Diameter and Girth of Γ(R) and Γ((HR,α))

There is considerable interest in studying if and how certain graph-theoretic
properties of rings are preserved under various ring-theoretic extensions. In this
section, we examine the preservation and lack thereof of the diameter and girth
of the zero-divisor graph of a noncommutative ring under extension to skew
Hurwitz series ring. In [30] it has been shown that, for every ring R, any two
vertices in Γ(R) are connected by a path of length at most 3. Note that using
the proof of this result in the commutative case, one can establish that for any
arbitrary ring R, if there exists a path between two vertices x and y in the directed
graph Γ(R), then the length of the shortest path between x and y is at most 3.
Moreover, in [30] it is shown that for any ring R, if Γ(R) contains a cycle, then
the length of the shortest cycle in Γ(R) is at most 4.

Let R be a ring with an endomorphism α and I an ideal of R with α(I)⊆ I.
Then α : R/I→ R/I defined by α(a+ I) = α(a)+ I is an endomorphism of the
factor ring R/I. If α is an automorphism and α(a) 6∈ I, for each a ∈ R\ I, then
α is an automorphism. For every nonzero element f of the skew Hurwitz series
ring (HR,α), supp( f ) is used for the support of f , i.e. supp( f ) = {i ∈ N | 0 6=
f (i) ∈ R}.

Theorem 3.1. Let R be a ring which is torsion free as a Z-module and α an
endomorphism of R. If R is α-compatible, then Γ(R) is complete if and only if
Γ((HR,α)) is complete.

Proof. We adapt the proof of [25, Theorem 3.3]. Assume that Γ(R) be complete,
we will show that Γ((HR,α)) is complete. Since R is not isomorphic to Z2×Z2,
by [2, Theorem 5] we deduce that Z(R)2 = 0 and Z(R) is an ideal of R. Now,
since R is α-compatible, it is easy to show that R := R

Z(R) is α-rigid. Now,
we claim that Z((HR,α)) ⊆ (H(Z(R)),α). Suppose towards a contradiction
that f ∈ Z((HR,α)) \ (H(Z(R)),α). Then there exists a nonzero element g ∈
(HR,α) such that f g = 0. We will prove that g 6= 0. Assume on the contrary
that g = 0, or, equivalently, that g ∈ (H(Z(R)),α). Now, we have the following
two cases.

Case (1) Let f (n) 6∈ Z(R), for all n ∈ supp( f ). Let n0 and m0 denote the
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minimal elements of supp( f ) and supp(g), respectively. Hence, we have:

0 = ( f g)(n0 +m0) = ∑
i+ j=n0+m0

(
i+ j

i

)
f (i)α i(g( j))

=

(
n0 +m0

n0

)
f (n0)α

n0(g(m0)).

Since R is torsion free as a Z-module, we have f (n0)α
n0(g(m0)) = 0. Thus

the α-compatibility of R implies that f (n0)g(m0) = 0. Therefore f (n0) ∈ Z(R),
which is a contradiction.

Case (2) Let D := {n ∈ supp( f ) | f (n) ∈ Z(R)} be nonempty. Set:

h(n) :=
{

f (n) n ∈D
0 n 6∈D

and k(n) :=
{

f (n) n 6∈D
0 n ∈D.

We obtain maps h,k : S→ R with supp(h) =D and supp(k) =Dc ∩ supp( f ).
Since g∈ (H(Z(R)),α) and Z(R)2 = 0, we have h(n)g(m)= 0 for each n,m∈N.
Now, the α-compatibility of R implies that hg = 0. Therefore kg = 0. By a
similar argument, there exist n0 ∈ supp(k) and m0 ∈ supp(g) such that 0 =
(kg)(n0 +m0) = k(n0)α

n0(g(m0)). Using the α-compatibility of R, we find that
k(n0)g(m0) = 0. Therefore k(n0) = f (n0) ∈ Z(R), which is a contradiction.
Therefore we conclude that g 6= 0. Since R is α-rigid and f g = 0, we obtain
f (n)g(m) = 0, for all n,m ∈N, by Lemma 2.5. On the other hand, f ,g 6= 0, thus
there exist n ∈ suup( f ) and m ∈ suup(g) such that f (n)g(m) = 0, contrary to
the fact that R has no zero divisors 6= 0. Therefore Z((HR,α))⊆ (H(Z(R)),α).
Now, assume that f , g are two distinct elements in Z∗((HR,α)). Consequently
f (n),g(n) ∈ Z(R) for all n ∈ N. Since Z(R)2 = 0 and R is α-compatible,
aαn(b) = 0 for every n ∈ N and a,b ∈ Z∗(R). Therefore

f g(n) =
n

∑
k=0

(
n
k

)
f (k)αk(g(n− k)) = 0

for every n ∈ N. So Γ((HR,α)) is complete. The converse follows directly
from the fact that Γ(R) is an induced subgraph of Γ((HR,α)), and the proof is
complete.

Corollary 3.2. Let R be a ring which is torsion free as a Z-module. Then Γ(R)
is complete if and only if Γ(HR) is complete.

Remark 3.3. If R ∼= Z2×Z2, then Γ(R) = 1. Now, let α : R→ R be the en-
domorphism of R defined by α(a,b) = (b,a), for all (a,b) ∈ R. Suppose that
f = h−(0,1)+ h(0,1)h

′
n and g = h(0,1)+ h(0,1)h

′
n in (HR,α), where n ∈ N \ {0}.

Then f g 6= 0, but h(1,0) f = h(1,0)g = 0. So f −h(1,0)−g is a path in (HR,α) and
thus diam(Γ((HR,α)))≥ 2.
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Now, we provide the following example to illustrate Theorem 3.1.

Example 3.4. Assume that D is a domain. Put:

R :=
{(

a b
0 a

)
| a,b ∈ D

}
.

Suppose that α : D→ D is a monomorphism of D. Then Γ(R) is complete,

since Z(R)∗ =
{(

0 b
0 0

)
| b ∈ D∗

}
. On the other hand, it is easy to show

that R is α-compatible, where α : R→ R is an endomorphism of R given by
α((ai j)) = (α(ai j)). Therefore Γ((HR,α)) is complete, by Theorem 3.1.

Remark 3.5. For a commutative ring R with identity, the collection of zero-
divisors Z(R) of R is the set-theoretic union of prime ideals

⋃
i∈Λ

Pi. We will also

assume that these primes are maximal with respect to being contained in Z(R).
So if diam(Γ(R)) ≤ 2 and Λ is a finite set (in particular if R is Noetherian), in
view of [6, Corollary 3.5], |Λ| ≤ 2.

Proposition 3.6. [6, Proposition 3.6] Let R be a commutative ring such that
diam(Γ(R)) = 2. If Z(R) = P1∪P2 with P1 and P2 distinct maximal primes in
Z(R), then P1∩P2 = {0} (in particular, for all p1 ∈P1 and p2 ∈P2, p1 p2 = 0).

Theorem 3.7. Let R be a commutative reduced ring which is torsion free as a
Z-module. If diam(Γ(R)) = 2, then diam(Γ(HR)) = 2.

Proof. By Remark 3.5, either Z(R) = P1∪P2 union of precisely two maximal
primes in Z(R), or Z(R) = P is a prime ideal.

Case (1) Suppose that Z(R) =P1∪P2 is the union of precisely two maximal
primes in Z(R). Let f and g are two distinct elements in Z∗(HR). By Lemma
2.5, f (n),g(n) ∈ Z(R) for all n ∈ N. Then it is necessary for f (and hence g) to
be contained in HP1 or HP2. Because otherwise there exist f (n) ∈ P1 \P2 and
f (m) ∈ P2 \P1 such that f (n)r = 0 and f (m)r = 0 for some nonzero element r
of R and n,m ∈ N. Thus r ∈ P1 ∩P2, contrary to the fact that P1 ∩P2 = {0},
by Proposition 3.6. So, we have two cases. Firstly, suppose that f ∈ HP1 and
g ∈ HP2. Then, by Proposition 3.6, f (n)g(m) = 0, for all n,m ∈ N. Hence
f g = 0. Now, consider the case that f ,g ∈ HP1. Then any element of P2
suffices as a mutual annihilator. Thus diam(Γ(HR)) = 2.

Case (2) Assume that Z(R) = P is a prime ideal. By [14, Theorem 82], P
is annihilated by a single element (say z). Suppose that f ,g are zero-divisors.
If f g = 0, we are done. If f g 6= 0, then z is a mutual annihilator of f and g, by
Lemma 2.5.
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Proposition 3.8. Let R be a ring which is torsion free as a Z-module. If R is
α-compatible and diam(Γ((HR,α))) = 2, then diam(Γ(R)) = 2.

Proof. It is easy to show that diam(Γ(R))≤ diam(Γ((HR,α))). The result now
follows from Theorem 3.1.

McCoy [24, Theorem 2] proved that if two nonzero polynomials annihilate
each other over a commutative ring then each polynomial has a non-zero an-
nihilator in the base ring. But Weiner [33] showed that this theorem fails in
noncommutative rings. According to Nielsen [26], a ring R is called (linearly)
right McCoy if the equation f (x)g(x) = 0, for (linear) polynomials f (x),g(x) ∈
R[x] \ {0}, implies that there exists 0 6= c ∈ R such that f (x)c = 0. Left Mc-
Coy rings are defined similarly. If a ring is both left McCoy and right McCoy,
it is called a McCoy ring. In [26, Theorem 2], Nielsen showed that reversible
rings are McCoy. It is obvious that every commutative ring is reversible. Thus,
reversible rings provide a sort of bridge between commutative and noncommu-
tative ring theory.

Now, we apply the concept of McCoy rings to skew Hurwitz series rings
over non-commutative rings, and introduce McCoy of skew Hurwitz series type
rings. Recall that a ring R is called right McCoy of skew Hurwitz series type
(or simply, α-SMHS ring), if whenever elements f ,g ∈ (HR,α) \ {0} satisfy
f g = 0, then there exists 0 6= r ∈ R such that f r = 0. Left α-SMHS rings is
defined similarly. If R are both a left and right α-SMHS ring, then we say that
R is α-SMHS ring. By Lemma 2.5, it is easy to show that every α-rigid ring R
which is torsion free as a Z-module is an α-SMHS ring. In Theorem 3.9 and
Proposition 3.10, we provide several methods of constructing α-SMHS rings
which are not reduced.

Let R be a ring, and α,σ are endomorphisms of R. It is easy to verify that
the map σ̃ : (HR,α)→ (HR,α), given by σ̃( f ) = σ ◦ f , is an endomorphism
of (HR,α).

Theorem 3.9. Let R be a ring which is torsion free as a Z-module and α,σ are
endomorphisms of R with σ ◦α = α ◦σ . If R is an α-rigid ring, then for every
positive integer n, the rings S(R,n,σ), A(R,n,σ), B(R,n,σ) and T (R,n,σ) are
α-SMHS ring.

Proof. We only prove S(R,n,σ) is right α-SMHS, because the proofs of the
other cases are similar.

First consider the map φ : (H(S(R,n,σ)),α)→ S((HR,α),n, σ̃), given by
φ( f ) = ( fi j), where fi j(n) = ( f (n))i j for all n ∈ N and the ( f (n))i j is the (i, j)-
th entry of f (n). It is easy to show that φ is an isomorphism.
Suppose that f ,g ∈ (H(S(R,n,σ)),α) \ {0} satisfy f g = 0. Then ( fi j)(gi j) =
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0 for 1 ≤ i, j ≤ n. If f11 = 0, clearly ( fi j)E1n = 0. Hence f hE1n = 0. Thus
S(R,n,σ) is α-SMHS. Now, suppose f11 6= 0. Since φ(g) 6= 0, there exists a
non-zero (k, l)-entry of φ(g). Assume gkl 6= 0 with k maximal. Considering the
(k, l)-entry of φ( f )φ(g), we have f11gkl = 0. Since R is α-rigid, there exists
0 6= r ∈ R such that f11hr = 0, by Lemma 2.5. Hence f hD = 0, where D =
rE1n ∈ S(R,n,σ). Therefore S(R,n,σ) is an α-SMHS ring.

Proposition 3.10. Let R be a ring and α,σ are endomorphisms of R such that
σ ◦α = α ◦σ . Define a subring V (R,σ) of T6(R,σ) as follows:

V (R,σ) :=





a d 0 0 0 0
0 b 0 0 0 0
0 0 c e 0 0
0 0 0 a 0 0
0 0 0 0 b f
0 0 0 0 0 c

 | a,b,c,d,e, f ∈ R


.

Then R is a right (resp. left) α-SMHS ring if and only if V (R,σ) is a right (resp.
left) α-SMHS ring.

Proof. We only prove the case when R is right α-SMHS and the other case is
similar. First consider the map φ : (H(V (R,σ)),α)→V ((HR,α), σ̃), given by
φ( f ) = ( fi j), where fi j(n) = ( f (n))i j for all n ∈ N and the ( f (n))i j is the (i, j)-
th entry of f (n). It is easy to show that φ is an isomorphism.
Suppose that R is right α-SMHS. Assume that f ,g are non-zero elements of
(H(V (R,σ)),α) such that f g = 0. Then ( fi j)(gi j) = 0 for 1 ≤ i, j ≤ 6. So we
have the following equations:

f11g11 = 0; f22g22 = 0; f33g33 = 0;

f11g12 + f12σ̃(g22) = 0; f33g34 + f34σ̃(g11) = 0; f22g56 + f56σ̃(g33) = 0.

Let fii = 0 for some 1≤ i≤ 3, then we can choose A = E12 if i = 1, A = E56 if
i = 2 and A = E34 if i = 3. Clearly ( fi j)A = 0. Hence f hA = 0. Next suppose
that fii 6= 0 for all 1≤ i≤ 3.

Case 1) Let gii 6= 0 for some 1≤ i≤ 3.
Suppose that i = 3. Since f33g33 = 0 and R is right α-SMHS, so there exists

0 6= r ∈ R such that f33hr = 0. Hence f hD = 0, where D = rE34 ∈V (R,σ).
Case 2) Let gii = 0 for every 1≤ i≤ 3.
Since g 6= 0, we may assume without loss of generality g12 6= 0. Since

f11g12 = 0 and R is right α-SMHS, so there exists 0 6= r ∈ R such that f11hr =
0. Hence f hD = 0, where D = rE12 ∈ V (R,σ). Therefore, V (R,σ) is right
α-SMHS. For the forward implication, let f and g be non-zero elements in
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(HR,α) such that f g = 0. Assume that F(n) = f (n)I6 and G(n) = g(n)I6, for
all n ∈ N. Therefore FG = 0. Since V (R,σ) is right α-SMHS, there exists
0 6= A = (ai j) ∈ V (R,σ) such that FhA = 0. Since A is non-zero, there exists
non-zero ai j for some 1 ≤ i, j ≤ 6 and f hai j = 0. Hence R is α-SMHS and the
result follows.

The following example shows that the n× n (upper triangular) matrix ring
over a ring is not an α-SMHS ring.

Example 3.11. Let R be a ring and α be a monomorphism of R. We show
that the 2-by-2 matrices over R is not α-SMHS. Let f = hE11 +h(E11−E12)h

′
n and

g = hE22 +h(E12+E22)h
′
n be elements of (H(M2(R)),α), where n ∈N\{0}. Then

f g = 0. But f hA = 0 implies A = 0 ∈M2(R). So M2(R) is not right α-SMHS,
and consequently n× n (upper triangular) matrix rings over a ring are not α-
SMHS.

Proposition 3.12. Let R be a ring which is torsion free as a Z-module. If R is
an α-SMHS ring, α-compatible and for some n ∈ Z with n > 2, (Z(R))n = 0
and (Z(R))n−1 6= 0, then:

diam(Γ(R)) = diam(Γ((HR,α))) = 2.

Proof. Since the ring R is not isomorphic to Z2 × Z2 and (Z(R))2 6= 0, by
[2, Theorem 5], Γ(R) is not complete. Hence, there exist distinct a,b ∈ Z(R)
with ab 6= 0 and ba 6= 0. On the other hand, since (Z(R))n−1 6= 0, there ex-

ist d1,d2, . . . ,dn ∈ Z(R) with d =
n−1
∏
i=1

di 6= 0. Therefore, ad = 0 = bd, since

(Z(R))n = 0. So a− d− b is a path in R and hence diam(Γ(R)) = 2. Now, it
is sufficient to prove that diam(Γ((HR,α))) = 2. Let f and g be two distinct
element in Z∗((HR,α)). Since R is α-SMHS, we get f (n),g(n) ∈ Z(R) for
all n ∈ N. Hence the α-compatibility of R yields either f − g or f − hd − g.
Therefore diam(Γ((HR,α))) = 2, and the proof is complete.

Proposition 3.13. Let R be a ring which is not a domain and α an endomor-
phism of R. Assume that R is α-compatible. Then gr(Γ((HR,α))) is either 3 or
4. In particular, if R is not reduced, then gr(Γ((HR,α))) = 3.

Proof. Let ab = 0 for distinct elements a,b ∈ Z∗(R). Using the α-compatibility
of R, we find that aαn(b) = 0, for all n ∈ N \ {0}. Hence ha− hb− hah

′
n−

hbh
′
n− ha is a 4-cycle in (HR,α). Let a2 = 0 for some a ∈ Z∗(R). Then the

α-compatibility of R, yields ha−hah
′
n−hah

′
2n−ha is a 3-cycle in (HR,α), for

all n ∈ N\{0}.

The following and its proof are directly adapted from [25, Theorem 3.22].
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Theorem 3.14. Let R be a ring such that it is torsion free as a Z-module and
α an endomorphism of R. If R is α-rigid and Γ(R) contains a cycle, then
gr(Γ(R)) = gr(Γ((HR,α))).

Proof. If Z∗(R) = /0, then gr(Γ(R)) = ∞ = gr(Γ((HR,α))). So we may assume
Z∗(R) 6= /0. Since the graph Γ(R) is an induced subgraph of Γ((HR,α)), we have
that gr(Γ(R))≥ gr(Γ((HR,α))). Also, by Proposition 3.13, gr(Γ((HR,α)))≤
4. Furthermore, since Γ(R) contains a cycle, by [30], gr(Γ(R)) ≤ 4. Therefore
it suffices to show that gr(Γ(R)) = 3, whenever gr(Γ((HR,α))) = 3. Hence
suppose that f − g− h− f is a cycle in (HR,α). Since f g = gh = h f = 0
thus by Lemma 2.5, we have f (m)g(n) = g(n)h(k) = h(k) f (m) = 0 for all
m,n,k ∈ N. We may assume that f (m0), g(n0) and h(k0) are non-zero elements
in R. Therefore f (m0)g(n0) = g(n0)h(k0) = h(k0) f (m0) = 0. Moreover, the
elements f (m0), g(n0) and h(k0) are distinct by Lemma 2.4, since R is reduced.
Now consider the cycle f (m0)−g(n0)−h(k0)− f (m0) of length three in Γ(R).
Therefore gr(Γ(R)) = 3, and hence gr(Γ(R)) = gr(Γ((HR,α))), and the result
follows.

A complete characterization for the girth of gr(Γ(R[x])) and gr(Γ(R[[x]]))
in terms of gr(Γ(R)) is given in [5, Theorem 3.2]. In the following we explain
Theorem 3.2 in [5] in the context of skew Hurwitz series extension rings.

Corollary 3.15. Let R be a ring which is torsion free as a Z-module and α an
endomorphism of R. Assume that R is α-compatible.
(1) Suppose that Γ(R) is nonempty with gr(Γ(R)) = ∞.

(i) If R is reduced, then gr(Γ((HR,α))) = 4;

(ii) If R is not reduced, then gr(Γ((HR,α))) = 3.

(2) If gr(Γ(R)) = 3, then gr(Γ((HR,α))) = 3.
(3) Suppose that gr(Γ(R)) = 4.

(i) If R is reduced, then gr(Γ((HR,α))) = 4;

(ii) If R is not reduced, then gr(Γ((HR,α))) = 3.

Proof. We have already observed in Proposition 3.13 that gr(Γ((HR,α)))) =
3 if R is not reduced. Thus (1) (ii) and (3) (ii) hold. By using the proof of
Theorem 3.14, if R is reduced and gr(Γ((HR,α))) = 3, then gr(Γ(R)) = 3.
Now, since gr(Γ((HR,α)))≤ 4, by Proposition 3.13, and thus (1) (i) and (3) (i)
hold. Clearly (2) holds since gr(Γ(R))≥ gr(Γ((HR,α))).
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