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EXPRESSING THE GENERALIZED FIBONACCI
POLYNOMIALS IN TERMS OF A TRIDIAGONAL
DETERMINANT

FENG QI - BAI-NI GUO

In the paper, the authors express the generalized Fibonacci polynomi-
als in terms of a tridiagonal determinant. Consequently, they also express
the Fibonacci numbers and polynomials in terms of tridiagonal determi-
nants.

1. Main results

A tridiagonal matrix is a square matrix with nonzero elements only on the diag-
onal and slots horizontally or vertically adjacent the diagonal. In other words, a
square matrix H = (h;;)nx is called a tridiagonal matrix if /;; = O for all pairs
(i,/) such that |i — j| > 1. A matrix H = (h;j)nxn is called a lower (or an upper,
respectively) Hessenberg matrix if /;; = O for all pairs (i, j) such that i+ 1 < j
(or j+ 1 < i, respectively). See the papers [4, 5] and closely-related references
therein.
The well-known Fibonacci numbers

(1+V5)" = (1-V5)"
21/5

F, =

Entrato in redazione: 2016 settembre 0

AMS 2010 Subject Classification: Primary 11B39; Secondary 11B83, 11C20, 11Y55
Keywords: generalized Fibonacci polynomials; Fibonacci number; Fibonacci polynomials; tridi-
agonal determinant



168 FENG QI - BAI-NI GUO
for n € N form a sequence of integers and satisfy the linear recurrence relation
Fi=F 1+F )
with F1 = F, = 1. The first fourteen Fibonacci numbers F, for 1 <n < 14 are
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 377.

The Fibonacci numbers F, can be viewed as a particular case F,(1) of the
Fibonacci polynomials
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which can be generated by

Z

P Y Fi(s)= s+ (P4 1) + (s +25) 2 +

n=1
The generalized Fibonacci polynomials F,(s,7) are defined by Fy(s,t) = 0,
Fi(s,t) = 1, and the recurrence relation

Fy(s,t) = sFy_1(s,t) +tF,_o(s,t), n>2. (2)
It is easy to deduce that
F(s,t)=s, F(s,t) =s>+t, Fy(s,t) =s>+2st, F5(s,t) =s*+ 35t +1°.

The generalized Fibonacci polynomials F,(s,7) can be generalized by

ZF (5,1)z 3)

n=0
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It is clear that F;, (s, 1) = F,(s) and F,(1,1) = F, forn € N.

Formulas for the Fibonacci numbers and its generalizations are classical,
starting with the well-known Cassini formulas for F,,. Some of these formulas
for the Fibonacci numbers F;, the Fibonacci polynomials F;(s), and the gener-
alized Fibonacci polynomials F;(s,?) can be found in the papers [1, 8] and the
monograph [3].

In this paper, the authors will express the generalized Fibonacci polynomi-
als Fy(s,) in terms of a tridiagonal determinant. Consequently, they will also
express the Fibonacci numbers F;, and the Fibonacci polynomials in terms of
tridiagonal determinants.

Our main results can be stated as the following theorem.
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Theorem 1.1. For n € {0} UN, the generalized Fibonacci polynomials Fy(s,t)
can be expressed as
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Consequently, for n € N, the Fibonacci polynomials F,(s) and the Fibonacci
numbers F, can be expressed respectively as

1
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2. A lemma
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In order to prove Theorem 1.1, we need the following lemma which is a refor-
mulation of [2, p. 40, Exercise 5)] in the papers [6, Section 2.2, p. 849], [7,
p. 94], and [9, Lemma 2.1].
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Lemma 2.1. Let u(x) and v(x) # 0 be differentiable functions, let U, 1)y ()
be an (n+ 1) x 1 matrix whose elements 1 (x) = u*=V(x) for 1 <k <n+1,
let Viyi1)xn(x) be an (n+1) X n matrix whose elements

<l._1>v<"f>(x), i—j>0
0, i—j<0

for 1 <i<n+1and 1< j<n, and let [Wy 1)x(ns1)(x)| denote the lower
Hessenberg determinant of the (n+ 1) x (n+ 1) lower Hessenberg matrix

W(n+1)><(n+1)(x) = [U(n+1)><l(x) V(n+1)><n(x)] :

Then the nth derivative of the ratio % can be computed by

dd:n [M(X)] _ 1y }W(n;)jl(’a)l)w' o
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3. Proof of Theorem 1.1

Applying u(z) = z and v(z) = 1 — sz — 1z° to the formula (7) yields
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as z — 0 for n € N. By the generating function in (3), we obtain that

1 d” z
Fo(s,t) = — li S S
n(s:1) n!zgr(l)dz”<l—sz—tz2>
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which can be rewritten as the expression (4).

The expression (5) follows from taking the limit # — 1 on both sides of the
expression (4).

The expression (6) can be derived from either letting (s,¢) — (1,1) in (4) or
letting s — 1 in (5). The proof of Theorem 1.1 is complete.

4. Remarks

Remark 4.1. The expressions (4), (5), and (6) can be rearranged as
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and
® -1 0 o 0 0 0
2(7) @2 —41 0 0 0 0
0 2(3 (35) —51 0 0 0
L 0o 0 23 () 0 0 0
n — ]’l‘ . . :
0 0 0 3 -1 0
0 0 0 263 ()
o 0 0 0 0 2(,%) (M)
forn > 2.

Remark 4.2. It is easy to see that, from the expressions (4), (5), and (6), we can
recover the recurrence relation

Fo(s) = sF—1(s) + F—2(s)
and the recurrence relations (1) and (2) for n > 3.

Remark 4.3. It is worthwhile to mentioning that some determinantal and per-
manental representations of the generalized Fibonacci polynomials in terms of
various Hessenberg matrices were given in the preprint [8]. These results are
general form of determinantal and permanental representations of k sequences
of the generalized order-k Fibonacci and Pell numbers.
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