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FIXED POINTS OF THE BARNSLEY-HUTCHINSON

OPERATORS INDUCED BY HYPER-CONDENSING MAPS

KRZYSZTOF LEŚNIAK

The aim of this note is to show that the Barnsley-Hutchinson operator,
induced by either single h-bounded hyper-condensing map or a compact in-
finite family of such maps, admits a maximal fixed point and global attractor.
Under suitable continuity conditions both fixed point and attractor coincide.
This improves and extends several earlier results.

To obtain these results some new properties of the Hausdorff measure
of noncompactness on the hyperspace are established.

1. The hyperspace of closed sets.

Throughout the paper (X, d) will stand for a complete metric space. It
is customary to allow distances to take infinite values ([13] chap. 1 sect.
1.1). We shall denote by B(x , r) the open r -ball with center in x ∈ X , by
Or (A) = ⋃

a∈A B(a, r) the r -aureola around A ⊂ X , and by A the closure of
A. Further, 2X , F (X ) andK(X ) denote respectively the family of all nonempty
subsets of X , the family of nonempty closed sets and the family of nonempty
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compact sets. We endow F (X ) (consequentlyK(X )) with theHausdorff metric
given for A1, A2 ∈ F (X ) by

h(A1, A2) = inf{r > 0 : A1 ⊂ Or (A2), A2 ⊂ Or (A1) }.

So topologized family is called a hyperspace. For the topological notions in
F (X ), like closure or compactness, we use prefix ,,h-”, e.g., h-closure or h-
compactness. We shall also need the double exponentiate F (F (X )) furnished
with the respective Hausdorff metric denoted in this case by H . For basic
properties of h we refer to [15], [13] or [4].

Lemma 1. Let {At }t ⊂ F (X ) be h-compact. Then the union
⋃

t At is a closed
set. If additionally every At is bounded, then

⋃
t At is also bounded.

Proof. We start with closedness. Denote A = {At }t and take any convergent
sequence {xn}∞n=1 ⊂ ⋃

A, xn → x . We will show that x ∈ ⋃
A. One can

associate with each xn a set Atn ∈ A s.t. Atn � xn . Since the family A is h-
compact, there exists a subsequence (Atkn )

∞
n=1 of (Atn )

∞
n=1 s.t. Atkn → A for

some A ∈A. Correspondingly, for the subsequence (xkn )
∞
n=1 we have xkn → x .

Now fix ε > 0 and observe that xkn ∈ Atkn ⊂ Oε/2A, x ∈ Oε/2{xkn } for large
enough n. Hence

x ∈ Oε/2{xkn } ⊂ Oε/2Atkn ⊂ OεA,

By closedness of A we obtain x ∈ A∈ A i.e. x ∈ ⋃
A.

Now we show boundedness. The family A admits (by its h-compactness)
a finite (1/2)-net {At1 , . . . , Ats } ⊂ A, i.e.,

∀ t ∃ i = 1, . . . , s : h(At , Ati ) <
1

2
.

Hence
⋃

A ⊂ ⋃s
i=1 O1Ati is bounded. The proof is completed. �

Remark 1. We cannot simply invoke in the above proof the preservation of
compactness under continuous map. The reason is that the mapping ∪ :
K(F (X )) → F (X ) given for all A ∈ K(F (X ) by ∪(A) = ⋃

A is not
continuous; otherwise

⋃
A would be always compact (comp. [15], [26], [18]).

Lemma 2. (On closing unions I). For any family {At }t of sets At ⊂ X we have

⋃
t

At =
⋃
t

At .
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Lemma 3. (On closing unions II). Let A ⊂ F (X ) and B = A
h ⊂ F (X ) be

the h-closure of A. Then
⋃

A = ⋃
B.

Proof. We only have to check that
⋃

B ⊂ ⋃
A. Fix x ∈ ⋃

B. This means that
xn → x for some {xn}∞n=1 ⊂ ⋃

B. Next, we can associate with each xn some
Bn ∈ B s.t. Bn � xn . Recalling now that every Bn is an h-limit of sets Amn ∈ A
we obtain

Amn
−−−−−→
m → ∞ Bn � xn

. . . . . .
... ↓

x .

Standard diagonal argument shows that there exists {x ′
n}∞n=1 ⊂ ⋃

A s.t.
d(x ′

n, xn) < 1
n and so d(x

′
n, x )→ 0. Therefore x ∈ ⋃

A. �

2. The Hausdorff measure of noncompactness on the hyperspace.

Let C be a nonempty subset of (X, d). TheHausdorff measure of noncom-
pactness relative to C is the functional βC : 2X → [0, ∞] given by

βC (A) = inf{ r > 0 : ∃ c1,...,ck∈C
k⋃
i=1

B(ci , r) ⊃ A }.

In case C = X we will omit the subscript X and simply write β . Replacing
(X, d) with the hyperspace (F (X ), h) we get in that way the Hausdorff measure
of noncompactness relative to C ⊂ F (X ) denoted by β#C. The measures β#

and β#K(X ) will be of our primal interest. One could also consider (2X , h)
furnished with an infinite semimetric h and the respective Hausdorff measure
of noncompactness, but it is easily seen that such a measure relativized to F (X )
is just β#. For basic facts concerning measures of noncompactness we refer to
[1] and [3].

Lemma 4. For A ⊂ F (X ) we have

β
( ⋃

A
)

= β#K(X )
(
A

)
.

Proof. Label A = {At }t . To prove ,,≤” choose ν and ν so that ν > ν >

β#O(X )(A). Hence there exists a finite ν-net {K1, . . . , Kk} ⊂ O(X ) for A, i.e.,

∀ t ∃ i h(At , Ki) < ν.
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Thus
⋃

A ⊂ ⋃k
i=1 OνKi . Being each Ki compact we can find a finite (ν − ν)-

net Ki ⊂ ⋃
j∈J (i) B(xj i , ν − ν). Altogether

⋃
A ⊂ ⋃

i

⋃
j B(xj

i , ν).
Now we prove ,,≥”. Fix ν > β(

⋃
A) and pick up a suitable ν-net⋃

A ⊂ ⋃k
i=1 B(xi , ν). Further, for every t denote Pt = {xi : xi ∈ OνAt }.

Finally observe that {Pt}t ⊂ O(X ) is a finite ν-net for A. Indeed, At ⊂⋃k
i=1 B(xi , ν) = OνPt , and Pt ⊂ OνAt , because

B(xi , ν) ∩ At �= ∅ ⇔ xi ∈ OνAt ⇔ xi ∈ Pt .

Therefore β#O(X )(A) < ν . �
Lemma 5. (Estimate for infinite unions). If {At }t∈T ⊂ F (X ), then

sup
t∈T

β(At ) + β#({At }t∈T ) ≤ β
(⋃
t∈T

At
)

≤ sup
t∈T

β(At )+ 2 β#({At }t∈T ).

In particular, for h-compact {At }t∈T , β
( ⋃

t∈T At
) = supt∈T β(At ).

Proof. For the proof of the upper estimation of β
( ⋃

t∈T At
)
we refer to [24].

Thus it is enough to verify that

β#({At }t∈T ) ≤ β
(⋃
t∈T

At
)

− sup
t∈T

β(At ) = inf
t∈T

[
β
(⋃
t∈T

At
)

− β(At )
]
.

Fix t0 ∈ T and r > β
( ⋃

t∈T At
) − β(At0 ) ≥ 0. Putting ν = r + β(At0 ) we can

find a finite ν-net {p1, . . . , pk} for the sum⋃
t∈T At . Next we can associate with

each t the following set Pt = {pi : pi ∈ OνAt }. Similarly as in the proof of
Lemma 4 we see that {Pt }t∈T is a finite ν-net for {At }t∈T . Being r = ν −β(At0 )
and t0 ∈ T arbitrary, the desired inequality follows. �
Proposition 1. ([24] Prop. 2) If {At }t∈T ⊂ F (F (X )) is H -compact, then

β#
(⋃
t∈T

At

)
= sup

t∈T
β#(At ).

For any family A ⊂ F (X ) we define a new family �(A) = {⋃B : ∅ �=
B ⊂ A }.
Lemma 6. SupposeC ⊂ F (X ) is finitely additive, i.e., C1,C2 ∈ C ⇒ C1∪C2 ∈
C). Then for A ⊂ F (X ) we have

β#C[�(A)] = β#C(A).
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Proof. The inequality ,,≥” is immediate, due to monotonicity of β#C. To prove
the reverse inequality label A = {At }t∈T and fix r > r > β#C(A) . Thus there
exists a finite r -net E ⊂ C for A, i.e.,

∀ t∈T ∃ Et∈E h(At , Et) < r.

We shall check that �(E) is a finite r -net for �(A). Of course �(E) ⊂ C
is finite. Moreover, each member of �(A) has the form

⋃
t∈T0 At , where∅ �= T0 ⊂ T . Therefore we obtain

h
(⋃
t∈T0

At ,
⋃
t∈T0

Et
)

≤ sup
t∈T0

h(At , Et) ≤ r < r,

and
⋃

t∈T0 Et ∈ �(E). �
As a direct consequence we get

Proposition 2. For A ⊂ F (X ) we have:

β#
[
�(A)

] = β#(A), β#K(X )
[
�(A)

] = β#K(X )(A).

In particular, if A is h-compact, then so is �(A).

3. The Barnsley-Hutchinson operator. The space of multifunctions.

Let ϕ : X−◦ X be a multifunctionwith nonempty closed values. The image
of (A ⊂ X is the set ϕ(A) = ⋃

a∈A ϕ(a). We associate with ϕ the Barnsley-
Hutchinson operator F : F (X ) → F (X ) given by F(A) = ϕ(A). Further,
it induces the operator F# : F (F (X )) → F (F (X )) taking any A ∈ F (F (X ))
to the h-closure of its image under F , namely F#(A) = {F(A) : A∈ A}. The
operator F# is alike a Barnsley-Hutchinson operator associated with F . It plays
rather technical role in Sections 4 and 5.

To justify our assumption on values of ϕ to be closed sets we point out
that given any multifunction ϕ : X −◦ X and its closure ϕ : X −◦ X ,
ϕ(x ) = ϕ(x ) ∀ x∈X , both of them generate the same Barnsley-Hutchinson
operator (just apply Lemma 2).

Similar definitions hold for a system of multifunctions {ϕt : X −◦ X }t∈T ,
called also a multivalued iterated function system. The study of such a system
can be reduced to study of a single multifunction, namely its union

⋃
t∈T ϕt :

X−◦ X given by
( ⋃

t∈T ϕt
)
(x ) = ⋃

t∈T ϕt (x ) for x ∈ X . This union in the case



72 KRZYSZTOF LEŚNIAK

of finite or even compactly infinite system preserves most of typical assumptions
put on maps ϕt , like contractivity, compactness, condensity, Hausdorff continu-
ity etc. (see e.g. [26], [18], [24]). The concepts of continuity and compactness
for multivaluedmaps are discussed in Section 4. For basic facts from set-valued
analysis see e.g. [13] and [4].

We shall need the space M(X, X ) of all multifunctions with nonempty
closed values furnished with the Chebyshev uniform metric

hsup(ϕ1, ϕ2) = sup
x∈X

h[ϕ1(x ), ϕ2(x )]

for ϕ1, ϕ2 : X −◦ X ([24]). The symbol F (X )F (X ) shall stand for the
space of operators acting on F (X ) endowed with the Chebyshev metric hsup ,
analogously F (F (X ))F (F (X )) shall stand for the space of operators acting on
F (F (X )) endowed with respective Chebyshev metric Hsup.

Let us associate with ϕ1, ϕ2 ∈ M(X, X ) the induced Barnsley-Hutchinson
operators F1, F2 ∈ F (X )F (X ) , F1 #, F2 # ∈ F (F (X ))F (F (X )) . Noting that

hsup(ϕ1, ϕ2) = sup
A∈F (X )

h[ϕ1(A), ϕ2(A)]

and F#({A}) = {F(A)} we get the isometry
Proposition 3. We have

hsup(ϕ1, ϕ2) = hsup(F1, F2) = Hsup(F1 #, F2 #).

The evaluation map evA : F (F (X ))F (F (X )) → F (F (X )) is defined for
A ∈ F (F (X )) and � : F (F (X )) → F (F (X )) as evA(�) = �(A). Its
important feature describes (comp. [24] Lemma 4)

Lemma 7. The evaluation map evA is nonexpansive, i.e.,

H [evA(�1), evA(�2)] ≤ Hsup[�1, �2].
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4. Hyper-condensing maps.

In this section we introduce the notion of a hyper-condensing multifunc-
tion. We shall say that a multifunction ϕ : X −◦ X is hyper-condensing, iff

∀A⊂F (X ), β#(A)<∞ β#{ϕ(A) : A∈ A}
{

< β#(A), when β#(A) > 0
= 0, when β#(A) = 0

.

This seemingly new concept – suggested by L. Górniewicz – is very similar
to the one of condensing map. Condensing maps allow us to treat both
contractions with compact values and compact maps together. What really
matters, for condensing maps we can formulate (due to G. Darbo and B. N.
Sadovskiı̌; see e.g. [1], [13]) a joint generalization of two fundamental fixed
point theorems: the Banach Principle and the Schauder Principle. Similarly,
the idea underlying the notion of hyper-condensing map is to build a bridge
between multivalued contractions (with noncompact values) and h-compact
multifunctions (developed in [6]; see also [5]).

We proceed to compare hyper-condensing maps with other classes of
multifunctions. Recall that a comparison function is the function η : [0, ∞) →
[0, ∞) fulfilling

(i) η(0) = 0, η(r) < r for r > 0,
(ii) r1 ≤ r2 ⇒ η(r1) ≤ η(r2) (monotonicity),
(iii) lims→r+ η(s) = η(r) (right continuity).

We refer to [17] for a useful discussion of various conditions usually put on
comparison functions.

We say that ϕ : X −◦ X is

• bounded, iff ϕ(X ) is bounded,
• compact, iff ϕ(X ) is compact,
• contractive, iff there exists a constant L ≥ 0 s.t.

∀ x1,x2∈X h
(
ϕ(x1), ϕ(x2)

) ≤ L d(x1, x2),

• weakly contractive, iff there exists a comparison function η s.t.

∀ x1 ,x2∈X h
(
ϕ(x1), ϕ(x2)

) ≤ η
(
d(x1, x2)

)
,

• condensing, iff

∀ A⊂X, β(A)<∞ β(ϕ(A))

{
< β(A), when β(A) > 0
= 0, when β(A) = 0

,
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• h-bounded, iff {ϕ(x ) : x ∈ X }h ⊂ F (X ) is h-bounded,

• h-compact, iff {ϕ(x ) : x ∈ X }h ⊂ F (X ) is h-compact,
• Hausdorff upper semicontinuous (shortly h-u.s.c.), iff

∀ x∈X ∀ ε>0 ∃ δ>0 ϕ( B(x , δ) , ⊂ Oεϕ(x ),

• uniformly Hausdorff upper semicontinuous (shortly u.h-u.s.c.), iff

∀ A∈F (X ) ∀ ε>0 ∃ δ>0 ϕ(OδA) ⊂ Oεϕ(A),

• h-continuous, iff the mapping ϕ : (X, d)→ (F (X ), h) is continuous.

For the notion of u.h-u.s.c. map see [23]. Relations between all introduced
classes of maps are established below.

weak contraction with
precompact values

��

��������
compact

���������

��

�����
���

�

���������

condensing bounded

weak contraction

��������������

�� ���������������� h-compact

������
�

		��
��

��
��

��
�

h-bounded

u.h-u.s.c.



������� h-continuous

��

hypercondensing

h-u.s.c.

We would like to point out that the “h-modification” of usual notions have
some limitations. It is illustrated by the following three propositions

Proposition 4. (a) If ϕ is contraction with constant L, then

∀ A1 ,A2⊂X h
(
ϕ(A1), ϕ(A2)

) ≤ L h(A1, A2).

(b) If ϕ is weakly contractive with comparison function η, then

∀ A1 ,A2⊂X h
(
ϕ(A1), ϕ(A2)

) ≤ η
(
h(A1, A2)

)
.
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Proposition 5. ([6], [5])
(a) ϕ is bounded if and only if ϕ is h-bounded with bounded values;
(b) ϕ) is compact if and only if ϕ is h-compact with compact values;

(c) ϕ is h-compact if and only if {ϕ(A) : A∈ F (X )}h is h-compact.

Proposition 6. A multifunction ϕ is condensing if and only if

∀A⊂F (X ), β#
K(X)

(A)<∞

β#K(X ){ϕ(A) : A∈ A}

⎧⎨
⎩

< β#k(X )(A), when β#K(X )(A) > 0

= 0, when β#K(X )(A) = 0
.

We skip the easy proofs noticing that the verification of Proposition 5 (c)
involves Proposition 2 and Proposition 6 involves Lemmata 2 and 4.

Remark 2. One can easily see that ϕ : X◦ X is hyper-condensing (h-compact)
whenever F : F (X )→ F (X ) is β#-condensing (resp. compact).

Next we show typical hyper-condensingmaps which are not condensing.

Example 1. Put ϕ : X −◦ X , ϕ(x ) = D(0, 1) ∀ x∈X , where X is an
infinite dimensional Banach space and D(0, 1) is the closed unit ball at 0. This
multifunction has noncompact values, it is bounded, h-compact and contractive;
so it is hyper-condensing.

Example 2. Put ϕ : X −◦ X , ϕ(x ) = X ∀ x∈X , where X is an infinite
dimensional Banach space. Although unbounded, it is h-compact. In particular
it is hyper-condensing and h-bounded.

Finally we prove (comp. [24] Th. 2)

Theorem 1. (On compact unions of hyper-condensing maps). Let {ϕt : X -
◦ X }t∈T be an hsup-compact family of hyper-condensing multifunctions. Then⋃

t∈T ϕt : X −◦ X is also a hyper-condensing map.

Proof. Let Ft and Ft # be the Barnsley-Hutchinson operators corresponding to
ϕt and A ∈ F (F (X )), 0 < β#(A) < ∞. We calculate

β#

{⋃
t∈T

ϕt(A) : A∈ A

}
(1)= β#

{⋃
t∈T

Ft(A) : A∈ A

}

(2)≤ β#�

[ ⋃
t∈T

{Ft (A) : A∈ A}h
]
(3)= β#

⋃
t∈T

{Ft (A) : A∈ A}h
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(4)= sup
t∈T

β#{Ft(A) : A∈ A}h (5)= β#{Ft0(A) : A∈ A}h (6)< β#(A),

where t0 ∈ T . (1) is due to Lemma 2, (2) holds by the definition of � and mono-
tonicity of β#, (3) is due to Proposition 2, and (6) is hyper-condensity of ϕt0 . For

(4) and (5) firstly observe that the family {Ft (A) : A∈ A}ht∈T ⊂ F (F (X )) is
H -compact. Indeed, from Proposition 3 {Ft #}t∈T ⊂ F (F (X ))F (F (X )) is Hsup-
compact, so we can apply Lemma 7. To the end, Proposition 1 yields (4) and
continuity of β# yields (5). �

5. Fixed points and attractors.

We would like to know whether the Barnsley-Hutchinson operator F
admits a fixed point? We know that F generated by a system of (weak)
contractions possess a unique fixed point among all bounded nonempty closed
sets; it is called a fractal ([14], [9], [26], [2]). On the other hand, F generated by
a system of compact or, more generally, condensing maps often has many fixed
points. Therefore, to get uniqueness we must look up for maximal fixed points
(see e.g. [10], [7], [17], [18], [7]). But it turns out that there is no difference
between searching for fixed points and maximal fixed points ([25], see also [12]
Th. 11 p. 198, [11] Th. 2.2, [19] Lemma (L), [22] Th. 2).

Theorem 2. For the Barnsley-Hutchinson operator F : F (X ) → F (X ) the
following are equivalent:

(o) There exists A∈ F (X ) such that A ⊂ F(A),
(i) F possess a fixed point,
(ii) F possess a maximal fixed point (no fixed points ,,above”),
(iii) F possess the greatest fixed point (all fixed points ,,under”).

The following technical statement relates fixed points on the double expo-
nentiate F (F (X )) to fixed points on F (X ).

Proposition 7. If F#(A) = A for a nonempty h-compact A ⊂ F (X ), then the
set

⋃
A ∈ F (X ) is a fixed point of the operator F . If additionally A is the

maximal fixed point of F#, then
⋃

A is the maximal fixed point of F .

Proof. Firstly observe that
⋃

A is indeed closed (Lemma 1). Further we have

F
(⋃

A
)

=
⋃
A∈A

ϕ(A) =
⋃
A∈A

F(A) =
⋃

F#(A) =
⋃

A =
⋃

A.

The second equality above follows from Lemma 2, the third one holds by
Lemma 3, and the fourth one is nothing but F#(A) = A.
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Let A = F#(A) be maximal. Any fixed point B = F(B) satisfies
F#(A ∪ {B}) = A ∪ {B}, so B ∈ A. Thus B ⊂ ⋃

A = F
( ⋃

A
)
, i.e.,

⋃
A is

the maximal fixed point of F . �
Now we are ready to state the main theorem which improves and general-

izes several earlier results ([10], [9], [2], [22], [23], [24]).

Theorem 3. (On attractors of hyper-condensing maps). Let ϕ : X −◦ X
be an h-bounded hyper-condensing map and let F : F (X ) → F (X ) be the
corresponding Barnsley-Hutchinson operator. Then

(i) There exists the maximal fixed point A∗ ∈ F (X ) of F .
(ii) The set M = ⋂∞

n=1 Fn(X ) is the global attractor of F , i.e., Fn(X ) → M
w.r.t. h (Fn denotes the n-fold composition of F ).

(iii) We have that A∗ ⊂ M. If ϕ is u.h-u.s.c., then A∗ = M.
(iv) If ϕ is bounded, then both A∗ and M are bounded.

Proof. Let us consider the transfinite iteration {Fα
# (F (X ))}α<χ ,

Fα
# (F (X )) =

⎧⎨
⎩

F (X ), for α = 0,
F#

[
F#α−1(F (X ))

]
, for isolated α,⋂

γ<α F
γ

# (F (X )), for limit α,

where χ is the first ordinal of cardinality greater than F (X ). This transfinite
sequence is decreasing. By Proposition 2 we have β#

[
F#(F (X ))

] = β#{ϕ(x ) :
x ∈ X } < ∞, since ϕ is h-bounded. From Lemma 1.6.11 in [1] we obtain

lim
n→∞ β#

[
Fn
# (F (X ))

] = 0,

because ϕ is hyper-condensing. Therefore by the Kuratowski Intersection
Theorem (e.g. [20], chap. III 30. I)

A∞ =
⋂
n<ω

Fn
# (F (X ))

is a nonempty h-compact family such that

(∗) Fn
# (F (X ))

−−−−−→
n → ∞ A∞ w.r.t. H.

(Symbol ω denotes the first infinite ordinal). Moreover F#(A∞) ⊂ A∞ . This
way we have secured that starting from α = ω our transfinite sequence consists
from h-compact families and it is well-defined.
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Ad (i). The iteration process must stabilize on some nonempty h-compact
family F δ

# (F (X )) = F δ+1
# (F (X )), δ < χ (see [22] Th.2). Applying now

Proposition 7 to A = F δ
# (F (X )) we get that A∗ = ⋃

A is the maximal fixed
point of F .

Ad (ii). Observe that Fn(X ) ∈ Fn
# (F (X )) for n < ω. Due to (∗) the h-

compact family A∞ attracts sequence {Fn(X )}∞n=1 , which in turn admits an h-
convergent subsequence Fkn (X ) → M ∈ A∞ . Since {Fn(X )}∞n=1 is monotone,
it must be convergent itself. This yields that M = ⋂∞

n=1 F
n(X ).

Ad (iii). Since A∗ = Fn(A∗) ⊂ Fn(X ), for n < ω, we have A∗ ⊂ M .
If additionally ϕ is u.h-u.s.c., then M is the fixed point of F as was proved in
[23].

Ad (iv). From (iii) we know that A∗ ⊂ M ⊂ F(X ). The latter set is
bounded provided ϕ is bounded. �

Remark 3. One could try to assume in (ii) the continuity of F# : (K(F (X )),
H ) → (K(F (X )), H ). But this would result in continuity of F : (F (X ), h) →
(F (X ), h) implying for ϕ : X −◦ X both h-continuity and u.h-u.s.c. So our
hypothesis is weaker (u.h-u.s.c. map need not be continuous).

An accompanying theorem (comp. [26], [18], [24]) is

Theorem 4. (On attractors of compact families of hyper-condensingmaps). Let
{ϕt : X −◦ X }t∈T be an hsup-compact family of h-bounded hyper-condensing
multifunctions and let F : F (X ) → F (X ) be the corresponding Barnsley-
Hutchinson operator. Then there hold (i), (ii) as above and

(iii) A∗ ⊂ M; if all ϕt are u.h-u.s.c., then A∗ = M.
(iv) If all ϕt are bounded, then both A∗ and M are bounded.

Proof. The thesis combines Theorems 3 and 1. �

Our theorems are applicable to multifunctions like those in Examples 1 and
2 which are usually excluded from general statements. Nevertheless we quote
an example of a very simple situationwhich cannot be handled in the framework
of hyper-condensing maps.

Example 3. Let ϕ : X −◦ X , ϕ(x ) = {x} for x ∈ X . This ,,multivalued identity”
generates the operators F : F (X ) → F (X ) and F# : F (F (X )) → F (F (X )),
both being identities. One easily sees that all closed sets are fixed points of
F with the whole space X as the maximal fixed point. Nevertheless this fact
cannot be deduced from Theorem 3, because F# is not condensing under any
measure of noncompactness on F (F (X )).
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[11] S. Heikkilä, On fixed points through a generalized iteration method with appli-
cations to differential and integral equations involving discontinuities, Nonlinear
Anal., 14 n. 5 (1990), pp. 413–426.

[12] P. Hitzler - A.K. Seda, Generalized metrics and uniquely determined logic pro-
grams, Theoret. Comput. Sci., 305 (2003), pp. 187–219.

[13] S. Hu - N.S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I: The-
ory, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht,
1997.

[14] J.E. Hutchinson, Fractals and self similarity, Indian. Univ. Math. J., 30 n.5
(1981), pp. 713–747.

[15] A. Illanes - S.B. Nadler Jr., Hyperspaces. Fundamentals and Recent Advances,
Pure and Applied Mathematics, Marcel Dekker Inc., New York - Basel, 1999.

[16] J.R. Jachymski, Equivalence of some contractivity properties over metrical struc-
tures, Proc. Amer. Math. Soc., 125 n. 8 (1997), pp. 2327–2335.

[17] J. Jachymski - L. Gajek - P. Pokarowski, The Tarski-Kantorovitch Principle and
the Theory of Iterated Function Systems, Bull. Austral. Math. Soc., 61 (2000), pp.
247–261.



80 KRZYSZTOF LEŚNIAK
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