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EXISTENCE AND MULTIPLICITY OF NON-ZERO
SOLUTIONS FOR THE
NEUMANN PROBLEM VIA SPHERICAL MAXIMA

MEHDI KHODABAKHSHI

In this paper, we are interested in the existence and multiplicity of
non-zero solutions for a two-point boundary value problems subject to
Neumann conditions. Our approach is based on a result on spherical max-
ima sharing the same Lagrange multiplier that was established recently by
Ricceri.

1. Introduction and preliminaries

In this article, we consider the Neumann problem
—u"+u=2Ao(t)f(u) t€[0,1] )
W(0)=u'(1)=0

where o : [0, 1] — R is a non-zero, non-negative continuous function, f : R —
R is a continuous function with f(0) =0 and A > 0 is a real parameter. In
particular, A. Tannizzotto, in [2], proved the the following result:
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Theorem 1.1. Let f : R — R be a continuous function such that, for some s > 0,

one has
¢ ¢

sup [ f(t)dt= sup [ f(t)dt.
El<sy 1&[<V2sy)
Then, for every continuous, non-zero and non-negative function o, : [0,1] — R,
the problem
—u"+u=a(t)f(u) t€]0,1]
{ W(0)=u(1)=0

has at least a solution whose norm in H'(]0,1[) is less than or equal to s.

Notice that when f(0) = 0 the quoted result does not guarantee the existence
of a non-zero solution.
Our purpose in this work is to show that, under the additional condition

there is a non-zero solution for some suitable A > 0, and also in Theorem 2.3,
we obtain at least two non-zero solutions for the problem (1), by using the
Ambrosetti-Rabinowitz condition (see [1]).

Here, we denote by X the Sobolev space H'(]0, 1[), and consider the following
scalar product on X :

1 1
<mv>:/w@w@w+/¢mwnw
0 0

with the induced norm
1

2

1 1
Jull = { [ bate) P+ [ [u/e) Pt
0 0

Let us define F(§) := foé f(t)dt, for every & € R. By the compact embed-

ding X — C([0, 1]), there exists a positive constant ¢ > 1 such that
[ull <cllull,  (VueX)

where c is the best constant of the embedding and thanks to [2], ¢ = v/2. More-
over we introduce the functional J : X — R associated with (1),

1
nm:/amnmmm.
0
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Standard arguments show that J is a well defined and continuously Gateaux
differentiable functional whose Gateaux derivative is given by

1
T = [ el fu)d
0

for every u,v € X.
By classical results, the critical points of the functional %HHZ —AJ(.) in
H'(]0,1[) are exactly the classical solutions of (1).

Definition 1.2. A Gateaux differentiable function / satisfies the Palais-Smale
condition if any sequence {u,} such that
(a) {I(uy,)} is bounded,

(b) Timy oo | (14) |
has a convergent subsequence.

X* :0,

Our main tool to investigate the existence and multiplicity of solutions for
the problem (1) is a result on spherical maxima sharing the same Lagrange
multiplier due to B. Ricceri [3, Theorem 1], which we now recall in a convenient
form. First, we begin by introducing some notations. If X is a real Hilbert space,
for each p > 0, set

Sp={xeX: |lull =p},
By ={xeX: |lull <p},

and

Bp = supJ, Op = sup —J(x)z.
By xeBp\ {0} |||

Theorem 1.3. For some p > 0, assume that J is Gdteaux differentiable in
int(Bp)\{0} and

[f;’ <5, 2)
For each r €|Bp, +oo[, put
p— Iyl
r) = su
n( ) yeBI,), I’*J(y)

and
I(r) = {xEBP : ’;_M) :n(r)}.

Then the following assertions hold:
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i) the function 1 is convex and decreasing in |Bp, oo, with lim, 1 (r) =

0;
ii) for each r €|By,p 0y, the set I'(r) is non-empty and, for every £ € I'(r),
one has
0<|2l*<p
and

e JxeS,e :J(x) = supJ
Sq2
3]

 {xems): L =i = ng (Il -n01209) }

yEB,
C {xEX tx= ng)J’(x)}.

In this work, the valuable and main way for providing condition (2), that
was proved in ([3], Proposition 2), is the following

Proposition 1.4. For some s > 0, assume that J is Gdteaux differentiable in
Bs\{0} and that there exists a global maximum % of J|p, such that

(J'(%), %) <2J(%).

Then (2) holds with p = ||£]|*.

2. Main results

Our main result is the following.
Theorem 2.1. Assume that f : R — R be a continuous function such that

i) there exist a s > 0 and &y € R with |&y| < /s such that

F(&)= sup F(&)
E1<V2s

ii) F(&) > 0.

Then, for each non-zero, non-negative, continuous function o : [0,1] — R
there exists a non-degenerate interval

Iy C|0,+o0[, such that, for every A € Iy, the problem (1) has at least a
non-zero solution whose norm in H'(]0,1|) is less than |&| .
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Proof. Our aim is to apply Theorem 1.3 with X = H'(]0,1]) and
1

J(u) = [o(t)F (u(t))dt.
0

Set p = |&|*. By the compact embedding X < C([0,1]), it is easy to show
that the functional J is a sequentially weakly continuous. Then, for every a > 0,
the functional ||.||*> — aJ(.) is sequentially weakly lower semicontinuous. Fix a
non-zero, non-negative continuous function o : [0,1] — R. Let us prove that

%” < 0p. Denote by ug the constant function ug(t) = &y for every ¢ € [0,1].

Clearly uo € X. By i) and since ||u||., < v/2|u|| for every u € H'(]0,1[), then
we have

1 1

sup J(u) < sup F(E) / a(n)dr | = F(&) / a(t)dr

2.

then sup J(u) =J(up). On the other hand, since

2
[Jul”<s

i
(' (uo), uo) Z/O‘(l)f(fo)uo(l)dt,
0

by ii) and f(&y) =0, we get
1

(I (o), up) = 0 < 2F (&) /a(t)dt — 27 (up).
0

So, thanks to Proposition 1.4, the condition % < 8, is verified. Therefore, all
conclusions of Theorem 1.3 hold. Put

Iy = {”;r):remp,pap[}. 3)

Then, since the function 1 :]f,,4co[— R is continuous and decreasing, I, is a
non-degenerate interval, Now, fix A € I,. So, there is a r €|y, p 8, [ such that

A= @ Then, by ii) of Theorem 1.3, there exists £ € I'(r) such that
0 < [I£]] < [&ol

and

2= ”g) J(®) = A (%),
which means that the problem (1) has at least a non-zero solution whose norm

in H'(]0, 1) is less than | &| . O
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Remark 2.2. In view of ii) of Theorem 1.3, it is clear that the non-zero solution
of the conclusion of Theorem 1.3 is a local minimum of the functional %||||2 -

AJ().

Theorem 2.3. Let the assumptions of Theorem 1.3 be satisfied. Moreover, as-
sume that

i) limsup% <0

£—0

ii) there are constants |t > 2 and r > 0 such that for |&| > r,
0 <uF(8) <Ef(&)

Then, for each non-zero, non-negative, continuous function o : [0, 1] — R there
exists a non-degenerate interval I, C|0,+co[ such that, for every A € Iy, the
problem (1) has at least two non-zero solutions, one of which has norm in
H'(]0,1[) less than || .

Proof. Let o : [0,1] — R be a non-zero, non-negative continuous function. By
Theorem 1.3 and Remark 2.2, there exists a non-degenerate interval A € I,
such that, for every A € Iy, the functional %HHZ — AJ(.) has a non-zero local
minimum # whose norm in H'(]0,1]) is less than |y|. By i), there exists a

o > 0 such that |

F(§) < ——8%
81 (supa)

[0,1]

for every § €] — 0,0]. SetV = {u c H'(]0,1]) : [ju]| < %} . Then we have

1
1 1 1
) = Sl = A0 w) > 5l =2 | [ alt)uto) e
81 (sup a) 0
[0,1]
1

1 1
ZZWW—lGﬁa>WWm—MWWZO
8A <sup Ot) 01

[0,1]

for every u € V. So, 0 is another local minimum of the functional % ||. 12— AJ(.).
On the other hand, a very classical reasoning shows that, by ii), the same func-
tional satisfies the Palais-Smale condition. So, by Corollary 1 of [4], this func-
tional has a third critical point, and the proof is compelete. O
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Example 2.4. In connection with Theorem 2.1, consider the following problem
—u"+u=2Ao(t)f(u) in[0,1]
' (0) =u'(1) =0,
where f : R — R is defined by
—13 —¢? 1 <0,
t)= -
f(t) { 005 (51 +31%) 1> 0.

Then, for each non-zero, non-negative, continuous function « : [0, 1] — R there
exists a non-degenerate interval I, C]0,+4oo[ such that, for every A € I, the
above problem has at least a non-zero solutions whose norm in H'(]0, 1[) is less
than 1.

To prove this, we can apply Theorem 2.1 by taking §y = —1 and s = 1. A simple
computation shows that

All the assumptions of Theorem 2.1 are so verified and the conclusion follows.

Example 2.5. In connection with Theorem 2.3, consider the following problem

{ —u"+u=2Ao(t)f(u) in[0,1]
uW'(0)=u'(1)=0,

where f : R — R is defined by

—(t+1)? <1

—8msin(167t) —g<t<i
fry=3 lémsin(l6m(t—3)) g<t<3

(t—1)2 t>1

0 o.w

Then, for each non-zero, non-negative, continuous function o : [0, 1] — R there
exists a non-degenerate interval I, C]0,+oo[ such that, for every A € Iy, the
above problem has at least two non-zero solutions, one of which has norm in
H'(]0,1[) less than %.

To prove this, we can apply Theorem 2.3, by taking &) = 15—6, s = %, r=1and
U = 3. A simple computation shows that

g o
swp [ f@0de = [ Fwyar,
/

<
EI<1;
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and also
0 < 1F(x) < xf(x),

for every |x| > 1. Further, since the function F is negative in some neighborhood
of origin so, we have
F
lim sup (6)

£—0 52

<0.

Finally, all the assumptions of Theorem 2.3 are so verified and the conclusion
follows.
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