EXISTENCE AND MULTIPLICITY OF NON-ZERO SOLUTIONS FOR THE NEUMANN PROBLEM VIA SPHERICAL MAXIMA

MEHDI KHODABAKHSHI

In this paper, we are interested in the existence and multiplicity of non-zero solutions for a two-point boundary value problems subject to Neumann conditions. Our approach is based on a result on spherical maxima sharing the same Lagrange multiplier that was established recently by Ricceri.

1. Introduction and preliminaries

In this article, we consider the Neumann problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=\lambda \alpha(t) f(u) \quad t \in[0,1] \tag{1}\\
u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

where $\alpha:[0,1] \rightarrow \mathbb{R}$ is a non-zero, non-negative continuous function, $f: \mathbb{R} \rightarrow$ \mathbb{R} is a continuous function with $f(0)=0$ and $\lambda>0$ is a real parameter. In particular, A. Iannizzotto, in [2], proved the the following result:

Entrato in redazione: 12 agosto 2016
AMS 2010 Subject Classification: 34B15
Keywords: Neumann problem; Spherical maxima; Palais-Smale condition; Variational methods; Critical point

Theorem 1.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that, for some $s>0$, one has

$$
\sup _{|\xi| \leq s} \int_{0}^{\xi} f(t) d t=\sup _{|\xi| \leq \sqrt{2} s} \int_{0}^{\xi} f(t) d t
$$

Then, for every continuous, non-zero and non-negative function $\alpha:[0,1] \rightarrow \mathbb{R}$, the problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=\alpha(t) f(u) \quad t \in[0,1] \\
u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

has at least a solution whose norm in $H^{1}(] 0,1[)$ is less than or equal to s.
Notice that when $f(0)=0$ the quoted result does not guarantee the existence of a non-zero solution.
Our purpose in this work is to show that, under the additional condition

$$
\sup _{|\xi| \leq s} \int_{0}^{\xi} f(t) d t>0
$$

there is a non-zero solution for some suitable $\lambda>0$, and also in Theorem 2.3, we obtain at least two non-zero solutions for the problem (1), by using the Ambrosetti-Rabinowitz condition (see [1]).
Here, we denote by X the Sobolev space $H^{1}(] 0,1[)$, and consider the following scalar product on X :

$$
<u, v>=\int_{0}^{1} u^{\prime}(t) v^{\prime}(t) d t+\int_{0}^{1} u(t) v(t) d t
$$

with the induced norm

$$
\|u\|=\left(\int_{0}^{1}|u(t)|^{2} d t+\int_{0}^{1}\left|u^{\prime}(t)\right|^{2} d t\right)^{\frac{1}{2}}
$$

Let us define $F(\xi):=\int_{0}^{\xi} f(t) d t$, for every $\xi \in \mathbb{R}$. By the compact embed$\operatorname{ding} X \hookrightarrow C([0,1])$, there exists a positive constant $c>1$ such that

$$
\|u\|_{\infty} \leq c\|u\|, \quad(\forall u \in X)
$$

where c is the best constant of the embedding and thanks to [2], $c=\sqrt{2}$. Moreover we introduce the functional $J: X \rightarrow \mathbb{R}$ associated with (1),

$$
J(u)=\int_{0}^{1} \alpha(t) F(u(t)) d t
$$

Standard arguments show that J is a well defined and continuously Gâteaux differentiable functional whose Gâteaux derivative is given by

$$
J^{\prime}(u)(v)=\int_{0}^{1} \alpha(t) f(u(t)) v(t) d t
$$

for every $u, v \in X$.
By classical results, the critical points of the functional $\frac{1}{2}\|\cdot\|^{2}-\lambda J($.$) in$ $H^{1}(] 0,1[)$ are exactly the classical solutions of (1).

Definition 1.2. A Gâteaux differentiable function I satisfies the Palais-Smale condition if any sequence $\left\{u_{n}\right\}$ such that
(a) $\left\{I\left(u_{n}\right)\right\}$ is bounded,
(b) $\lim _{n \rightarrow+\infty}\left\|I^{\prime}\left(u_{n}\right)\right\|_{X^{*}}=0$,
has a convergent subsequence.
Our main tool to investigate the existence and multiplicity of solutions for the problem (1) is a result on spherical maxima sharing the same Lagrange multiplier due to B. Ricceri [3, Theorem 1], which we now recall in a convenient form. First, we begin by introducing some notations. If X is a real Hilbert space, for each $\rho>0$, set

$$
\begin{aligned}
& S_{\rho}=\{x \in X:\|u\|=\rho\} \\
& B_{\rho}=\{x \in X:\|u\| \leq \rho\}
\end{aligned}
$$

and

$$
\beta_{\rho}=\sup _{B_{\rho}} J, \quad \delta_{\rho}=\sup _{x \in B_{\rho} \backslash\{0\}} \frac{J(x)}{\|x\|^{2}} .
$$

Theorem 1.3. For some $\rho>0$, assume that J is Gâteaux differentiable in $\operatorname{int}\left(B_{\rho}\right) \backslash\{0\}$ and

$$
\begin{equation*}
\frac{\beta_{\rho}}{\rho}<\delta_{\rho} \tag{2}
\end{equation*}
$$

For each $r \in] \beta_{\rho},+\infty[$, put

$$
\eta(r)=\sup _{y \in B_{\rho}} \frac{\rho-\|y\|^{2}}{r-J(y)}
$$

and

$$
\Gamma(r)=\left\{x \in B_{\rho}: \frac{\rho-\|x\|^{2}}{r-J(x)}=\eta(r)\right\}
$$

Then the following assertions hold:
i) the function η is convex and decreasing in $] \beta_{\rho},+\infty\left[\right.$, with $\lim _{r \rightarrow+\infty} \eta(r)=$ 0 ;
ii) for each $r \in] \beta_{\rho}, \rho \delta_{\rho}[$, the set $\Gamma(r)$ is non-empty and, for every $\hat{x} \in \Gamma(r)$, one has

$$
0<\|\hat{x}\|^{2}<\rho
$$

and

$$
\begin{gathered}
\hat{x} \in\left\{x \in S_{\|\hat{x}\|^{2}}: J(x)=\sup _{S_{\|x\|^{2}} J}\right\} \\
\subseteq\left\{x \in \operatorname{int}\left(B_{\rho}\right):\|x\|^{2}-\eta(r) J(x)=\inf _{y \in B_{\rho}}\left(\|y\|^{2}-\eta(r) J(y)\right)\right\} \\
\subseteq\left\{x \in X: x=\frac{\eta(r)}{2} J^{\prime}(x)\right\} .
\end{gathered}
$$

In this work, the valuable and main way for providing condition (2), that was proved in ([3], Proposition 2), is the following

Proposition 1.4. For some $s>0$, assume that J is Gâteaux differentiable in $B_{s} \backslash\{0\}$ and that there exists a global maximum \hat{x} of $J_{\mid B_{s}}$ such that

$$
\left\langle J^{\prime}(\hat{x}), \hat{x}\right\rangle<2 J(\hat{x}) .
$$

Then (2) holds with $\rho=\|\hat{x}\|^{2}$.

2. Main results

Our main result is the following.
Theorem 2.1. Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that
i) there exist a $s>0$ and $\xi_{0} \in \mathbb{R}$ with $\left|\xi_{0}\right| \leq \sqrt{s}$ such that

$$
F\left(\xi_{0}\right)=\sup _{|\xi| \leq \sqrt{2 s}} F(\xi)
$$

ii) $F\left(\xi_{0}\right)>0$.

Then, for each non-zero, non-negative, continuous function $\alpha:[0,1] \rightarrow \mathbb{R}$ there exists a non-degenerate interval
$\left.I_{\alpha} \subset\right] 0,+\infty\left[\right.$, such that, for every $\lambda \in I_{\alpha}$, the problem (1) has at least a non-zero solution whose norm in $H^{1}(] 0,1[)$ is less than $\left|\xi_{0}\right|$.

Proof. Our aim is to apply Theorem 1.3 with $X=H^{1}(] 0,1[)$ and
$J(u)=\int_{0}^{1} \alpha(t) F(u(t)) d t$.
Set $\rho=\left|\xi_{0}\right|^{2}$. By the compact embedding $X \hookrightarrow C([0,1])$, it is easy to show that the functional J is a sequentially weakly continuous. Then, for every $a>0$, the functional $\|\cdot\|^{2}-a J($.$) is sequentially weakly lower semicontinuous. Fix a$ non-zero, non-negative continuous function $\alpha:[0,1] \rightarrow \mathbb{R}$. Let us prove that $\frac{\beta_{\rho}}{\rho}<\delta_{\rho}$. Denote by u_{0} the constant function $u_{0}(t)=\xi_{0}$ for every $t \in[0,1]$. Clearly $u_{0} \in X$. By i) and since $\|u\|_{\infty} \leq \sqrt{2}\|u\|$ for every $u \in H^{1}(] 0,1[)$, then we have

$$
\sup _{\|u\|^{2} \leq s} J(u) \leq \sup _{|\xi| \leq \sqrt{2 s}} F(\xi)\left(\int_{0}^{1} \alpha(t) d t\right)=F\left(\xi_{0}\right)\left(\int_{0}^{1} \alpha(t) d t\right)
$$

then $\sup J(u)=J\left(u_{0}\right)$. On the other hand, since

$$
\|u\|^{2} \leq s
$$

$$
\left\langle J^{\prime}\left(u_{0}\right), u_{0}\right\rangle=\int_{0}^{1} \alpha(t) f\left(\xi_{0}\right) u_{0}(t) d t
$$

by $i i$) and $f\left(\xi_{0}\right)=0$, we get

$$
\left\langle J^{\prime}\left(u_{0}\right), u_{0}\right\rangle=0<2 F\left(\xi_{0}\right)\left(\int_{0}^{1} \alpha(t) d t\right)=2 J\left(u_{0}\right)
$$

So, thanks to Proposition 1.4, the condition $\frac{\beta_{\rho}}{\rho}<\delta_{\rho}$ is verified. Therefore, all conclusions of Theorem 1.3 hold. Put

$$
\begin{equation*}
I_{\alpha}:=\left\{\frac{\eta(r)}{2}: r \in\right] \beta_{\rho}, \rho \delta_{\rho}[\} \tag{3}
\end{equation*}
$$

Then, since the function $\eta:] \beta_{\rho},+\infty\left[\rightarrow \mathbb{R}\right.$ is continuous and decreasing, I_{α} is a non-degenerate interval, Now, fix $\lambda \in I_{\alpha}$. So, there is a $\left.r \in\right] \beta_{\rho}, \rho \delta_{\rho}[$ such that $\lambda=\frac{\eta(r)}{2}$. Then, by $\left.i i\right)$ of Theorem 1.3, there exists $\hat{x} \in \Gamma(r)$ such that

$$
0<\|\hat{x}\|<\left|\xi_{0}\right|
$$

and

$$
\hat{x}=\frac{\eta(r)}{2} J^{\prime}(\hat{x})=\lambda J^{\prime}(\hat{x})
$$

which means that the problem (1) has at least a non-zero solution whose norm in $H^{1}(] 0,1[)$ is less than $\left|\xi_{0}\right|$.

Remark 2.2. In view of $i i$) of Theorem 1.3, it is clear that the non-zero solution of the conclusion of Theorem 1.3 is a local minimum of the functional $\frac{1}{2}\|\cdot\|^{2}-$ $\lambda J($.$) .$

Theorem 2.3. Let the assumptions of Theorem 1.3 be satisfied. Moreover, assume that
i) $\limsup _{\xi \rightarrow 0} \frac{F(\xi)}{\xi^{2}} \leq 0$;
ii) there are constants $\mu>2$ and $r>0$ such that for $|\xi| \geq r$,

$$
0<\mu F(\xi) \leq \xi f(\xi)
$$

Then, for each non-zero, non-negative, continuous function $\alpha:[0,1] \rightarrow \mathbb{R}$ there exists a non-degenerate interval $\left.I_{\alpha} \subset\right] 0,+\infty\left[\right.$ such that, for every $\lambda \in I_{\alpha}$, the problem (1) has at least two non-zero solutions, one of which has norm in $H^{1}(] 0,1[)$ less than $\left|\xi_{0}\right|$.

Proof. Let $\alpha:[0,1] \rightarrow \mathbb{R}$ be a non-zero, non-negative continuous function. By Theorem 1.3 and Remark 2.2, there exists a non-degenerate interval $\lambda \in I_{\alpha}$, such that, for every $\lambda \in I_{\alpha}$, the functional $\frac{1}{2}\|\cdot\|^{2}-\lambda J($.$) has a non-zero local$ minimum \hat{x} whose norm in $H^{1}(] 0,1[)$ is less than $\left|\xi_{0}\right|$. By i, there exists a $\sigma>0$ such that

$$
F(\xi) \leq \frac{1}{8 \lambda\left(\sup _{[0,1]} \alpha\right)} \xi^{2}
$$

for every $\xi \in]-\sigma, \sigma\left[\right.$. Set $V=\left\{u \in H^{1}(] 0,1[):\|u\|<\frac{\sigma}{\sqrt{2}}\right\}$. Then we have

$$
\begin{aligned}
I_{\lambda}(u)= & \frac{1}{2}\|u\|^{2}-\lambda J(u) \geq \frac{1}{2}\|u\|^{2}-\lambda \frac{1}{8 \lambda\left(\sup _{[0,1]} \alpha\right)}\left(\int_{0}^{1} \alpha(t)|u(t)|^{2} d t\right) \\
& \geq \frac{1}{2}\|u\|^{2}-\lambda \frac{1}{8 \lambda\left(\sup _{[0,1]} \alpha\right)}\left(\sup _{[0,1]} \alpha\right)\|u\|_{\infty}^{2}=\frac{1}{4}\|u\|^{2} \geq 0
\end{aligned}
$$

for every $u \in V$. So, 0 is another local minimum of the functional $\frac{1}{2}\|.\|^{2}-\lambda J($.$) .$ On the other hand, a very classical reasoning shows that, by $i i$), the same functional satisfies the Palais-Smale condition. So, by Corollary 1 of [4], this functional has a third critical point, and the proof is compelete.

Example 2.4. In connection with Theorem 2.1, consider the following problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=\lambda \alpha(t) f(u) \quad \text { in }[0,1] \\
u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
f(t)= \begin{cases}-t^{3}-t^{2} & t \leq 0 \\ \frac{1}{1000}\left(5 t^{4}+3 t^{2}\right) & t>0\end{cases}
$$

Then, for each non-zero, non-negative, continuous function $\alpha:[0,1] \rightarrow \mathbb{R}$ there exists a non-degenerate interval $\left.I_{\alpha} \subseteq\right] 0,+\infty\left[\right.$ such that, for every $\lambda \in I_{\alpha}$, the above problem has at least a non-zero solutions whose norm in $H^{1}(] 0,1[)$ is less than 1 .
To prove this, we can apply Theorem 2.1 by taking $\xi_{0}=-1$ and $s=1$. A simple computation shows that

$$
\sup _{|\xi| \leq \sqrt{2}} \int_{0}^{\xi} f(t) d t=\int_{0}^{\xi_{0}} f(t) d t
$$

All the assumptions of Theorem 2.1 are so verified and the conclusion follows.
Example 2.5. In connection with Theorem 2.3, consider the following problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=\lambda \alpha(t) f(u) \quad \text { in }[0,1] \\
u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
f(t)= \begin{cases}-(t+1)^{2} & t \leq-1 \\ -8 \pi \sin (16 \pi t) & -\frac{1}{8}<t \leq \frac{1}{8} \\ 16 \pi \sin \left(16 \pi\left(t-\frac{1}{4}\right)\right) & \frac{1}{8}<t \leq \frac{3}{8} \\ (t-1)^{2} & t \geq 1 \\ 0 & o . w\end{cases}
$$

Then, for each non-zero, non-negative, continuous function $\alpha:[0,1] \rightarrow \mathbb{R}$ there exists a non-degenerate interval $\left.I_{\alpha} \subseteq\right] 0,+\infty\left[\right.$ such that, for every $\lambda \in I_{\alpha}$, the above problem has at least two non-zero solutions, one of which has norm in $H^{1}(] 0,1[)$ less than $\frac{5}{16}$.
To prove this, we can apply Theorem 2.3, by taking $\xi_{0}=\frac{5}{16}, s=\frac{1}{2}, r=1$ and $\mu=3$. A simple computation shows that

$$
\sup _{|\xi| \leq 1} \int_{0}^{\xi} f(t) d t=\int_{0}^{\xi_{0}} f(t) d t
$$

and also

$$
0<\mu F(x) \leq x f(x)
$$

for every $|x| \geq 1$. Further, since the function F is negative in some neighborhood of origin so, we have

$$
\limsup _{\xi \rightarrow 0} \frac{F(\xi)}{\xi^{2}} \leq 0
$$

Finally, all the assumptions of Theorem 2.3 are so verified and the conclusion follows.

REFERENCES

[1] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
[2] A. Iannizzotto, A sharp existence and localization theorem for a Neumann problem, Arch. Math. 82 (2004), 352-360.
[3] B. Ricceri, A note on spherical maxima sharing the same Lagrange multiplier, Fixed Point Theory and Applications. 2014 (2014): 25.
[4] P. Pucci, J. Serrin, A mountain pass theorem, J. Differential Equations. 60 (1985), 142-149.

MEHDI KHODABAKHSHI
Department of Mathematics,Faculty of Mathematical and Computer Sciences University of Shahid Chamran ,Ahwaz,Iran e-mail: m.khodabakhshi11@gmail.com

