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SOME REMARKS
ON THE CANTOR PAIRING FUNCTION

MERI LISI

In this paper, some results and generalizations about the Cantor pairing
function are given. In particular, it is investigated a very compact expression
for the n-degree generalized Cantor pairing function (g.C.p.f., for short), that
permits to obtain n−tupling functions which have the characteristics to be
n-degree polynomials with rational coefficients. A recursive formula for the
n-degree g.C.p.f. is also provided.

1. Introduction.

In mathematics a pairing function is a process to uniquely encode
two natural numbers into a single natural number. Any pairing function
can be used in set theory to prove that integers and rational numbers have
the same cardinality as natural numbers. In theoretical computer science,
pairing functions are used to encode a function defined on a vector of
natural numbers f : N k → N into a new function, [6], [9], [12], [13].

Definition 1.1. The function 〈·, ·〉: N
2 → N, such that

(1) 〈x1, x2〉 = (x1 + x2)
2 + 3x1 + x2

2
, ∀ (x1, x2) ∈ N

2,

is called the Cantor “pairing” function. �
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The fundamental property of the Cantor pairing function is given by
the following theorem.

Theorem 1.1. The Cantor pairing function is a bijection from N
2 onto

N.

Proof. In order to prove the theorem, consider the straight lines
x1 + x2 = k , with k ∈ N. It is clear that the “point” (x̄1, x̄2) belongs to
x1+x2 = x̄1+ x̄2, or, more precisely, to the intersection of x1+x2 = x̄1+ x̄2

with the first quadrant of the euclidean plane.
Hence, for any (x̄1 + x̄2) fixed, moving along the line x1 + x2 = k

towards increasing ordinates (k = 0, . . . , x̄1 + x̄2), let us list all the
couples of natural numbers we “meet” and associate to each one of these
an increasing natural number, starting from zero.

Thanks to a simple (pascal) algorithm, we have a bijective corre-
spondence between N

2 and N. The variable output represents the natural
number associated to (x1, x2):

program pairing
var i, j, k, x1, x2, output : 0..maxint;
begin

output := 0
for k = 0 to (x1 + x2) do
begin

for (i = 0 to k) and ( j = k to 0) do
begin

if (x1 = i) and (x2 = j)
then write (output);
else

begin
i := i + 1;
j := j − 1;
output := output + 1;

end;
end;
k := k + 1;

end.
end. �

By using the previous algorithm, we can build Table 1, where we
list the couples of natural numbers (x1, x2). We stop at (3, 0).
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Remark 1.1. In what follows we shall use the following notation: N n(k)

indicates the number of n-tuples satisfying condition
n∑

i=1

xi = k . For the

pairing function, we have:

(2) N2(k) = k + 1. �

(x1,x2) (0,0) (0,1) (1,0) (0,2) (1,1) (2,0) (0,3) (1,2) (2,1) (3,0)

output 0 1 2 3 4 5 6 7 8 9
k 0 1 2 3

N2(k) 1 2 3 4

Table 1

The Cantor pairing function is a second degree polynomial, with
rational coefficients, [1], [2], [3], [7]. Rudolph Fueter proposed in 1923
four conjectures about the set of polynomial pairing functions, [11].

By composition, we can obtain “tripling” functions, “quadrupling”
functions and so on. By using (1), a possible tripling function is given
by 〈·, ·, ·〉: N

3 → N, such that:

(3) 〈x1, x2, x3〉 = 〈x1, 〈x2, x3〉〉 =
{

x1 + [(x2 + x3)
2 + 3x2 + x3]

2

}2

+ 3x1 + [(x2 + x3)
2 + 3x2 + x3]

2
2

.

However, note that, listing the terns of natural numbers (x1, x2, x3) in a
way similar to that used for the pairing function (in this case, we consider
the planes x1 + x2 + x3 = k , with k ∈ N), we are not able to identify a
generalized rule of order. In fact, by means of an analogous algorithm,
we can build Table 2 (we stop at (2, 0, 0)):

(x1,x2,x3) (0,0,0) (0,0,1) (1,0,0) (0,1,0) (1,0,1) (2,0,0) (0,0,2) (1,1,0) (2,0,1) (3,0,0)

output 0 1 2 3 4 5 6 7 8 9

Table 2

Note also that the tripling function (3), obtained by means of a
composition, is a fourth degree polynomial. Spontaneous questions arise:
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is it possible to have tripling functions which are third degree polynomials,
quadrupling functions which are fourth degree polynomials and so on?
And moreover: does a generalized formula exist, that permits to obtain
these polynomials in a simple way?

2. The n-degree generalized Cantor pairing function.

Theorem 2.1. For any n ∈ N, the so-called “n-tupling” function
, 〈·, ..., ·〉 : N

n → N, such that

(4) 〈x1, ..., xn〉 =
n∑

h=1

{
1

h!

h−1∏
j=0

[( h∑
i=1

xi

)
+ j

]}
, ∀(x1, ..., xn) ∈ N

n,

is an n-degree polynomial, with rational coefficients. Moreover it is a
one-to-one correspondence from N

n onto N.

Proof. We can prove the theorem by induction on the degree n. In
order to do this, before studying the inductive case, we analyze some
particular cases.

Case n = 1
From definition (4), we have 〈x1〉 = x1.
In this case, 〈·〉 is trivially a bijection from N to N.

Case n = 2
From definition (4), we have:

〈x1, x2〉 =
2∑

h=1

{
1

h!

h−1∏
j=0

[( h∑
i=1

xi

)
+ j

]}

= x1 + (x1 + x2)(x1 + x2 + 1)

2
= (x1 + x2)

2 + 3x1 + x2

2
.

This is the Cantor pairing function, we have just proved in Theorem
1.1 to be a bijection from N

2 to N .

Case n = 3
Let us build a bijection from N

3 to N, by defining a way of ordering
terns similar to that followed for couples of the pairing function, at the
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previous step: first organize terns of natural numbers (x1, x2, x3) according
to their plane of belongings

∑3
i=1 xi = k , with increasing k ≥ 0 (k ∈ N).

Then, for any plane, put the “points” in order as follows:

(x1, x2, x3) < (y1, y2, y3) if x3 > y3 or if x3 = y3

and < x1, x2 > is smaller than < y1, y2 >,

where the way of organizing < x1, x2 > is that defined for the pairing
function < y1, y2 >. This permits to build Table 3. We stop at (2, 0, 0).

(x1,x2,x3) (0,0,0) (0,0,1) (0,1,0) (1,0,0) (0,0,2) (0,1,1) (1,0,1) (0,2,0) (1,1,0) (2,0,0)
<x1,x2,x3> 0 1 2 3 4 5 6 7 8 9

k 0 1 2
N3(k) 1 3 6

Table 3

Note that

(5) N3(k) =
k∑

h=0

(h + 1) = 1

2!

2∏
j=1

(k + j)

indicates the number of terns satisfying
3∑

i=1

xi = k . In particular, from

(2), we have:

(6) N3(k) =
k∑

h=0

N2(h).

Hence, to identify a given z3 = (x̄1, x̄2, x̄3), with
3∑

i=1

x̄i = m (x̄i , m ∈
N), we have to take into account all those points “coming before” it.

First, we have to consider all those “points” such that
3∑

i=1

xi = g, for

any xi , g ∈ N, with g < m . They are:
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m−1∑
l=0

N3(l) =
m−1∑
l=0

l∑
h=0

N2(h) =
m−1∑
l=0

l∑
h=0

(h + 1)

=
m−1∑
l=0

1

2!

2∏
j=1

(l + j) = 1

3!

2∏
j=0

(m + j),

where we used (5), (6) and relation (10) proved in Appendix.

Then, we have to consider all those terns satisfying
3∑

i=1

x̄i = m

but “smaller” than z3. Since the rule of ordering the first two terms of
(x1, x2, x3) is that used for the Cantor pairing, we have that, starting from
0, the natural number associated to (x̄1, x̄2, x̄3) is:

1

3!

2∏
j=0

[( 3∑
i=1

x̄i

)
+ j

]
+ 1

2!

1∏
j=0

[( 2∑
i=1

x̄i

)
+ j

]
+ x̄1

= (x̄1 + x̄2 + x̄3)(x̄1 + x̄2 + x̄3 + 1)(x̄1 + x̄2 + x̄3 + 2)

3!
+

+(x̄1 + x̄2)(x̄1 + x̄2 + 1)

2!
+ x̄1

= (x̄1 + x̄2 + x̄3)
3 + 3(x̄1 + x̄2 + x̄3)

2 + 2(x̄1 + x̄2 + x̄3)

6
+

+(x̄1 + x̄2)
2 + (x̄1 + x̄2)

2
+ x̄1.

Since

(7) 〈x1, x2, x3〉 =
3∑

h=1

{
1

h!

h−1∏
j=0

[( h∑
i=1

xi

)
+ j

]}
,

we proved that the tripling function given by relation (7) represents a
third degree polynomial with rational coefficients and it turns out to be
a bijection from N

3 to N.

Consider the inductive case: assume < x1, . . . , xn > to be a bijection
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from N
n to N, for any n ≥ 1 and that the n-tuples of natural numbers

satisfying
n∑

i=1

xi = k are:

(8)

Nn(k) =
k∑

h=0

Nn−1(h) =
k∑

h=0

1

(n − 2)!

n−2∏
j=1

(h + j)

= 1

(n − 1)!

n−1∏
j=1

(k + j).

Now, we want to prove that

〈x1, . . . , xn+1〉 =
n+1∑
h=1

{
1

h!

h−1∏
j=0

[( h∑
i=1

xi

)
+ j

]}

is a polynomial of degree (n+1), with rational coefficients and a bijection
from N

n+1 to N.
By using a rule of ordering the (n + 1)−tuples similar to that

followed for the n−tupling function, we build a bijection from N
n+1 to

N. In particular, ordinate the (n +1)-tuples of natural numbers according

to relation
n+1∑
i=1

xi = k , with increasing k ≥ 0, k ∈ N. Organize the

“points” satisfying
n+1∑
i=1

xi = k as follows: (x1, ..., xn+1) < (y1, ..., yn+1)

if xn+1 > yn+1 or if xn+1 = yn+1 and < x1, ..., xn > is smaller than
< y1, . . . , yn >. Hence:

(9)

Nn+1(k) =
k∑

h=0

Nn(h) =
k∑

h=0

1

(n − 1)!

n−1∏
j=1

(h + j)

= 1

n!

n−1∏
j=0

(k + j + 1) = 1

n!

n∏
j=1

(k + j),

where we used the inductive assumption (8) and relation (10) of Appendix.

To “identify” zn+1 = (x̄1, . . . , x̄n+1), with
n+1∑
i=1

x̄i = m , we have to
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count all those (n+1)−tuples of natural numbers, satisfying the condition
n+1∑
i=1

xi = k , with k = 0, . . . , m − 1:

m−1∑
l=0

Nn+1(l) =
m−1∑
l=0

l∑
h=0

Nn(h) =
m−1∑
l=0

1

n!

n∏
j=1

(l + j) = 1

(n + 1)!

n∏
j=0

(m + j),

where we used (9) and relation (10) proved in Appendix.

Then, we have to add all those (n + 1)−tuples satisfying
n+1∑
i=1

xi = k ,

but “smaller” than zn+1. However, since the rule of ordering the first
n terms of (x1, . . . xn+1) is that followed for the n-tupling function, we
have that, starting to count from 0, the natural number associated to
(x̄1, . . . , x̄n+1), x̄i ∈ N, is given by:

1

(n + 1)!

n∏
j=0

[( n+1∑
i=1

x̄i

)
+ j

]
+

n∑
h=1

{
1

h!

h−1∏
j=0

[( h∑
i=1

x̄i

)
+ j

]}
.

Since

〈x1, ..., xn+1〉 =
n+1∑
h=1

{
1

h!

h−1∏
j=0

[( h∑
i=1

xi

)
+ j

]}
,

we have that it represents a polynomial of degree (n + 1), with rational
coefficients and which is a one-to-one correspondence from N

n+1 onto
N. The theorem is so proved. �

Remark 2.1. The Cantor pairing function is based on the idea of counting
anti-diagonals x + y = k and then of counting within a given diagonal
by increasing ordinates. This geometrical device has been generalized
to “Cantor n-tupling function” which is a bijection from N n onto N .
At first, we used the level k of the hyperplane Hk of the equation
x1 + x2 + . . .+ xn = k and then the level h in the hyperplane Hk , having
in turn for equation x1 + . . . + xn−1 = h, and so and up to obtaining the
line x1 + x2 = constant. Hence, Cantor n-tupling function can also be
expressed via binomial coefficients as follows, [4]:

〈x1, ..., xn〉 =
( x1 + ... + xn + n − 1

n

)
+

( x1 + ... + xn−1 + n − 2
n − 1

)
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+... +
( x1 + x2 + 1

2

)
+

( x1

1

)
.

Finally, the Cantor pairing function can be considered a “primitive
recursive” function, [5], [8], [10]. For the n-degree generalized Cantor
pairing function (4) (indicated as 〈·, ·, . . . , ·〉n) a possible recursive formula
could be given by the following:

〈x1, x2, . . . , xn〉n =




0, if
n∑

i=1
xi = 0

〈
n∑

i=1
xi − 1, 0, ..., 0〉n + 〈x1, x2, ..., xn−1〉n−1 + 1,

otherwise

.

�

3. Appendix.

We can prove by induction on the index m , that, for any n ≥ 2,
m ≥ 1:

(10)

m−1∑
k=0

1

(n − 1)!

n−1∏
j=1

(k + j) = 1

n!

n−1∏
j=0

(m + j).

In fact, if m = 1, relation (10) is verified because, if n ≥ 2:

1

(n − 1)!

n−1∏
j=1

j = 1 · 2 · . . . · (n − 1)

(n − 1)!
= 1 · 2 · . . . · n

n!
= 1

n!

n−1∏
j=0

( j + 1).

Assume condition (10) to be satisfied for m ≥ 1, for any n ≥ 2, i.e.:

(11)

m−1∑
k=0

1

(n − 1)!

n−1∏
j=1

(k + j) = 1

n!

n−1∏
j=0

(m + j).

Then, it is verified also for the index m + 1. In fact, if n ≥ 2:
m∑

k=0

1

(n − 1)!

n−1∏
j=1

(k + j) =
m−1∑
k=0

1

(n − 1)!

n−1∏
j=1

(k + j) + 1

(n − 1)!

n−1∏
j=1

(m + j).

By using the inductive assumption (11), we get:

1

n!

n−1∏
j=0

(m + j) + 1

(n − 1)!

n−1∏
j=1

(m + j) = (m + n)

n!

n−1∏
j=1

(m + j),
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and so, for any n ≥ 2:

m∑
k=0

1

(n − 1)!

n−1∏
j=1

(k + j) = 1

n!

n−1∏
j=0

(m + j + 1).
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