THREE SOLUTIONS FOR A NEUMANN BOUNDARY VALUE PROBLEM INVOLVING THE \boldsymbol{p}-LAPLACIAN

DIEGO AVERNA - GABRIELE BONANNO

In this note we prove the existence of an open interval $] \lambda^{\prime}, \lambda^{\prime \prime}[$ for each λ of which a Neumann boundary value problem involving the p -Laplacian and depending on λ admits at least three solutions. The result is based on a recent three critical points theorem.

1. Introduction.

Let Ω be a nonempty bounded open set of the real Euclidean space \mathbb{R}^{n}, with a boundary of class $C^{1}, a \in L^{\infty}(\Omega)$, with $\operatorname{essinf}_{\Omega} a>0, f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ a function, and $p \geq 2$.

Let us consider the following problem
(P)

$$
\begin{cases}-\Delta_{p} u+a(x)|u|^{p-2} u=\lambda f(x, u) & \text { in } \Omega \\ \frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Delta_{p}=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian, $\left.\lambda \in\right] 0,+\infty[$, and v is the outer unit normal to $\partial \Omega$.

[^0]A weak solution to problem (P) is a function $u \in W^{1, p}(\Omega)$ such that

$$
\begin{gathered}
\int_{\Omega}|\nabla u(x)|^{p-2} \nabla u(x) \nabla v(x) d x+\int_{\Omega} a(x)|u(x)|^{p-2} u(x) v(x) d x \\
-\lambda \int_{\Omega} f(x, u(x)) v(x) d x=0, \quad \forall v \in W^{1, p}(\Omega) .
\end{gathered}
$$

Problems of the above type were widely studied in these latest years and we refer to [1], [2], [5], [7], [8], (see also [6] and [9], for the case $n=1$ and $p=2$) and the references therein for more details. In particular, in [7] the authors obtained the existence of an open interval $\Lambda \subseteq[0, \infty[$ such that for each $\lambda \in \Lambda$ problem (P) admits at least three weak solutions which are uniformly bounded with respect to λ, without, however, establishing where Λ is located; while in [8], under a different set of assumptions, the existence of three weak solutions to (P) for $\lambda=1$ was proved.

The aim of this note is to establish the existence of a precise open interval $] \lambda^{\prime}, \lambda^{\prime \prime}\left[, 0<\lambda^{\prime}<\lambda^{\prime \prime} \leq+\infty\right.$, for each λ of which problem (P) admits at least three weak solutions. Our main result is Theorem 1 and, as a way of example, we present, here, a particular case.

Theorem A. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded continuous function such that

$$
\lim _{u \rightarrow 0^{+}} \frac{h(u)}{u}=0 \quad \text { and } \quad \int_{0}^{\delta} h(u) d u>0 \text { for some } \delta>0 .
$$

Then, for every non-negative function $g \in C^{0}([0,1])$ such that

$$
\|g\|_{1}>\frac{\delta^{2}}{2 \int_{0}^{\delta} h(u) d u}
$$

the problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=g(t) h(u) \tag{P1}\\
u^{\prime}(0)=u^{\prime}(1)=0,
\end{array}\right.
$$

admits at least two non-negative and non-trivial classical solutions.
Example 2 at the end of the paper shows a Neumann problem that, owing to our results, admits three solutions, but to which Theorem 2.1 of [8] cannot be applied.

Our results are based on the following recent three critical points theorem obtained in [3].

Theorem B. (Theorem B of [3]) Let X be a real reflexive Banach space, $\Phi: X \rightarrow \mathbb{R}$ a continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a continuous inverse on $X^{*}, \Psi: X \rightarrow \mathbb{R}$ a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact. Assume that:
(i) $\lim _{\|u\| \rightarrow+\infty}(\Phi(u)+\lambda \Psi(u))=+\infty$ for all $\lambda \in[0,+\infty[$;
(ii) there is $r \in \mathbb{R}$ such that:

$$
\inf _{X} \Phi<r
$$

and

$$
\varphi_{1}(r)<\varphi_{2}(r)
$$

where

$$
\begin{aligned}
\varphi_{1}(r) & :=\inf _{u \in \Phi^{-1}(]-\infty, r[)} \frac{\Psi(u)-\frac{\mathrm{inf}}{\Phi^{-1}(]-\infty, r[)^{w}} \Psi}{r-\Phi(u)}, \\
\varphi_{2}(r) & :=\inf _{u \in \Phi^{-1}(]-\infty, r[)} \sup _{v \in \Phi^{-1}([r,+\infty[)} \frac{\Psi(u)-\Psi(v)}{\Phi(v)-\Phi(u)},
\end{aligned}
$$

and ${\overline{\Phi^{-1}(]-\infty, r[)}}^{w}$ is the closure of $\Phi^{-1}(]-\infty, r[)$ in the weak topology.
Then, for each $\lambda \in] \frac{1}{\varphi_{2}(r)}, \frac{1}{\varphi_{1}(r)}$ [the functional $\Phi+\lambda \Psi$ has at least three critical points in X.

Other applications of Theorem B can be found in [3] and [4].
In order to apply Theorem B to our problem, let X be the space $W^{1, p}(\Omega)$ equipped with the norm

$$
\|u\|:=\left(\int_{\Omega}|\nabla u(x)|^{p} d x+\int_{\Omega} a(x)|u(x)|^{p} d x\right)^{\frac{1}{p}}
$$

which is equivalent to the usual one, while on the space $C^{0}(\bar{\Omega})$ we consider the norm $\|u\|_{\infty}:=\sup _{u \in \bar{\Omega}}|u(x)|$.

If $p>n, X$ is compactly embedded in $C^{0}(\bar{\Omega})$, so that

$$
\begin{equation*}
c:=\sup _{u \in X \backslash\{0\}} \frac{\|u\|_{\infty}}{\|u\|}<+\infty \tag{1}
\end{equation*}
$$

Clearly, $c^{p}\|a\|_{1} \geq 1$, where $\|a\|_{1}:=\int_{\Omega}|a(x)| d x$.
For other basic notations and definitions we refer to [11].

2. Results.

Our main result is the following
Theorem 1. Let $p>n$ and let $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function such that, for every $\rho>0, \sup _{|u| \leq \rho}|f(., u)| \in L^{1}(\Omega)$. Put

$$
F(x, \xi):=\int_{0}^{\xi} f(x, u) d u \quad \text { for every } \quad(x, \xi) \in \Omega \times \mathbb{R}
$$

and assume that there exist three positive constants γ, δ, and s, with $\gamma<\delta$ and $s<p$, and a function $\mu \in L^{1}(\Omega)$ such that:
(j) $\frac{\int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x}{\gamma^{p}}<\frac{1}{1+c^{p}\|a\|_{1}} \frac{\int_{\Omega} F(x, \delta) d x}{\delta^{p}}$;
(ji) $\quad F(x, \xi) \leq \mu(x)\left(1+|\xi|^{s}\right)$ for all $(x, \xi) \in \Omega \times \mathbb{R}$.
Then, setting

$$
\lambda^{\prime}:=\frac{\|a\|_{1} \delta^{p}}{p\left(\int_{\Omega} F(x, \delta) d x-\int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x\right)}
$$

and

$$
\lambda^{\prime \prime}:=\frac{\gamma^{p}}{c^{p} p \int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x}
$$

for each $\lambda \in] \lambda^{\prime}, \lambda^{\prime \prime}[$ problem (P) admits at least three weak solutions.
Proof. For each $u \in X$, put

$$
\Phi(u):=\frac{1}{p}\|u\|^{p}
$$

and

$$
\Psi(u):=-\int_{\Omega} F(x, u(x)) d x
$$

Since $p>n, X$ is compactly embedded in $C^{0}(\bar{\Omega})$ and it is well known that Φ and Ψ are (well defined and) continuously Gâteaux differentiable functionals with

$$
\Phi^{\prime}(u)(v)=\int_{\Omega}\left(|\nabla u(x)|^{p-2} \nabla u(x) \nabla v(x)+a(x)|u(x)|^{p-2} u(x) v(x)\right) d x
$$

and

$$
\Psi^{\prime}(u)(v)=-\int_{\Omega} f(x, u(x)) v(x) d t
$$

for every $u, v \in X$, as well as Ψ^{\prime} is compact.
Furthermore, by Proposition 25.20 (i) of [11], Φ is sequentially weakly lower semicontinuous, while Proposition 1 of [7] ensures that Φ^{\prime} admits a continuous inverse on X^{*}.

Hypothesis (i) of Theorem B follows in a simple way thanks to (jj).
In order to prove (ii) of Theorem B , put $r:=\frac{1}{p}\left(\frac{\gamma}{c}\right)^{p}$.
From hypothesis (j), we get

$$
\begin{aligned}
\frac{\int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x}{c^{p}\|a\|_{1} \gamma^{p}} & <\frac{1}{c^{p}\|a\|_{1}\left(1+c^{p}\|a\|_{1}\right)} \frac{\int_{\Omega} F(x, \delta) d x}{\delta^{p}} \\
& =\left(\frac{1}{c^{p}\|a\|_{1}}-\frac{1}{1+c^{p}\|a\|_{1}}\right) \frac{\int_{\Omega} F(x, \delta) d x}{\delta^{p}}
\end{aligned}
$$

then

$$
\frac{1}{1+c^{p}\|a\|_{1}} \frac{\int_{\Omega} F(x, \delta) d x}{\delta^{p}}+\frac{\int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x}{c^{p}\|a\|_{1} \gamma^{p}}<\frac{1}{c^{p}\|a\|_{1}} \frac{\int_{\Omega} F(x, \delta) d x}{\delta^{p}}
$$

thus, being $\gamma<\delta$, we have

$$
\frac{1}{1+c^{p}\|a\|_{1}} \frac{\int_{\Omega} F(x, \delta) d x}{\delta^{p}}<\frac{\int_{\Omega} F(x, \delta) d x-\int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x}{c^{p}\|a\|_{1} \delta^{p}}
$$

hence, using again (j), we get

$$
\frac{\int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x}{\gamma^{p}}<\frac{\int_{\Omega} F(x, \delta) d x-\int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x}{c^{p}\|a\|_{1} \delta^{p}},
$$

from which, multiplying by $c^{p} p$, we obtain
(2) $\frac{c^{p} p \int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x}{\gamma^{p}}<p \frac{\int_{\Omega} F(x, \delta) d x-\int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x}{\|a\|_{1} \delta^{p}}$.

We claim that:

$$
\begin{equation*}
\varphi_{1}(r) \leq \frac{c^{p} p \int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x}{\gamma^{p}} \tag{C1}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{2}(r) \geq p \frac{\int_{\Omega} F(x, \delta) d x-\int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x}{\|a\|_{1} \delta^{p}}, \tag{C2}
\end{equation*}
$$

from which (ii) of Theorem B follows.
In fact, taking into account that the function identically 0 obviously belongs to $\Phi^{-1}(]-\infty, r[)$, and that $\Psi(0)=0$, we get

$$
\varphi_{1}(r) \leq \frac{\sup _{\Phi^{-1}(]-\infty, r[)} \int_{\Omega} F(x, u(x)) d x}{r},
$$

\left.\left. and, since ${\overline{\Phi^{-1}(]-\infty, r[}}^{w}=\Phi^{-1}(]-\infty, r\right]\right)$, we have

$$
\frac{\frac{\sup }{\Phi^{-1}(]-\infty, r[)} \int_{\Omega} F(x, u(x)) d x}{r}=\frac{\sup _{\left.\Phi^{-1}(\mathrm{l}-\infty, r]\right)} \int_{\Omega} F(x, u(x)) d x}{r},
$$

thus, taking into account that $|u(x)| \leq c(p r)^{\frac{1}{p}}=\gamma$, for every $u \in X$ such that $\Phi(u) \leq r$ and for each $x \in \Omega$, we obtain

$$
\frac{\sup _{\left.\left.\Phi^{-1}(]-\infty, r\right]\right)} \int_{\Omega} F(x, u(x)) d x}{r} \leq \frac{\int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x}{r} .
$$

So, (C1) follows at once by the definition of r.
Moreover, for each $v \in X$ such that $\Phi(v) \geq r$, we have

$$
\varphi_{2}(r) \geq \inf _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)} \frac{\int_{\Omega} F(x, v(x)) d x-\int_{\Omega} F(x, u(x)) d x}{\Phi(v)-\Phi(u)}
$$

thus, from $|u(x)| \leq c(p r)^{\frac{1}{p}}=\gamma$, for every $u \in X$ such that $\Phi(u)<r$ and for each $x \in \Omega$, we obtain

$$
\inf _{u \in \Phi^{-1}(]-\infty, r[)} \frac{\int_{\Omega} F(x, v(x)) d x-\int_{\Omega} F(x, u(x)) d x}{\Phi(v)-\Phi(u)}
$$

$$
\geq \inf _{u \in \Phi^{-1}(]-\infty, r[)} \frac{\int_{\Omega} F(x, v(x)) d x-\int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x}{\Phi(v)-\Phi(u)}
$$

from which, being $0<\Phi(v)-\Phi(u) \leq \Phi(v)$ for every $u \in \Phi^{-1}(]-\infty, r[)$, and under further condition

$$
\begin{equation*}
\int_{\Omega} F(x, v(x)) d x \geq \int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x \tag{3}
\end{equation*}
$$

we can write

$$
\begin{aligned}
& \inf _{u \in \Phi^{-1}(]-\infty, r[)} \frac{\int_{\Omega} F(x, v(x)) d x-\int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x}{\Phi(v)-\Phi(u)} \\
& \geq p \frac{\int_{\Omega} F(x, v(x)) d x-\int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x}{\|v\|^{p}} .
\end{aligned}
$$

If we put $v(x):=\delta$, for each $x \in \Omega$, we have $\|v\|=\|a\|_{1}^{\frac{1}{p}} \delta$, hence, by (1) and $\gamma<\delta$, we get $\Phi(v)>r$. Moreover, with this choice of v, (2) ensures (3), thus (C2) is also proved.

Hence the conclusion follows by Theorem B, by observing that

$$
\frac{1}{\varphi_{2}(r)} \leq \frac{\|a\|_{1} \delta^{p}}{p\left(\int_{\Omega} F(x, \delta) d x-\int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x\right)}
$$

and

$$
\frac{1}{\varphi_{1}(r)} \geq \frac{\gamma^{p}}{c^{p} p \int_{\Omega} \sup _{|\xi| \leq \gamma} F(x, \xi) d x}
$$

Remark 1. In applying Theorem 1, it is enough to know an explicit upper bound for the constant c defined in (1). In this connection, when Ω is a convex set, we have the following estimate (see [1] for more details):
(4) $\quad c \leq 2^{\frac{p-1}{p}} \max \left\{\left(\frac{1}{\|a\|_{1}}\right)^{\frac{1}{p}}, \frac{\operatorname{diam}(\Omega)}{n^{\frac{1}{p}}}\left(\frac{p-1}{p-n} \operatorname{meas}(\Omega)\right)^{\frac{p-1}{p}} \frac{\|a\|_{\infty}}{\|a\|_{1}}\right\}$.

Example 1. The problem

$$
\begin{cases}-\Delta_{3} u+\frac{2+x}{\pi}|u| u=\lambda\left(x^{2}+y^{2}\right)\left[2 \mathrm{e}^{-u^{2}} u^{17}\left(9-u^{2}\right)+1\right] & \text { in } \Omega \\ \frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega,\end{cases}
$$

where Ω is the open unit ball in \mathbb{R}^{2}, admits at least three weak solutions for each $\lambda \in] 15 \cdot 10^{-4}, 15 \cdot 10^{-2}[$.

In fact, choosing

$$
\gamma:=1, \delta:=2, s:=2,
$$

and

$$
a(x, y):=\frac{2+x}{\pi}, f(x, y, u):=\left(x^{2}+y^{2}\right)\left[2 \mathrm{e}^{-u^{2}} u^{17}\left(9-u^{2}\right)+1\right]
$$

for every $(x, y) \in \Omega$ and every $u \in \mathbb{R}$, and taking into account (4), it is simple to verify all the hypotheses of Theorem 1 , and that $] 15 \cdot 10^{-4}, 15 \cdot 10^{-2}[\subset] \lambda^{\prime}, \lambda^{\prime \prime}[$.

Remark 2. In the ordinary case, whenever $\Omega:=] \alpha, \beta[$ is a bounded open interval in \mathbb{R}, a function $u:[\alpha, \beta] \rightarrow \mathbb{R}$ is said a generalized solution to problem

$$
\left\{\begin{array}{l}
\left.-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+a(t)|u|^{p-2} u=\lambda f(t, u) \quad \text { in }\right] \alpha, \beta[\tag{PO}\\
u^{\prime}(\alpha)=u^{\prime}(\beta)=0,
\end{array}\right.
$$

if $u \in C^{1}([\alpha, \beta]),\left|u^{\prime}\right|^{p-2} u^{\prime} \in A C([\alpha, \beta]), u^{\prime}(\alpha)=u^{\prime}(\beta)=0$ and

$$
-\left(\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t)\right)^{\prime}+a(t)|u(t)|^{p-2} u(t)=\lambda f(t, u(t))
$$

for almost every $t \in[\alpha, \beta]$.
Using standard arguments, and taking into account that the correspondence $u \mapsto|u|^{p-2} u$ is an homeomorphism in \mathbb{R}, one can show that weak solutions coincides with generalized ones, provided $a \in L^{\infty}(] \alpha, \beta[)$ and f is as in Theorem 1.

We point out the following simple consequence of Theorem 1 , then we give the proof of Theorem A and finally we present an easy example of application.

Theorem 2. Let $p \geq 2$, and let $g \in L^{1}(] \alpha, \beta[), h \in C^{0}(\mathbb{R})$ be two non-negative functions, with $\|g\|_{1}>0$. Assume that there exists four positive constants γ, δ, η and s, with $\gamma<\delta$ and $s<p$, such that:
(k) $\frac{\int_{0}^{\gamma} h(u) d u}{\gamma^{p}}<\frac{1}{1+2^{p-1} \max \left\{1,(\beta-\alpha)^{2 p-1}\|a\|_{\infty}^{p}\|a\|_{1}^{1-p}\right\}} \frac{\int_{0}^{\delta} h(u) d u}{\delta^{p}}$;
(kk) $\int_{0}^{\xi} h(u) d u \leq \eta\left(1+|\xi|^{s}\right)$ for all $\xi \in \mathbb{R}$.
Then, for each λ in
$] \frac{\delta^{p}\|a\|_{1}}{p\|g\|_{1} \int_{\gamma}^{\delta} h(u) d u}, \frac{\gamma^{p}\|a\|_{1}}{2^{p-1} \max \left\{1,(\beta-\alpha)^{2 p-1}\|a\|_{\infty}^{p}\|a\|_{1}^{1-p}\right\} p\|g\|_{1} \int_{0}^{\gamma} h(u) d u}[$
the problem

$$
\left\{\begin{array}{l}
\left.-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+a(t)|u|^{p-2} u=\lambda g(t) h(u) \text { in }\right] \alpha, \beta[\\
u^{\prime}(\alpha)=u^{\prime}(\beta)=0,
\end{array}\right.
$$

admits at least three generalized solutions.
Proof. Taking into account Remarks 1 and 2, the conclusion follows immediately from Theorem 1, by using $f:=g h$ and $\mu:=\eta g$.

Proof of Theorem A. Put

$$
\bar{h}(u):=\left\{\begin{array}{lll}
0 & \text { if } & u<0 \\
h(u) & \text { if } & u \geq 0
\end{array}\right.
$$

Clearly, \bar{h} is a continuous function on \mathbb{R}. Moreover, taking into account that

$$
\lim _{\gamma \rightarrow 0^{+}} \frac{\max _{|\xi| \leq \gamma} \int_{0}^{\xi} \bar{h}(u) d u}{\gamma^{2}}=0
$$

it is enough to pick $\gamma>0$ such that

$$
\begin{gathered}
\frac{\max _{|\xi| \leq \gamma} \int_{0}^{\xi} \bar{h}(u) d u}{\gamma^{2}}<\frac{1}{3} \frac{\int_{0}^{\delta} \bar{h}(u) d u}{\delta^{2}} \\
\frac{\gamma^{2}}{4\|g\|_{1} \max _{|\xi| \leq \gamma} \int_{0}^{\xi} \bar{h}(u) d u}>1
\end{gathered}
$$

and

$$
\max _{|\xi| \leq \gamma} \int_{0}^{\xi} \bar{h}(u) d u<\int_{0}^{\delta} \bar{h}(u) d u-\frac{\delta^{2}}{2\|g\|_{1}}
$$

so that, taking into account Remark 1 , using $f:=g \bar{h}$, and observing that $1 \in] \lambda^{\prime}, \lambda^{\prime \prime}[$, Theorem 1 ensures that the problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=g(t) \bar{h}(u) \tag{P2}\\
u^{\prime}(0)=u^{\prime}(1)=0,
\end{array}\right.
$$

admits at least two non-null classical solutions. We claim that these solutions are non-negative. In fact, arguing by a contradiction, if one of them, say u_{1}, is negative at one point of $[0,1]$, there exists an interval $] a, b[\subseteq[0,1]$ such that $-u_{1}^{\prime \prime}(t)+u_{1}(t)=0$ for every $\left.t \in\right] a, b[$ and, further, it must be true one of the following conditions: $u_{1}(a)=u_{1}(b)=0$ (if $0<a<b<1$), $u_{1}^{\prime}(0)=u_{1}(b)=0$ (if $0=a<b<1$), $u_{1}(a)=u_{1}^{\prime}(1)=0$ (if $0<a<b=1$), $u_{1}^{\prime}(0)=u_{1}^{\prime}(1)=0$ (if $0=a<b=1$). Therefore, $u_{1}(t)=0$ for every $t \in[a, b]$ and this is a contradiction, so our claim is proved. Finally, the conclusion follows taking into account that the nonnegative solutions of (P2) are also solutions of (P1).

Remark 3. If in Theorem A we also assume that

$$
\lim _{u \rightarrow 0^{-}} \frac{h(u)}{u}=0 \quad \text { and } \quad \int_{-\delta^{\prime}}^{0} h(u) d u<0 \quad \text { for some } \quad \delta^{\prime}>0
$$

then, for every non-negative function $g \in C^{0}([0,1])$ such that

$$
\|g\|_{1}>\max \left\{\frac{\delta^{2}}{2 \int_{0}^{\delta} h(u) d u}, \frac{\delta^{\prime 2}}{2 \int_{0}^{-\delta^{\prime}} h(u) d u}\right\}
$$

problem (P1) admits also two non-positive solutions. It is enough to apply the same Theorem A to the function $h^{*}(u):=-h(-u)$.

Example 2. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ the function defined as follows

$$
h(u):=\left\{\begin{array}{lll}
0 & \text { if } & u \leq 0 \\
3 u^{2} & \text { if } & 0<u<1 \\
3 & \text { if } & u \geq 1
\end{array}\right.
$$

Therefore, owing to Theorem A, for every non-negative function $g \in C^{0}([0,1])$ such that $\|g\|_{1}>\frac{1}{2}$, the problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=g(t) h(u) \\
u^{\prime}(0)=u^{\prime}(1)=0,
\end{array}\right.
$$

admits at least two non-negative and non-trivial classical solutions.
On the other hand, the function $H(\xi):=\int_{0}^{\xi} h(u) d u$ does not satisfy the assumption 1. of Theorem 2.1 of [8].

REFERENCES

[1] G. Anello - G. Cordaro, An existence theorem for the Neumann problem involving the p-Laplacian, J. Convex Anal., 10 (2003), pp. 185-198.
[2] G. Anello - G. Cordaro, Existence of solutions of the Neumann problem for a class of equations involving the p-Laplacian via a variational principle of Ricceri, Arch. Math. (Basel), 79 (2002), pp. 274-287.
[3] D. Averna - G. Bonanno, A three critical points theorem and its applications to the ordinary Dirichlet problem, Topol. Methods Nonlinear Anal., 22 (2003), pp. 93-104.
[4] D. Averna - G. Bonanno, Three solutions for a quasilinear two point boundary value problem involving the one-dimensional p-Laplacian, Proc. Edinb. Math. Soc., 47 (2004), pp. 257-270.
[5] P.A. Binding - P. Drábek - Y.X. Huang, On Neumann boundary value problems for some quasilinear elliptic equations, Electron. J. Differential Equations, 1997 n. 5 (1997), pp. 1-11.
[6] G. Bonanno, Multiple solutions for a Neumann boundary value problem, J. Nonlinear Convex Anal., 4 (2003), pp. 287-290.
[7] G. Bonanno - P. Candito, Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math. (Basel), 80 (2003), pp. 424429.
[8] F. Faraci, Multiplicity results for a Neumann problem involving the p-Laplacian, J. Math. Anal. Appl., 277 (2003), pp. 180-189.
[9] A.R. Miciano - R. Shivaji, Multiple positive solutions for a class of semipositone Neumann two point boundary value problems, J. Math. Anal. Appl., 178 (1993), pp. 102-115.
[10] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 113 (2000), pp. 401-410.
[11] E. Zeidler, Nonlinear functional analysis and its applications, Vol. II/B. Berlin-Heidelberg-New York, 1990.

Diego Averna,
Dipartimento di Matematica ed Applicazioni
Università di Palermo
Via Archirafi, 34, 90123 Palermo (ITALY)
e-mail: averna@unipa.it
Gabriele Bonanno,
D. I. M. E. T.

Facoltà di Ingegneria,
Università di Reggio Calabria
Via Graziella (Feo di Vito), 89100 Reggio Calabria (ITALY)
e-mail: bonanno@ing.unirc.it

[^0]: Entrato in redazione il 1 Ottobre 2004.
 Key words and phrases. Neumann problem, p-Laplacian, Critical points, Three solutions. 2000 Mathematics Subject Classification. 35J65, 35A15.
 This research was supported by 60% MURST.

