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THREE SOLUTIONS FOR A NEUMANN BOUNDARY

VALUE PROBLEM INVOLVING THE p-LAPLACIAN

DIEGO AVERNA - GABRIELE BONANNO

In this note we prove the existence of an open interval ]λ′, λ′′[ for each
λ of which a Neumann boundary value problem involving the p-Laplacian
and depending on λ admits at least three solutions. The result is based on a
recent three critical points theorem.

1. Introduction.

Let � be a nonempty bounded open set of the real Euclidean space R
n ,

with a boundary of class C1, a ∈ L∞(�), with essinf� a > 0, f : � × R → R

a function, and p ≥ 2.
Let us consider the following problem

(P)

{ −�pu + a(x )|u|p−2u = λ f (x , u) in �
∂u

∂ν
= 0 on ∂�,

where �p = div(|∇u|p−2∇u) is the p-Laplacian, λ ∈ ]0, +∞[, and ν is the
outer unit normal to ∂�.
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A weak solution to problem (P) is a function u ∈W 1,p(�) such that∫
�

|∇u(x )|p−2∇u(x )∇v(x ) dx +
∫

�

a(x )|u(x )|p−2u(x )v(x ) dx

− λ

∫
�

f (x , u(x ))v(x ) dx = 0, ∀ v ∈W 1,p(�).

Problems of the above type were widely studied in these latest years and we
refer to [1], [2], [5], [7], [8], (see also [6] and [9], for the case n = 1 and p = 2)
and the references therein for more details. In particular, in [7] the authors
obtained the existence of an open interval � ⊆ [0, ∞[ such that for each λ∈ �

problem (P) admits at least three weak solutions which are uniformly bounded
with respect to λ, without, however, establishing where � is located; while in
[8], under a different set of assumptions, the existence of three weak solutions
to (P) for λ = 1 was proved.

The aim of this note is to establish the existence of a precise open interval
]λ′, λ′′[, 0 < λ′ < λ′′ ≤ +∞, for each λ of which problem (P) admits at least
three weak solutions. Our main result is Theorem 1 and, as a way of example,
we present, here, a particular case.

Theorem A. Let h : R → R be a bounded continuous function such that

lim
u→0+

h(u)

u
= 0 and

∫ δ

0
h(u) du > 0 for some δ > 0.

Then, for every non-negative function g ∈C0([0, 1]) such that

‖g‖1 >
δ2

2
∫ δ

0 h(u) du

the problem

(P1)
{−u′′ + u = g(t)h(u)
u′(0) = u′(1) = 0,

admits at least two non-negative and non-trivial classical solutions.

Example 2 at the end of the paper shows a Neumann problem that, owing
to our results, admits three solutions, but to which Theorem 2.1 of [8] cannot be
applied.

Our results are based on the following recent three critical points theorem
obtained in [3].
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Theorem B. (Theorem B of [3]) Let X be a real reflexive Banach space,
	 : X → R a continuously Gâteaux differentiable and sequentially weakly
lower semicontinuous functional whose Gâteaux derivative admits a continuous
inverse on X ∗ , 
 : X → R a continuously Gâteaux differentiable functional
whose Gâteaux derivative is compact. Assume that:

(i) lim‖u‖→+∞(	(u) + λ
(u)) = +∞ for all λ ∈ [0, +∞[;

(ii) there is r ∈ R such that:

inf
X

	 < r,

and
ϕ1(r) < ϕ2(r),

where

ϕ1(r) := inf
u∈	−1(]−∞,r[)


(u)− inf
	−1(]−∞,r[)w




r − 	(u)
,

ϕ2(r) := inf
u∈	−1(]−∞,r[)

sup
v∈	−1([r,+∞[)


(u) − 
(v)

	(v) − 	(u)
,

and 	−1(]− ∞, r[)
w
is the closure of 	−1(] − ∞, r[) in the weak topology.

Then, for each λ ∈ ] 1
ϕ2(r)

, 1
ϕ1(r)

[ the functional 	 + λ
 has at least three
critical points in X .

Other applications of Theorem B can be found in [3] and [4].
In order to apply Theorem B to our problem, let X be the space W 1,p(�)

equipped with the norm

‖u‖ :=
( ∫

�

|∇u(x )|p dx +
∫

�

a(x )|u(x )|p dx
) 1

p
,

which is equivalent to the usual one, while on the space C0(�) we consider the
norm ‖u‖∞ := sup

u∈�

|u(x )|.
If p > n, X is compactly embedded in C0(�), so that

(1) c := sup
u∈X\{0}

‖u‖∞
‖u‖ < +∞.

Clearly, cp‖a‖1 ≥ 1, where ‖a‖1 :=
∫
�

|a(x )| dx .
For other basic notations and definitions we refer to [11].
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2. Results.

Our main result is the following

Theorem 1. Let p > n and let f : � × R → R be a Carathéodory function
such that, for every ρ > 0, sup

|u|≤ρ

| f (., u)| ∈ L1(�). Put

F(x , ξ ) :=
∫ ξ

0
f (x , u) du for every (x , ξ )∈ � × R ,

and assume that there exist three positive constants γ, δ, and s, with γ < δ and
s < p, and a function μ ∈ L1(�) such that:

(j)

∫
�
sup
|ξ |≤γ

F(x , ξ ) dx

γ p
<

1

1+ cp‖a‖1

∫
�
F(x , δ) dx

δ p
;

(jj) F(x , ξ ) ≤ μ(x )(1+ |ξ |s ) for all (x , ξ )∈ � × R.

Then, setting

λ′ := ‖a‖1δ p
p
( ∫

�
F(x , δ) dx − ∫

�
sup
|ξ |≤γ

F(x , ξ ) dx
)

and

λ′′ := γ p

cp p
∫
�
sup
|ξ |≤γ

F(x , ξ ) dx
,

for each λ ∈ ]λ′, λ′′[ problem (P) admits at least three weak solutions.
Proof. For each u ∈ X , put

	(u) := 1

p
‖u‖p

and


(u) := −
∫

�

F(x , u(x )) dx .

Since p > n, X is compactly embedded in C0(�) and it is well known that 	
and 
 are (well defined and) continuously Gâteaux differentiable functionals
with

	′(u)(v) =
∫

�

(|∇u(x )|p−2∇u(x )∇v(x )+ a(x )|u(x )|p−2u(x )v(x ))dx
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and


 ′(u)(v) = −
∫

�

f (x , u(x ))v(x ) dt

for every u, v ∈ X , as well as 
 ′ is compact.
Furthermore, by Proposition 25.20 (i) of [11], 	 is sequentially weakly

lower semicontinuous, while Proposition 1 of [7] ensures that 	′ admits a
continuous inverse on X ∗ .

Hypothesis (i) of Theorem B follows in a simple way thanks to (jj).

In order to prove (ii) of Theorem B, put r := 1
p

(
γ

c

)p
.

From hypothesis (j), we get

∫
�
sup
|ξ |≤γ

F(x , ξ ) dx

cp‖a‖1γ p
<

1

cp‖a‖1(1+ cp‖a‖1)
∫
�
F(x , δ) dx

δ p

=
( 1

cp‖a‖1 − 1

1+ cp‖a‖1
) ∫

�
F(x , δ) dx

δ p
,

then

1

1+ cp‖a‖1

∫
�
F(x , δ) dx

δ p
+

∫
�
sup
|ξ |≤γ

F(x , ξ ) dx

cp‖a‖1γ p
<

1

cp‖a‖1

∫
�
F(x , δ) dx

δ p
,

thus, being γ < δ , we have

1

1+ cp‖a‖1

∫
�
F(x , δ) dx

δ p
<

∫
�
F(x , δ) dx − ∫

�
sup
|ξ |≤γ

F(x , ξ ) dx

cp‖a‖1δ p ,

hence, using again (j), we get

∫
�
sup
|ξ |≤γ

F(x , ξ ) dx

γ p
<

∫
�
F(x , δ) dx − ∫

�
sup
|ξ |≤γ

F(x , ξ ) dx

cp‖a‖1δ p ,

from which, multiplying by cp p, we obtain

(2)

cp p
∫
�
sup
|ξ |≤γ

F(x , ξ ) dx

γ p
< p

∫
�
F(x , δ) dx − ∫

�
sup
|ξ |≤γ

F(x , ξ ) dx

‖a‖1δ p .
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We claim that:

(C1) ϕ1(r) ≤
cp p

∫
�
sup
|ξ |≤γ

F(x , ξ ) dx

γ p

and

(C2) ϕ2(r) ≥ p

∫
�
F(x , δ) dx − ∫

�
sup
|ξ |≤γ

F(x , ξ ) dx

‖a‖1δ p ,

from which (ii) of Theorem B follows.
In fact, taking into account that the function identically 0 obviously be-

longs to 	−1(]− ∞, r[), and that 
(0) = 0, we get

ϕ1(r) ≤
sup

	−1(]−∞,r[)
w

∫
�
F(x , u(x )) dx

r
,

and, since 	−1(]− ∞, r[)
w = 	−1(]− ∞, r]), we have

sup
	−1(]−∞,r[)

w

∫
�
F(x , u(x ))dx

r
=

sup
	−1(]−∞,r])

∫
�
F(x , u(x )) dx

r
,

thus, taking into account that |u(x )| ≤ c(pr)
1
p = γ , for every u ∈ X such that

	(u) ≤ r and for each x ∈ �, we obtain

sup
	−1(]−∞,r])

∫
�
F(x , u(x )) dx

r
≤

∫
�
sup
|ξ |≤γ

F(x , ξ ) dx

r
.

So, (C1) follows at once by the definition of r .
Moreover, for each v ∈ X such that 	(v) ≥ r , we have

ϕ2(r) ≥ inf
u∈	−1(]−∞,r[)

∫
�
F(x , v(x )) dx − ∫

�
F(x , u(x )) dx

	(v) − 	(u)
,

thus, from |u(x )| ≤ c(pr)
1
p = γ , for every u ∈ X such that 	(u) < r and for

each x ∈ �, we obtain

inf
u∈	−1(]−∞,r[)

∫
�
F(x , v(x )) dx − ∫

�
F(x , u(x )) dx

	(v) − 	(u)
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≥ inf
u∈	−1(]−∞,r[)

∫
�
F(x , v(x )) dx − ∫

�
sup
|ξ |≤γ

F(x , ξ ) dx

	(v) − 	(u)
,

from which, being 0 < 	(v)− 	(u) ≤ 	(v) for every u ∈ 	−1(]− ∞, r[), and
under further condition

(3)
∫

�

F(x , v(x )) dx ≥
∫

�

sup
|ξ |≤γ

F(x , ξ ) dx ,

we can write

inf
u∈	−1(]−∞,r[)

∫
�
F(x , v(x )) dx − ∫

�
sup
|ξ |≤γ

F(x , ξ ) dx

	(v) − 	(u)

≥ p

∫
�
F(x , v(x )) dx − ∫

�
sup
|ξ |≤γ

F(x , ξ ) dx

‖v‖p .

If we put v(x ) := δ , for each x ∈ �, we have ‖v‖ = ‖a‖
1
p

1 δ , hence, by (1) and
γ < δ , we get 	(v) > r . Moreover, with this choice of v, (2) ensures (3), thus
(C2) is also proved.

Hence the conclusion follows by Theorem B, by observing that

1

ϕ2(r)
≤ ‖a‖1δ p

p
( ∫

�
F(x , δ) dx − ∫

�
sup
|ξ |≤γ

F(x , ξ ) dx
)

and
1

ϕ1(r)
≥ γ p

cp p
∫
�
sup
|ξ |≤γ

F(x , ξ ) dx
. �

Remark 1. In applying Theorem 1, it is enough to know an explicit upper
bound for the constant c defined in (1). In this connection, when � is a convex
set, we have the following estimate (see [1] for more details):

(4) c ≤ 2
p−1
p max

{( 1

‖a‖1
) 1

p
,
diam(�)

n
1
p

( p − 1

p − n
meas(�)

) p−1
p ‖a‖∞

‖a‖1

}
.
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Example 1. The problem

{
−�3u + 2+x

π
|u|u = λ(x 2 + y2)

[
2e−u2u17(9− u2)+ 1

]
in�

∂u
∂ν

= 0 on ∂�,

where � is the open unit ball in R
2, admits at least three weak solutions for

each λ ∈ ]15 · 10−4, 15 · 10−2[.
In fact, choosing

γ := 1, δ := 2, s := 2,

and

a(x , y) := 2+ x

π
, f (x , y, u) := (x 2 + y2)

[
2e−u

2
u17(9− u2)+ 1

]

for every (x , y)∈ � and every u ∈ R, and taking into account (4), it is simple to
verify all the hypotheses of Theorem 1, and that ]15 · 10−4, 15 · 10−2[⊂]λ′, λ′′[.

Remark 2. In the ordinary case, whenever � :=]α, β[ is a bounded open
interval in R, a function u : [α, β] → R is said a generalized solution to
problem

(PO)

{
−(|u′|p−2u′)′ + a(t)|u|p−2u = λ f (t, u) in ]α, β[
u′(α) = u′(β) = 0,

if u ∈C1([α, β]), |u′|p−2u′ ∈ AC([α, β]), u′(α) = u′(β) = 0 and

−(|u′(t)|p−2u′(t)
)′ + a(t)|u(t)|p−2u(t) = λ f (t, u(t))

for almost every t ∈ [α, β].
Using standard arguments, and taking into account that the correspondence

u �→ |u|p−2u is an homeomorphism in R, one can show that weak solutions
coincides with generalized ones, provided a ∈ L∞(]α, β[) and f is as in
Theorem 1.

We point out the following simple consequence of Theorem 1, then we give
the proof of Theorem A and finally we present an easy example of application.

Theorem 2. Let p ≥ 2, and let g ∈ L1(]α, β[), h ∈C0(R) be two non-negative
functions, with ‖g‖1 > 0. Assume that there exists four positive constants
γ, δ, η and s, with γ < δ and s < p, such that:



THREE SOLUTIONS FOR A NEUMANN BOUNDARY. . . 89

(k)

γ∫
0
h(u) du

γ p
<

1

1+ 2p−1max{1, (β − α)2p−1‖a‖p∞‖a‖1−p
1 }

δ∫
0
h(u) du

δ p
;

(kk)
∫ ξ

0
h(u) du ≤ η(1+ |ξ |s ) for all ξ ∈ R.

Then, for each λ in

] δ p‖a‖1
p‖g‖1

∫ δ

γ
h(u) du

,
γ p‖a‖1

2p−1max{1, (β − α)2p−1‖a‖p∞‖a‖1−p
1 }p‖g‖1

∫ γ

0 h(u) du

[

the problem {−(|u′|p−2u′)′ + a(t)|u|p−2u = λg(t)h(u) in ]α, β[
u′(α) = u′(β) = 0,

admits at least three generalized solutions.

Proof. Taking into account Remarks 1 and 2, the conclusion follows immedi-
ately from Theorem 1, by using f := gh and μ := ηg. �
Proof of Theorem A. Put

h(u) :=
{
0 if u < 0
h(u) if u ≥ 0.

Clearly, h is a continuous function on R. Moreover, taking into account that

lim
γ→0+

max|ξ |≤γ

∫ ξ

0 h(u) du

γ 2
= 0,

it is enough to pick γ > 0 such that

max|ξ |≤γ

∫ ξ

0 h(u) du

γ 2
<
1

3

∫ δ

0 h(u) du

δ2
,

γ 2

4‖g‖1 max|ξ |≤γ

∫ ξ

0 h(u) du
> 1

and

max
|ξ |≤γ

∫ ξ

0
h(u) du <

∫ δ

0
h(u) du − δ2

2‖g‖1
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so that, taking into account Remark 1, using f := gh, and observing that
1∈ ]λ′, λ′′[, Theorem 1 ensures that the problem

(P2)

{ −u′′ + u = g(t)h(u)
u′(0) = u′(1) = 0,

admits at least two non-null classical solutions. We claim that these solutions
are non-negative. In fact, arguing by a contradiction, if one of them, say u1,
is negative at one point of [0, 1], there exists an interval ]a, b[⊆ [0, 1] such
that −u′′

1(t) + u1(t) = 0 for every t ∈ ]a, b[ and, further, it must be true
one of the following conditions: u1(a) = u1(b) = 0 (if 0 < a < b < 1),
u′
1(0) = u1(b) = 0 (if 0 = a < b < 1), u1(a) = u′

1(1) = 0 (if 0 < a < b = 1),
u′
1(0) = u′

1(1) = 0 (if 0 = a < b = 1). Therefore, u1(t) = 0 for every
t ∈ [a, b] and this is a contradiction, so our claim is proved. Finally, the
conclusion follows taking into account that the nonnegative solutions of (P2)
are also solutions of (P1). �
Remark 3. If in Theorem A we also assume that

lim
u→0−

h(u)

u
= 0 and

∫ 0

−δ′
h(u) du < 0 for some δ′ > 0

then, for every non-negative function g ∈C0([0, 1]) such that

‖g‖1 > max
{ δ2

2
∫ δ

0 h(u) du
,

δ′2

2
∫ −δ′
0 h(u) du

}

problem (P1) admits also two non-positive solutions. It is enough to apply the
same Theorem A to the function h∗(u) := −h(−u).
Example 2. Let h : R → R the function defined as follows

h(u) :=
{ 0 if u ≤ 0
3u2 if 0 < u < 1
3 if u ≥ 1.

Therefore, owing to Theorem A, for every non-negative function g ∈C0([0, 1])
such that ‖g‖1 > 1

2 , the problem{ −u′′ + u = g(t)h(u)
u′(0) = u′(1) = 0,

admits at least two non-negative and non-trivial classical solutions.
On the other hand, the function H (ξ ) := ∫ ξ

0 h(u) du does not satisfy the
assumption 1. of Theorem 2.1 of [8].
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