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THREE SOLUTIONS FOR A NEUMANN BOUNDARY
VALUE PROBLEM INVOLVING THE p-LAPLACIAN

DIEGO AVERNA - GABRIELE BONANNO

In this note we prove the existence of an open interval ]A’, A”’[ for each
A of which a Neumann boundary value problem involving the p-Laplacian
and depending on A admits at least three solutions. The result is based on a
recent three critical points theorem.

1. Introduction.

Let 2 be a nonempty bounded open set of the real Euclidean space R”,
with a boundary of class C', a € L®(R), withessinfoa >0, f : Q x R - R
a function, and p > 2.

Let us consider the following problem

—Apu+a(x)|u|l’*2u =Af(x,u) in Q
P) ou

— =0 on 02,

av
where A, = div(|Vu|P~>Vu) is the p-Laplacian, A € ]0, +oo[, and v is the
outer unit normal to 9€2.
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A weak solution to problem (P) is a function u € W' ?() such that

/IVu(x)Ip2Vu(x)Vv(x)dx+/a(x)lu(x)lpZu(x)v(x)dx
Q Q

— /\/ Fl, u()v@x)dx =0, Y ve WHP(Q).
Q

Problems of the above type were widely studied in these latest years and we
refer to [1], [2], [5], [7], [8], (see also [6] and [9], for the case n = 1 and p = 2)
and the references therein for more details. In particular, in [7] the authors
obtained the existence of an open interval A C [0, oo[ such that for each L € A
problem (P) admits at least three weak solutions which are uniformly bounded
with respect to A, without, however, establishing where A is located; while in
[8], under a different set of assumptions, the existence of three weak solutions
to (P) for A = 1 was proved.

The aim of this note is to establish the existence of a precise open interval
W, AL,0 < A < A < 4oo, for each A of which problem (P) admits at least
three weak solutions. Our main result is Theorem 1 and, as a way of example,
we present, here, a particular case.

Theorem A. Let h : R — R be a bounded continuous function such that

h 1)
lim ﬂ =0 and / h(u)du > 0 for some § > 0.
0

u—0" U

Then, for every non-negative function g € C°([0, 1]) such that

2

gl > W
the problem
—u” +u = gt)h(u)
*D { W(0) = /(1) =0,

admits at least two non-negative and non-trivial classical solutions.

Example 2 at the end of the paper shows a Neumann problem that, owing
to our results, admits three solutions, but to which Theorem 2.1 of [8] cannot be
applied.

Our results are based on the following recent three critical points theorem
obtained in [3].
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Theorem B. (Theorem B of [3]) Let X be a real reflexive Banach space,
® : X — R a continuously Gateaux differentiable and sequentially weakly
lower semicontinuous functional whose Gdteaux derivative admits a continuous
inverse on X*, W : X — R a continuously Gateaux differentiable functional
whose Gdteaux derivative is compact. Assume that:

(1) | ﬂi”i (D) + AV (u)) = +oo forall A € [0, +o0[;

(i1)  thereisr € R such that:

inf® <r,
X
and
@1(r) < @a(r),
where -
\Il(u) - =
o1(r) == inf ¢ (—corD) ,
ued=1(1—oo,r[) r— ®(u)
V) — W
(1) == inf sup Jw) =~ ¥

ued (100D yed-1(r ooy PV) — Pu)’

and ®~1(] — oo, r[)w is the closure of ®~'(] — oo, r[) in the weak topology.

Then, for each ) € ]wz]<r)’ w1]<r)[ the functional ® + AV has at least three
critical points in X .

Other applications of Theorem B can be found in [3] and [4].
In order to apply Theorem B to our problem, let X be the space W'7()
equipped with the norm

1

fut = ( /Q VUl dx + /Q aluCol dx ).

which is equivalent to the usual one, while on the space C° (€) we consider the
norm || #|| s := sup |u(x)]|.
ueQ .
If p > n, X is compactly embedded in C°(<2), so that

u
(D) c:= sup lullos < 400
wex\joy el

Clearly, c?|la]l; > 1, where |la]; := fQ la(x)| dx.
For other basic notations and definitions we refer to [11].
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2. Results.
Our main result is the following

Theorem 1. Let p > n and let f : Q x R — R be a Carathéodory function
such that, for every p > 0, sup | f(., u)| € L'(Q). Put

lul<p

&
F(x,é)::/ fx,u)du forevery (x,£)eQ xR,
0

and assume that there exist three positive constants v, 8, and s, with y < é and
s < p, and a function u € L' () such that:

Jo Sp P S 1 Jo Flx,8)dx

) < ;
yr 1+ cP|lall 3r
()  F(x,&) < pu@)A+ &) for all (x,&) e xR.
Then, setting

. lall16”
A=
p(fQ F(x,8)dx — [, sup F(x, é‘)dx)
|El<y
and
yP
)\‘// = s
cPp [, sup F(x,§)dx
|El<y

for each A € 1), \'[ problem (P) admits at least three weak solutions.

Proof. For each u € X, put
1 P
Pu) := — lul
p

and
Y(u) = —/ F(x,u(x))dx.
Q
Since p > n, X is compactly embedded in C%(Q) and it is well known that &
and ¥ are (well defined and) continuously Gateaux differentiable functionals

with

Cb’(u)(v):/ (IVu)[P2Vu(x)Vox) + a(o)lux) [P 2u(x)v(x)) dx
Q
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and

V'(u)(v) = —/Q fx, u(x))v(x)dt

for every u, v € X, as well as W' is compact.

Furthermore, by Proposition 25.20 (i) of [11], ® is sequentially weakly
lower semicontinuous, while Proposition 1 of [7] ensures that ®' admits a
continuous inverse on X *.

Hypothesis (i) of Theorem B follows in a simple way thanks to (jj).

P
In order to prove (ii) of Theorem B, put r := %(}i) )

c

From hypothesis (j), we get

fo sup F(x,&)dx

HEY - 1 Jo Fx,8)dx
cPllallyy? c?llalli(1 + cP|lall) bl
B ( 1 1 )fQF(x,S)dx
~\e?llaly 1+ePllal, sr
then
sup F(x, &)dx
1 Jo F(x,8)dx f%\fpy 1 [, F(x,8)dx
< 9
1+ cPlall; p cPllallyy? cPllall p

thus, being y < §, we have

F(x,8)dx — F(x,&)d
L o PG dr Jo B = [ up F(x 8 dx

1 4cPllall r cPllall,8?

hence, using again (j), we get

Jo sup F(x,&)dx [, F(x,8)dx — [, sup F(x,§)dx
El<y < El<y ’
y? cPllall,8?

from which, multiplying by c¢” p, we obtain

c? p [, sup F(x,§)dx Jo F(x,8)dx — [, sup F(x,§)dx
) 11594 <p 11594
yr llall167
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We claim that:

c? p [, sup F(x,§)dx
1<y

VP

(CH @i(r) <

and

Jo F(x,8)dx — [ sup F(x,§)dx
11594

2) r) > ,
v =p lall 67

from which (ii) of Theorem B follows.
In fact, taking into account that the function identically O obviously be-
longs to ®~!(] — oo, r[), and that ¥(0) = 0, we get

sup [, F(x, u(x))dx
o (=00 D)

p1(r) < ,
r

and, since ®—1(] — 0o, r[) = ® (] — 00, r]), we have

sup | Jo FOr u(x)dx sup [, F(x, u(x))dx

o-!(—oo,r) )

’

r r

thus, taking into account that |u(x)| < c(pr)]? = v, for every u € X such that
®(u) < r and for each x € 2, we obtain

sup [ F(x, u(x))dx Jo sup F(x,&)dx
®-1(]—00,r]) < 1<y

r r

So, (C1) follows at once by the definition of r.
Moreover, for each v € X such that ®(v) > r, we have

) > - Jo F(x,v(x))dx — [, F(x, u(x))dx
P2 = ued=1(]—o0,r[) d(v) — d(u)

’

thus, from |u(x)| < c(pr)]? = v, for every u € X such that ®(u) < r and for
each x € 2, we obtain

” fQ F(x,v(x))dx — fQ F(x,u(x))dx
in
ued=1(]—o0,r[) d(v) — d(u)
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fQ F(x,v(x))dx —fQ sup F(x, &)dx

> inf El<y
ued-1(]—o00,r[) d(v) — d(u)

’

from which, being 0 < ®(v) — ®(u) < ®(v) forevery u € d~!(] — oo, r[), and
under further condition

3 /F(x,v(x))de/ sup F(x, &)dx,
Q

Q 5=y

we can write

Jo Fx,v(x))dx — [, sup F(x,§)dx
&

. <y
inf
ued-1(]—oo,r[) d(v) — d(u)

Jo F(x,v(x))dx — [, sup F(x,§)dx
11594

vll?

zZp

1
If we put v(x) :=§, for each x € @, we have |v| = ||a||];8, hence, by (1) and
y < §, we get ®(v) > r. Moreover, with this choice of v, (2) ensures (3), thus
(C2) is also proved.
Hence the conclusion follows by Theorem B, by observing that

I _ lall18?
00 " p( [ Fer8dx - [, sup F(x,8)dx)
<y
and
1 - yP
@i(r) ~ ¢Pp [, sup F(x,&)dx’
11594

Remark 1. In applying Theorem 1, it is enough to know an explicit upper
bound for the constant ¢ defined in (1). In this connection, when €2 is a convex
set, we have the following estimate (see [1] for more details):

@) C§2p7]max{( 1 )%,diam(m(”_l meas(sz))"T' ||a||oo}'

llall ny  \p—n llall
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Example 1. The problem

—Asu+ HEulu = A(x* + yz)[Ze*”2u17(9 W)+ 1} inQ
g—fj =0 on %2,

where Q is the open unit ball in R?, admits at least three weak solutions for
each A e]15-1074,15-1072.
In fact, choosing

and
2+x —u?
ae,y) = =, flx you)= (x2+y2>[2e W9 — u?) + 1]

for every (x, y) € Q2 and every u € R, and taking into account (4), it is simple to
verify all the hypotheses of Theorem 1, and that ]15-107%, 15- 10~2[C]\/, A"

Remark 2. In the ordinary case, whenever Q2 :=]u, B[ is a bounded open
interval in R, a function u# : [«o, 8] — R is said a generalized solution to
problem

(PO) { ~(l'1772u’) + a@lul?Pu = Af (¢t u) - in o, Bl
u'(@) = u'(B) =0,

ifueC'([o, B), |u'|P2u’ € AC([a, B]), u/(r) = u'(B) = 0 and
—(1W' O ©) + a®u@)|Pu(t) = 1f (¢, u(®))

for almost every ¢ € [«, B].

Using standard arguments, and taking into account that the correspondence
u + |u|P~%u is an homeomorphism in R, one can show that weak solutions
coincides with generalized ones, provided a € L*(Ja, B[) and f is as in
Theorem 1.

We point out the following simple consequence of Theorem 1, then we give
the proof of Theorem A and finally we present an easy example of application.

Theorem 2. Let p > 2, and let g € L'(Ja, B[), h € C°(R) be two non-negative
functions, with ||g|l1 > 0. Assume that there exists four positive constants
y,8,nands, withy < é and s < p, such that:



THREE SOLUTIONS FOR A NEUMANN BOUNDARY. .. 89

% 8
fh(u) du fh(u) du
0 1 0
(k) < =
y? 1+ 27-"max({1, (B — )*a|Xlall,"} P
&
(kk) / h(u)du < n(1 + |&|*) forall & eR.
0
Then, for each X in
] 3Plall; yPlall [
pliglh ff h(u)du 2P~'max({l, (B — a)*r~! ||a||§o||a||}7p}19||g||1 o h(u)du

the problem

{ —(lw'1P=2u) + a(®)lu?"2u = Ag(Oh(w) in e, Bl
w'(@) = u'(B) =0,
admits at least three generalized solutions.

Proof. Taking into account Remarks 1 and 2, the conclusion follows immedi-
ately from Theorem 1, by using f := gh and u := ng. (]

Proof of Theorem A. Put

— 0 if u<0
h(u) := { hw) if  u>0.

Clearly, h is a continuous function on R. Moreover, taking into account that

i MXiel<y Jo hw) du _
y—>0* v? ’

it is enough to pick ¥ > 0 such that

maxjei<, [y A@)du 1 [ h(u)du
v? S3 2

VZ

4] glly max <, fos h(u)du

3,-’_ 5_ 52
max/ h(u)du </ h(u)du — ——
1<y Jo 0 2[lglh

> 1

and
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so that, taking into account Remark 1, using f := gh, and observing that
1 €A, X[, Theorem 1 ensures that the problem

! — T
(P2) /u +u/ g()h(u)

u'(0) =u'(1) =0,

admits at least two non-null classical solutions. We claim that these solutions
are non-negative. In fact, arguing by a contradiction, if one of them, say uq,
is negative at one point of [0, 1], there exists an interval ]a, b[Z [0, 1] such
that —u//(t) + ui(r) = O for every ¢ € la, b[ and, further, it must be true
one of the following conditions: u;(a) = u1(b) = 0 Gf0 <a < b < 1),
i (0)=u(b) =0((f0=a<b<1),u(a=u(1)=0@G(0<a<b=1),
ui(0) = uj(1) = 0G0 =a < b = 1). Therefore, u;(t) = 0 for every
t € [a, b] and this is a contradiction, so our claim is proved. Finally, the
conclusion follows taking into account that the nonnegative solutions of (P2)
are also solutions of (P1). O

Remark 3. If in Theorem A we also assume that

h 0
lim ﬂ:0 and / h(u)du <0 forsome & >0

u—0— u _s

then, for every non-negative function g € C°([0, 1]) such that

2 5/2

el > max{zm(u) PREY=aTE du}

problem (P1) admits also two non-positive solutions. It is enough to apply the
same Theorem A to the function 2*(u) := —h(—u).

Example 2. Let 4 : R — R the function defined as follows

0 if u<0
h(u) ::{ 3u? if O<u<l1
3 if u>1.

Therefore, owing to Theorem A, for every non-negative function g € C°([0, 1])
such that ||g||; > %, the problem

—u” +u = g(t)h(u)
u'(0) =u'(1) =0,

admits at least two non-negative and non-trivial classical solutions.

On the other hand, the function H(§) := fos h(u) du does not satisfy the
assumption 1. of Theorem 2.1 of [8].
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