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A GENERALIZED SMALL MODEL PROPERTY

FOR LANGUAGES WHICH FORCE THE INFINITY

PIETRO URSINO

This paper deals with formulas of set theory which force the infinity.
For such formulas, we provide a technique to infer satisfiability from a finite
assignment.

1. Introduction.

In 1970 Jacob T. Schwartz launched the computable set theory longterm
project [12], which aimed to merge set theory and theoretical computer science
with reciprocal benefits. Since then, this research field revealed its pure combi-
natorial behavior.

Ten years later, M. Breban (cf. [1]) made an attempt to solve the decid-
ability problem for the language consisting of the conjuctions of literals of the
following forms:

(†)
v = w, v �= w, v = ∅, v = u ∪ w,

v = u ∩ w, v = u \ w, v ⊆ u, v �⊆ u,
v ∈ w, v /∈ w, v = p(w), v = {w0, w1, . . . , wH },

Breban was able to solve the problem allowing at most one occurrence of the
powerset operator. Indeed, this unquantified language, known as MLSSP (i.e.,
Multi-Level Syllogistic with Singleton and Powerset operators), shows how
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drastically the complexity of combinatorics increases, as one enriches the lan-
guage with new strong set constructors. In [9] Ferro solved the problem with
two occurrences of the powerset constructor; whereas Cantone (see [2]), ex-
ploiting a more sophisticated approach, solved the whole decidability problem
for MLSSP, without any restriction on the number of occurrences. However, any
attempt to use the same simple combinatorial approach to lengthen the list of set
constructors (in a non trivial way), crashed against the fact that such languages
build formulas which force any model to be infinite. Therefore, one of the main
goals in solving advanced decidability problems is to find a way to overcome
the impossibility to find finite models not exceeding a fixed size.

Recently (see [7]), the use of formative processes as a history of a set
assignment gave a new perspective to solve this kind of problems. Indeed, it
makes use of the history (or trace) of the model to obtain new information in
order to decrease the size of the model up to a suitable one. This observation
motivated our interest to the study of a small model property for languages
which contain MLSSP.

In [5], we discovered the small model property for MLSSP, and, by means
of this result, we built a satisfiability decision algorithm.

If we add to MLSSP particular set constructors, the small model property
fails to hold. A rather explicit example is the finiteness operator Finite(x )
(meaning that the cardinality of the set designated by x is smaller than ℵ0). Of
course, since we admit negation among propositional connectives, we must also
take into account literals of the form ¬ Finite(x ). Thus MLSSP, extended with
the monadic relator Finite, “forces the infinity” (informally, a language forces
the infinity whenever has inside formulas whosemodels must be of infinite size).
The same happens allowing the unitary union operator

⋃
(x ). As consequence,

languages which allow the use of this type of operators cannot satisfy the small
model property. This gave us the suggestion to focus on the structure of infinite
models (in particular, to their combinatorial features). Hence we formulate

Problem 1. Which combinatorial properties two assignments have to share, in
order to satisfy the sameMLSSP-like literals?

Corollary 15 below gives a satisfactory answer to this question. In Corol-
lary 34, we provide an analogous result, but referred to the formative processes
of the assignments.

These two corollaries are the tool to prove how a finite assignment can be
equipped with a special structure that allows to increase some variables, without
affecting the validity of the formula. We agree to denote such variables as
potential infinite variables, and we find a condition for this property to hold.
The above results allow us to investigate
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Problem 2. Even if a language forces the infinity, is it still possible, for any
satisfiable formula, to exhibit a finite assignment that witnesses this satisfiability
or, in other terms, to show a finite representation of an infinite model?

This kind of property of languages is here introduced as witness-small
model property.

Theorem 39 demonstrates how a combinatorial property of a finite assign-
ment to a formula of MLSSPF can witness the satisfiability of literals which
require an infinite assignment. More generally, this paper shows how the forma-
tive processes can be used in order to prove the witness-small model property in
some cases. This result leads to the solution of some open problems, such as the
decidability of languages which allow the use of the above-cited set construc-
tors, namely, MLSSP extended with the monadic relator Finite (the so-called
MLSSPF) [6], and MLSSP extended with the monadic operator

⋃
(x ) (known

as MLSSPU) [8].
Our method is based on a specific analysis, both of the model and of a

formative process which generates it. An detailed treatment of the general
features of computable set theory can be found in [3] and [4].

2. Basic notations and background.

For the reader’s convenience, we provide in this section brief description of
the standard tools used in set computable theory. For usual set theoretic notion
we refer to any textbook of the field (see [10], for example), instead a complete
survey of the specific notions mentioned in the sequel may be found in [5, § 2].

2.1. Assignments and models. Fix allowed forms for literals. A propositional
combinations of literals of such forms is said a formula. It is customary to
denote language of set theory the family of all formulas built with assigned
forms of literals. Assume � is a formula and let M ∈ { sets }X be a set-valued
assignment defined on the collection X� of variables in �. If M satisfies all
the literals, it is said to be a model for �. A model is rank-bounded by k if the
rank of any set involved in the assignment does not exceed k.

Definition 3. A language satisfies the small model property if there exists
a computable natural function f such that for any given formula � of that
language and any model M of � there is a finite model M′ rank-bounded by
f (|X�|).

Assume that � is a formula of a language, and A is a set assignment to its
variables X� . We say that A witnesses the satisfiability of � (even if A is not
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a model for �), provided that the structure of A allows to infer the satisfiability
of �. A formula of set theory forces the infinity if it possesses a variable x
such that, for any model M which satisfies the formula,M(x ) is of infinite size.
From this point of view, a formula which forces the infinity cannot have a finite
model, but it could have a finite assignment which witnesses its satisfiability.
Hence the following definition makes sense:

Definition 4. A language satisfies the witness-small model property if there
exists a computable natural function f such that for any given formula � of
that language and any model M of � there exists a finite assignment A rank-
bounded by f (|X�|) which witnesses the satisfiability of �.

2.2. Transitive partitions and syllogistic boards.

Definition 5. A family� of pairwise nonempty disjoint sets is called a partition

(of
⋃

�). Its members are the blocks of � . The set ς�
def= ℘

⋃
� \ ⋃

� (often
denoted simply by ς ) will occasionally be treated as a block of the partition too.
In this case, it is called the outer block of � .

As is well known, the function

�
∼��−→ {[X, Y ] | (∃ b ∈ �)(X ∈ b ∧ Y ∈ b)}

establishes a one-to-one correspondence between the partitions of a given set S
and the equivalence relations on S .

A useful relation � on ℘(℘(S)) is defined by setting

B � A iffDef (∀ a ∈ A)(∃ B ⊆ B) a =
⋃

B .

The relation B � A reads “B is finer than A”, or “A is coarser than B”.
This obviously is a preorder relation that, when restricted to the set � (S) of
all partitions of S , �, becomes a partial ordering.
Definition 6. A partition � is said to be transitive if

⋃
� is transitive.

We consider a finite set P , whose elements are called places and whose
subsets are called nodes. Places and nodes will be the vertices of a directed
bipartite graph G of a special kind, called a P-board. The edges issuing
from each place q are, mandatorily, all pairs q, B such that q ∈ B ⊆ P .
The remaining edges of G must lead from nodes to places. Hence, G is fully
characterized by the so called target function

T ∈ ℘(P)℘(P),
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associating with each node A the set of all places t such that 〈A, t〉 is an edge of
G. The elements of T (A) are called the targets of A. We will usually represent
G simply by T .

Places and nodes of a P-board are meant to represent the blocks σ , and
the subsets � (or, quite often, their unionsets

⋃
�), of a transitive partition � ,

respectively. Moreover, in this case, there is a quite natural way to define the
above-mentioned directed bipartite graph structure.

For our convenience we define the further operator

A� ∈ B =def A ∩ B �= ∅.

For any set X , we put

℘∗(X ) def= { Y | Y ⊆
⋃

X ∧ (∀ z ∈ X )( z � ∈ Y ) } ,

that is, the elements of the family ℘∗(X ) are all the sets Y that can be obtained
by extracting from each z ∈ X a nonnullWz ⊆ z, so forming Y = ⋃

z∈X Wz .

Definition 7. A transitive partition � is said to comply with G via q �→ q (•) ,
where G is P-board, q �→ q (•) belongs to �P and T (A) = {q | ℘∗(A(•)) �
∈ q (•)}, if the function T satisfies all the properties required by G, as indicated
above (in particular, this requires q �→ q (•) to be injective).

Any such board is said to be induced by � (for short, a �-board). We
denote a transitive�-board by a couple (�, G), where � is a transitive partition
and G is the induced P-board.

For the purposes of this paper, some additional structure must be superim-
posed on P-boards:

Definition 8. A P-board G = (T , F , Q) is said to be colored when it has

• a designated set F of places,
• a designated set Q of nodes, such that D ∈ Q holds whenever D ⊆ B ∈ Q
(in short,

⋃
℘[Q] ⊆ Q ), and

• a target function T .

The places in F are said to be red, the ones in P \ F are said to be green; the
nodes inQ are called ℘-nodes. A node is red if all places in it are red, and green
otherwise; a list of vertices is green if all vertices lying on it are green.
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Definition 9. Let G be a colored transitive�-board. Then �̂ is said to simulates
(�, G) upwards, when there is a bijection β ∈ �̂� such that

• �̂ ∈ -simulates � via β . That is,
⋃

β[X ] ∈ ⋃
β[Y ] if and only if⋃

X ∈ ⋃
Y , for X, Y ⊆ � ;

• �̂ ℘-simulates � via β . That is,
⋃

β[X ] = ℘
⋃

β[Y ] if
⋃
X = ℘

⋃
Y ,

for Y ∈ Q X, Y ⊆ � .
• �̂ Red -simulates � via β . That is, if σ ∈ F , then |β(σ )| = |σ |;
As far as the Boolean constructs ∅, ∩, \, ∪, =, �=, ⊆, �⊆ are concerned,

all relevant information about a family of sets is conveyed by the following
structure:

Definition 10. Given a family F , the Venn partition of F is the coarsest
partition � of

⋃
F which fulfill the condition

(∀ x ∈ F )(∀ p ∈ �)( p � ∈ x → p ⊆ x ).

Assume that � is a collection of literals which have one of the forms (†),
and let M ∈ { sets }X� be a set-valued assignment defined on the collectionX�

of variables in �. We denote by �X�
the Venn partition of the set M[X�],

and by �M the function �M ∈ ℘(�X�
)X� such that M(v) = ⋃�M(v) holds for

every v in X� .

Remark 11. Observe that any formula � with variables X� of a language
resulting from an extension of Multi Level Syllogistic can be modified, without
affecting its satisfiability, in such a way any modelM generates a transitive�X�

[2], pp. 195–196. Because of that, from now on we shall assume that �X�
is

transitive, for any model M of a formula � with variables X� .

Whenever literals as v = ℘(w) and Finite(v) appear in �, �X�
can be

naturally transformed into a colored �X�
-board G = (T , F , Q) (i.e., the �-

board G induced by �X�
), in the following way.

(a) F = ⋃{�(v) | for all literals of the form v = {w1, . . . , wH } and Finite(v)
in �};

(b) Q is equal to the minimal collection of nodes such that
– �(u)∈ Q for all literals of the form u = ℘(w) in �, and
–

⋃
℘[Q] ⊆ Q.

In the above case we refer to such a �X�
-board as

the canonical board of the assignment M to the MLSSPF formula �.
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Lemma 12. Consider a formula � ∈ MLSSPF, a set-valued assignment
M ∈ { sets}X� defined on the collection X� of variables in �, together with
the colored transitive �X�

-board G = (T , F , Q). Define �− as the formula
� without literals of the type Finite(x ) or ¬Finite(x ). Moreover, let be �̂ a
partition and β a bijection between �X�

and �̂ such that �̂ simulates (�, G)
upwards via β , and let M′(v) = ⋃

β[�M(v)]. Then, for every literal in �−, the
following conditions are fulfilled:

• if the literal is satisfied by M, then it is satisfied by M′ too;
• if the literal is satisfied by M′, and does not involve ℘ or the construct

{−, . . . ,− }, then it is satisfied by M too;
• if the literal Finite(x ) appears in � and is satisfied by M, then it is
satisfied by M′ too.

Proof. The thesis can be recast as follows. For u, v, w and wi in X� , the
following conditions hold for all literals in �:

(1)
⋃ �(v) � ⋃ �(w) iff ⋃

β[�(v)] � ⋃
β[�(w)], for � in { = , ∈ , ⊆ };

(2)
⋃ �(v) = ⋃ �(u) 


⋃�(w) iff ⋃
β[�(v)] = ⋃

β[�(u)] 

⋃

β[�(w)],
for 
 in { ∩ , \ , ∪ }, and ⋃�(v) = ∅ iff ⋃

β[�(v)] = ∅;
(3) if

⋃ �(v) = ℘
⋃�(w), then ⋃

β[�(v)] = ℘
⋃

β[�(w)];
(4) if

⋃ �(v) = { ⋃�(w1), . . . ,
⋃�(wH ) }, then ⋃

β[�(v)] = { ⋃
β

[�(w1)], . . . ,
⋃

β[�(wH )] }.
(5) if Finite(v) appears in � then | ⋃�(v)| = | ⋃β[�(v)]|
Property (1)∈ (here � is meant to be ∈ ) follows from ∈ -simulates in Def.
9. (3) follows from the assumption �(v) ∈ Q and the notion of wp-simulates
given in the same definition. Condition (5) plainly follows from definition of
Red -simulates.

We are left to prove that (4) hold. Observe that �(v) ⊆ F , then consider
�(v) as the set X and Yi as the sets �(wi ). Hence we can assume that⋃
X = {⋃Y1, . . . ,

⋃
YL }, X ⊆ F , and Y1, . . . , YL are distinct. We must

check that
⋃

β[X ] = {⋃β[Y1], . . . ,
⋃

β[YL ]}. Since �̂ Red -simulates (�, G)
and X ⊆ F , and |β(σ ) = |σ | for each σ ∈ X , the desired conclusion easily
follows. Indeed, by property (1) of Def. 9,

⋃
β[Yi ] ∈ β(σ ) if and only if⋃

Yi ∈ σ , and β[Y1], . . . , β[YL] (and, accordingly,
⋃

β[Y1], . . . ,
⋃

β[YL ]) are
pairwise distinct.

The proofs of remaining bi-implications go exactly as in [5], Lemma 10.1.
�

Definition 13. Consider a colored �-board G = (T , F , Q) A partition �̂ is
said to imitate (�, G) when there is a bijection β ∈ �̂� such that, for � ⊆ � ,
σ ∈ � ,
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(1) β(σ )� ∈ ℘∗β[�] holds [if and] only if σ � ∈ ℘∗�;
(2)

⋃
β[�]∈ β(σ ) holds if and only if

⋃
� ∈ σ ;

(3) if � ∈ Q holds, then ℘∗β[�] ⊆ ⋃
�̂;

(4) if σ ∈ F holds, then |β(σ ) < ℵ0.
We will say that �̂ imitates (�, G) upwards when the following additional
condition holds, for all σ ∈ � :

(4′) if σ ∈ F , then |β(σ ) = |σ |;

Lemma 14. Consider a colored �-board G = (T , F , Q) assume that a
transitive partition �̂ imitates (�, G) upwards then it simulates (�, G) upwards.

Proof. Let � and �̂ be transitive partitions, and let G be a colored P-board
induced by � . Assume that �̂ imitates (�, G) upwards via the bijection
β ∈ (�̂)� . Finally, let X, Y ⊆ � .

Then we have:
⋃

β[X ] ∈ ⋃
β[Y ] iff (∃ σ̂ ∈ β[Y ])(

⋃
β[X ] ∈ σ̂ ) iff

(∃ σ ∈ Y )(⋃ β[X ]∈ β(σ )) iff (∃ σ ∈ Y )(⋃ X ∈ σ ) iff
⋃
X ∈ ⋃

Y .
Assuming now that

⋃
X = ℘

⋃
Y , Y ∈ Q, let us prove that ℘

⋃
β[Y ] ⊆⋃

β[X ]. Indeed, suppose t ⊆ ⋃
β[Y ] and let �̂t be the subset of �̂ for

which t ∈ ℘∗�̂t (so that �̂t ⊆ β[Y ], which implies �̂t ∈ Q by the hereditarily
closedness by inclusion of Q). As β−1[�̂t ] ⊆ Y , it follows that ℘∗β−1[�̂t ] ⊆
℘

⋃
Y = ⋃

X ⊆ ⋃
� . Therefore, by the fact that �̂ imitates (�, G) upwards

and �̂t ∈Q, it follows that ℘∗�̂t ⊆ ⋃
�̂, so that t ∈ ⋃

�̂ . Let σ̂t be the block
in �̂ to which t belongs, and let σt be the block in � for which β(σt ) = σ̂t .
Then, since ℘∗�̂t � ∈ σ̂t , we have that ℘∗β−1[�̂t ] � ∈ σt , which yields⋃
X = ℘

⋃
Y ⊇ ℘∗β−1[�̂t ] � ∈ σt , so that

⋃
X � ∈ σt , σt ∈ X , and hence

t ∈ σ̂t ∈ β[X ], which in turn yields t ∈ ⋃
β[X ].

Next, assuming again
⋃
X = ℘

⋃
Y , let us prove that

⋃
β[X ] ⊆

℘
⋃

β[Y ]. Indeed, for each t ∈ ⋃
β[X ] there is a unique σt ∈ X such that

t ∈ β(σt ); moreover, by the transitivity of
⋃

�̂, there is a unique � ⊆ � for
which t ∈ ℘∗β[�]. Moreover, since ℘∗β[�] � ∈ β(σt ), we also have that
℘∗� � ∈ σt . Thus we can take t ′ ∈ σt ∩ ℘∗� that, as σt ⊆ ⋃

X = ℘
⋃
Y ,

fulfills t ′ ∈ ℘∗Z for a suitable Z ⊆ Y . In conclusion, � = Z , and therefore
t ⊆ ⋃

β[�] = ⋃
β[Z ] ⊆ ⋃

β[Y ]. �
As an immediate consequence, we have

Corollary 15. Consider a formula � ∈ MLSSPF, a set-valued assignment
M ∈ { sets }X� defined on the collection X� of variables in �, together with
the colored transitive �X�

-board G = (T , F , Q). Moreover, let �̂ and β be
a partition and a bijection, respectively, such that �̂ imitates (�, G) upwards
via β , and let M′(v) = ⋃

β[�M(v)], where � is the function � ∈ ℘�X� such
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that M(v) = ⋃ �(v) holds for every v in X. Then, for every literal in �− and
literals of the type Finite(x ), the following conditions are fulfilled:

• if the literal is satisfied by M, then it is satisfied by M′ too;
• if the literal is satisfied by M′, and does not involve ℘ or the construct

{−, . . . ,− }, then it is satisfied by M too.

2.3. Formative processes. We now formalize the concept of “history” of a
model by a transfinite construction. Using the transitivity of any transitive
partition, it is possible to single out a process that builds it, having the empty
partition as starting point.

The following notions are introduced to specify this concept.

Definition 16. Let � and �′ be two partitions, and let � ⊆ � . We say that �′
prolongates� via � when the following conditions hold:

(1) for all σ ∈ � , there is one and only one σ ′ ∈ �′ such that σ ⊆ σ ′;
(2)

⋃
�′ \ ⋃

� ⊆ ℘∗�;
(3) � �= �′.

When just condition (1) is met, possibly without (2) or (3), we say that �′
extends � . If both (1) and (3) hold true, then �′ is said to extend � properly.

Definition 17. [Coherence requirement] Let �, �′ and �′′ be partitions, with
�′ extending � (typically, � ⊆ �′) and �′′ extending �′ . Then �′′ is said to
extend �′ coherentlywith � if no element of

⋃
�′′ belongs to ℘∗� \ ⋃

�′.

Definition 18. Let ξ be an ordinal and let
({q (μ)}q∈P

)
μ≤ξ

be a (ξ +1)-sequence
of functions, all defined on the same domain P . Put B (μ)

def= { q (μ) | q ∈ B } for
all B ⊆ P , and let �μ = P(μ) \ {∅}, for all μ ≤ ξ .

Assume that the following conditions are fulfilled:

• q (μ) ∩ p(μ) = ∅ when p, q ∈ P , p �= q , and μ ≤ ξ ;
• q (ν) ⊆ q (ν+1) for all q ∈ P when ν < ξ ;
• q (λ) = ⋃

ν<λ q
(ν) for every q ∈ P and every limit ordinal λ ≤ ξ ;

• q (0) = ∅ and ∅ �= q (ξ ), for all q ∈ P .

In particular, �0 = ∅ and, for every μ ≤ ξ , �μ is a partition of the subset⋃
P (μ) of

⋃
P (ξ ).

Assume moreover that to each ν < ξ corresponds �ν ⊆ �ν such that

• �ν+1 prolongates�ν via �ν (cf. Def. 16);
• �ξ extends �ν+1 coherently with �ν (cf. Def. 17).
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Then the sequence
({q (μ)}q∈P

)
μ≤ξ

(occasionally,
(
�μ

)
μ≤ξ

) is called a
(strong) formative process for �ξ . Furthermore, the ξ -sequences (Aν )ν<ξ and
(Aν , Tν)ν<ξ , with Aν , Tν ⊆ P , satisfying for each ν the conditions

• A(ν)ν = �ν ,
• { q (ν+1) \q (ν) | q ∈ Tν} is a partition of⋃�ν+1 \⋃

�ν (= ℘∗�ν \⋃
�ν)∩⋃

�ν+1)

are called the trace of the formative process, and a history of �ξ , respectively.
A weak formative process is like a formative process, except that the

coherence requirement is withdrawn from the definition. A weak trace is defined
similarly.

In the sequel it will be helpful the following simplified notation.

Definition 19. Let ({q (μ)}q∈P)μ≤ξ be a weak formative process. Then, for
q ∈ P , B ⊆ P and ν < ξ , we set

q (•) def= q (ξ ), B (•) def= B (ξ ), �(ν)(q)
def= q (ν+1) \

⋃
P(ν).

If we take, along with a colored P-board (T , F , Q), a bijection q �→ q (•) from
the places P to the final partition �ξ of a formative process, and if moreover
�ξ complies with T , F , Q, we get what we call a colored P-process: namely,
the quintuple (({q (μ)}q∈P)μ≤ξ , (•), T , F , Q).

Definition 20. e ∈ ⋃
P(•) is said to be unused at μ ≤ ξ if e /∈ ⋃ ⋃

P(μ), i. e.,
if e /∈ z for any q ∈ P and any z ∈ q (μ).

Defintion 21. An e ∈ ⋃
P(•) is said to be NEW at μ ≤ ξ if e ∈ �(μ)(q) for

some q ∈ P .

Obviously a new element is, in particular, unused.

Lemma 22. If b is a set made of unused elements only, the same is ℘∗({b}∪ A).

2.4. Grand events and local trash. We begin with the following easy remark.
The block at place s belonging to a ℘-node A cannot become infinite during
a colored process, unless A has a green place among its targets. To see
that, assume that s ∈ A ∈ Q and |s (•)| ≥ ℵ0. Consequently, |℘∗(

⋃
A(•)) >

ℵ0 and ℘∗(
⋃
A(•)) ⊆ ⋃

P(•). Hence there must be a place g such that
|℘(∗)(

⋃
A(•)) ∩ g(•)| > ℵ0, since |P(•)| = |P| < ℵ0. This obviously implies

that g ∈ T (A) \ F .
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In light of generalizing the above remark, recalling the notion of grand
move, and noticing that such an event occurs, in a colored process, at most
once for each node A, we give the following definition of grand event GE(A)
associated with A.

Definition 23. For every node A and every ν such that 0 ≤ ν < ξ

GE(A)
def=

⎧⎨
⎩
the ordinal ν for which

⋃
A(•) ∈ ⋃

P(ν+1) \ ⋃
P(ν),

if any exists,

the length ξ of the process, otherwise.

Moreover, for any given collectionA of nodes, we put

GE(A)
def= min{GE(A) | A∈ A} .

Notice that this Definition implies that for any node A and any ν such that
0 ≤ ν < ξ ,

ν ≤ GE(A) ↔ ⋃
A(•) /∈ ⋃

P(ν),

ν = GE(A) ↔ ⋃
A(•) ∈ ⋃

P(ν+1) \ ⋃
P(ν),

ν > GE(A) ↔ ⋃
A(•) ∈ ⋃

P(ν).

Further elementary properties, whose proofs are left to the reader, are stated in
the next lemma.

Lemma 24. Let
(
�μ

)
μ≤ξ

, (•), T , F , Q be a colored P-process and let A ⊆ P

be a node. Then
• A(α) = A(•) , where α = GE(A);
• if q (ν+1) ⊇ q (ν), for some q ∈ A and some ν < ξ , then GE(A) > ν .

Other important related definitions are the following.

Definition 25. A place g is said to be a local trash for a node A if

• g ∈ T (A) \ F , i.e., g is a green target of A;
• there holds GE(A) < GE(B), for every node B such that g ∈ B .

Definition 26. A set W of places is said to be closed if

• all of its elements are green;
• every ℘-node which intersectsW has a local trash which belongs to W .
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2.5. Minus-Surplus refinement. In this section we recall some technical no-
tions to refine the original transitive partition. This procedure stores some el-
ements (the Surplus portion of a block) in order to trigger off a construction
which is supposed to “pump” elements inside fixed bocks. Conversely, the re-
maining collection of elements (the Minus portion of a block) will be used to
copy the original formative process.

We shall adopt the following notation. For a couple of ordinals β ′, β ′′ we
denote by [β ′, β ′′] the collection of ordinals {β | β ′ ≤ β ≤ β ′′}.

We say that a transitive partition � is equipped of a Minus-Surplus par-
titioning if each block q is partitioned into two sets, namely, Surplus(q) and
Minus(q). Consistently, we can extend this notation to a formative process(
�μ

)
μ≤ξ

. Given a node �, we indicate by Minus(�(μ)) the collection of sets

{Minus(q (μ)) | q ∈ �}.
Define now a Minus-Surplus partitioning for �0, and assume that for each
step μ of the process a refinement of the partition {�(μ)(q)}q∈� is decided
in the following way: for each q ∈ � the set �(μ)(q) is partitioned into two
sets �(μ)Minus(q) ⊆ ℘∗(Minus(A(μ)μ )) and �(μ)Surplus(q) ⊆ (℘∗(A(μ)μ ) \
℘∗(Minus(A(μ)μ )).
Then define inductively

Surplus(q (μ+1)) = Surplus(q (μ)) ∪ �(μ)Surplus(q)

and
Minus(q (μ+1)) = Minus(q (μ)) ∪ �(μ)Minus(q).

As far as ξ limit are concerned, we put

Minus(q (ξ )) =
⋃
μ<ξ

Minus(q (μ))

and, analogously,

Surplus(q (ξ )) =
⋃
μ<ξ

Surplus(q (μ))

If � is a subset of � , we denote by Surplus(�) the set

{q | q ∈ � ∧ Surplus(q) �= ∅}.
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Definition 27. Whenever a Surplus-Minus partition is defined for all blocks
of a transitive partition � , we say that � is equipped of a Minus-Surplus
partitioning, and we denote by Surplus-Minus(�) the following refinement
of the original one:

{Minus(q), Surplus(q) | q ∈ �}.

It is rather obvious that Surplus − Minus(�) � � .

Remark 28. Easy combinatorial arguments (see [5, Lemma 3.1 5(b)]) show
that ℘∗(−) of Surplus and Minus nodes are mutually disjoint.

The next definition says which structural properties a formative process has
to fulfill in order to copy the history of a transitive partition.

Definition 29. Let (
({q (μ)}q∈P

)
μ≤ξ

, (•), T , F , Q) be a colored P-process. Be-

sides, let
({̂q [α]}̂q∈̂P

)
α∈[α′,α′′] a formative processes equipped of a Minus-Surplus

partitioning. Assume that q → q̂ is a bijection from P to P̂ , β ′′ ≤ ξ ,
and γ is an order preserving injection from [β ′, β ′′] to [α′, α′′]. Let C be a
closed collection of green blocks, and q → q̂ be a bijection from P to P̂ .
We say that

({̂q [α]}̂q∈̂P

)
α∈γ [[β ′,β ′′]] imitates the segment [β

′, β ′′] of the process
(
({q (μ)}q∈P

)
μ≤ξ

if the following hold for all β in [β ′, β ′′]:

(i) |q (β)| = |Minus [γ (β)](̂q)|;
(ii) |�(β)(q)| = |�[γ (β)]Minus (̂q)|;
(iii) �[γ (β)]Surplus (̂q) �= ∅ implies β = GE(Aβ ), q local trash for Aβ and

q ∈ C;
(iv) If � ∈ Q holds, then ℘∗(�̂[γ (GE (�))]) ⊆ ⋃

�̂[γ (GE (�)+1)];
(v) For all β �= GE(�)

⋃
�(β) ∈ �(β)(q) iff

⋃
Minus�̂[γ (β)]∈ �[γ (β)](̂q);

(vi) If β = GE(�) then
⋃

�(β) ∈ �(β)(q) iff
⋃

�[γ (β)] ∈ �[γ (β)](̂q);
(vii) For all q ∈ F q̂ [γ (β)] = Minus [γ (β)](̂q);
(viii) For all ordinals β {q | q̂ ∈ Surplus(�̂)[γ (β)]} ⊆ C;
(ix) |℘∗(Minus(�̂[γ (k)])) \ ⋃

q∈� q
[γ (k)]| = |℘∗(�)(k) \ ⋃

q∈� q
(k)|;

(x) |℘∗(Minus(�̂[γ (k−1)])) ∩ q [γ (k)]| = |℘∗(�(k−1)) ∩ q (k)|.

Remark 30. We make some simple observations.

• ℘∗(�(k−1))∩q (k) = ℘∗(�(k))∩q (k) . Hence, whenever γ (k) is the successor
of γ (k − 1), (x) can be rephrased as

|℘∗(Minus(�̂[γ (k)])) ∩ q [γ (k)]| = |℘∗(�(k)) ∩ q (k)|.
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• Naturally, (ix) belongs to the structural properties that a formative process
has to fulfill in order to simulate another one, although it can be obtained
from (i) and (x).

• Assume that (viii) holds at the beginning of the process. Then (iii)
entails (viii), therefore, whenever one has to prove inductively the previous
properties, it suffices to show that (viii) holds only in the starting step. The
same argument holds for (x). Indeed, it can be obtained from (ii), (iii) and
(x) of the preceding step.

The following requirements set are to be satisfied by the initial conditions
of a transitive partition in order to play the role of starting point of an imitation
process (as it is easily seen, they are purely combinatorial).

Definition 31. Let (
({q (μ)}q∈P

)
μ≤ξ

, (•), T , F , Q) be a colored P-process,

(�̂, Ĝ) be a �̂-board equipped with a Minus-Surplus partitioning, q → q̂ be
a bijection from P to P̂ , and C be a closed collection of green blocks. As-
sume k′ < ξ , such that (i), (vii), (viii) and (x) of Def. 29 hold in the version
�̂γ (k′) = �̂ . We say that �̂ weakly imitates � upwards, provided that the fol-
lowing conditions are satisfied:

(a) for all � ⊆ � and q ∈ � ,⋃
Minus(�̂)∈ ℘∗(Minus(�̂))\

⋃
q∈�

q̂ iff
⋃

�(k
′) ∈ ℘∗(�(k

′))\
⋃
q∈�

q (k
′);

(b) q ∈ � ∧ Surplus(q) �= ∅ ∧ GE(�) ≥ k′ implies
⋃

�̂ ∈ ℘∗(�̂) \ ⋃
q∈� q̂ ;

(c) if GE(�) < k′ , then
⋃

�(k
′) ∈ q (k

′) iff
⋃

�̂ ∈ q̂ and � ∈ Q implies
℘∗(�̂) ⊆ ⋃

�̂.

3. Two structural results concerning Minus-Surplus partition.

The following Lemma relates Definition 31 with the notion of imitating a
formative process.

Lemma 32. Let (
({q (μ)}q∈P

)
μ≤ξ

, (•), T , F , Q) be a colored P-process, (�̂, Ĝ)

be a �̂-board, the latter equipped of a Minus-Surplus partitioning, q → q̂ be a
bijection fromP to P̂ , and C be a closed collection of green blocks. Assume that
k′ ≤ ξ , and that �̂ weakly imitates upward �k′ . Define �̂ = �̂γ (k′) and, for all
q ∈ P̂ , q̂ = q̂ [γ (k

′)]. Then for all ordinals k′′ such that k′′ ≤ ξ and |[k′, k′′]| < ω

it can be constructed a formative process
({̂q [α]}̂q∈̂P

)
γ (k′)≤μ≤γ (k′′) which imitates

the segment [k′, k′′] of the process
(({q (μ)}q∈P

)
μ≤ξ

, (•), T , F , Q
)
.
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Proof. We construct a formative process by induction satisfying the requested
properties (i)-(x).

Concerning the base case μ = γ (k′), (i),(vii),(viii)(x) hold by hypothesis,
and (ix) holds by Remark 30, since (i) and (x) hold. Assume k′ �= GE(Ak′ ).
Using (ix) and hypothesis (a) we can define a partition

⋃
q∈� �[γ (k′)](q) of

℘∗(Minus [γ (k
′)](Âk′ )) \

⋃
q∈�

q [γ (k
′)]

such that (ii) and (v) hold, as well. If k′ = GE(Ak′ ) and Surplus (̂q [γ (k
′)]) �= ∅

for some q ∈ Ak′ (otherwise we proceed as before, and condition (vi) is

automatically satisfied), then, using (b), interchanging
⋃
Minus(Âk′

[γ (k′)]
) with⋃

A[γ (k
′ )] , (vi) is satisfied.

If Ak′ ∈ Q and Âk′ = Minus(Âk′ ), proceed as before (in this case (iv)
holds by a straight checking of cardinality starting from (ix)). Otherwise, since
(viii) holds, there must exist a local trash q ∈ C for Ak′ . Then, construct the
partition as before, except for �[γ (k′)]Surplus (̂q), in which we put the whole
remainder

(℘∗(Âk′
[γ (k′)]

) \
⋃
q∈�

q [γ (k
′)]) \

⋃
q∈�

�[γ (k′)]Minus (̂q),

so satisfying (iii) and (iv).
Now, assume all the inductive hypotheses for γ (k). Our aim is to demon-

strate the case γ (k + 1). By Remark 30, provided that (iii)[γ (k + 1)] is proven,
(viii) automatically holds. Plainly (i)[γ (k)] and (ii) [γ (k)] entail (x)[γ (k + 1)]
and (i)[γ (k + 1)]. The latter in turns implies the following for all � ⊆ �

(1) |℘∗(Minus [γ (k+1)]�̂))| = |℘∗(�(k+1))|.

In order to show (ix) we observe that, since

℘∗(Minus(�̂[γ (k+1)]) \
⋃
q∈�

q [γ (k+1)]

= (℘∗(Minus(�̂[γ (k+1)]) \ ℘∗(Minus(�[γ (k)])) \
⋃
q∈�

q [γ (k+1)])∪

∪(℘∗(Minus(�̂[γ (k)])) \
⋃
q∈�

q [γ (k+1)]),
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it follows that

℘∗(Minus(�̂[γ (k+1)])) \ ℘∗(Minus(�̂[γ (k)])) \
⋃
q∈�

q [γ (k+1)]

= ℘∗(Minus(�̂[γ (k+1)])) \ ℘∗(Minus(�[γ (k)])).

Therefore,
℘∗(Minus(�̂[γ (k+1)])) \

⋃
q∈�

q [γ (k+1)]

= ℘∗(Minus(�̂[γ (k+1)])) \ ℘∗(Minus(�̂[γ (k)]))∪
℘∗(Minus(�̂[γ (k)])) \

⋃
q∈�

q [γ (k+1)].

Reasoning in the same way, we obtain

℘∗(�)(k+1) \
⋃
q∈�

q (k+1) = ℘∗(�)(k+1) \ ℘∗(�)(k) ∪ ℘∗(�)(k) \
⋃
q∈�

q (k+1).

By the induction hypothesis (i) [γ (k)] we have | ℘∗(Minus [γ (k)]�̂)) | =
| ℘∗(�(k))|, and by equation (1),

|℘∗(Minus [γ (k+1)]�̂))| = |℘∗(�(k+1))|,

which in turns implies

|℘∗(Minus(�̂[γ (k+1)])) \ ℘∗(Minus(�̂[γ (k)]))| = |℘∗(�)(k+1) \ ℘∗(�)(k)|.

Hence we are left to prove the equality

(2) |℘∗(Minus(�̂[γ (k)])) \
⋃
q∈�

q [γ (k+1)]| = |℘∗(�)(k) \
⋃
q∈�

q (k+1)|.

Observe that
℘∗(Minus(�̂[γ (k)])) \

⋃
q∈�

q [γ (k+1)] =

= ℘∗(Minus(�̂[γ (k)])) \
⋃
q∈�

q [γ (k)] \
⋃
q∈�

�[γ (k)]Minus(q).
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If � �= Ak , by the disjointness of ℘∗ we get

℘∗(Minus(�̂[γ (k)])) \
⋃
q∈�

q [γ (k)] \
⋃
q∈�

�[γ (k)]Minus(q) =

= ℘∗(Minus(�̂[γ (k)])) \
⋃
q∈�

q [γ (k)].

Plainly, the same is true in the ()− version, thus (2) holds for γ (k), by virtue of
(ix). Otherwise, since

⋃
q∈� �[γ (k)]Minus(q) is a partition of a subset extract

from
℘∗(Minus(�̂[γ (k)])) \

⋃
q∈�

q [γ (k)],

we have that

|℘∗(Minus(�̂[γ (k)])) \
⋃
q∈�

q [γ (k)] \
⋃
q∈�

�[γ (k)]Minus(q)|

= |℘∗(Minus(�̂[γ (k)])) \
⋃
q∈�

q [γ (k)]| −
∑
q∈�

|�[γ (k)]Minus(q)|.

Again, the same holds in the ()− version, and (2) is reached by (i) [γ (k)] and (ii)
[γ (k)]. This concludes the proof of (ix)[γ (k + 1)].

Concerning (vii)[γ (k+1)], observe that q [γ (k+1)] = q [γ (k)]∪�[γ (k)](q). By
the induction hypothesis (vii) [γ (k)],

q [γ (k)] = Minus(q [γ (k)]).

On the other side, since (iii) [γ (k)] holds and C is composed of green places
only,

�[γ (k)](q) = �[γ (k)]Minus(q),

which implies (vii) [γ (k + 1)].
Regarding (ii)[γ (k + 1)]-(vi)[γ (k + 1)], the argument goes like in the base

case. �
Lemma 33. Let (

({q (μ)}q∈P

)
μ≤ξ

, (•), T , F , Q) be a colored P-process. More-

over, let
({̂q [α]}̂q∈̂P

)
α≤ξ ′ be another formative process, equipped of a Minus-

Surplus partitioning. Assume that, for some k′ ≤ ξ and m ≤ ξ ′,

• �̂m weakly imitates �k′ upwards;
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• the process
({̂q [α]}̂q∈̂P

)
α∈γ [k′,ξ ] imitates

({q (μ)}q∈P

)
k′≤μ≤ξ

, where γ is an

injective map from [k′, ξ ] to [m, ξ ′];
• �̂ξ ′ has the same targets of �ξ ;
• for all μ > m ∧ μ /∈ γ [k′, ξ ] the following holds: �[μ](̂q) ⊆

�[μ]Surplus (̂q);
• if β is the greatest ordinal such that β ∈ γ [k′, ξ ] ∧ β ≤ μ, if q is a local

trash of Aμ , and if GE(Aμ) > γ −1(β), then
⋃
Âμ

[ξ ′]
/∈ �[μ]Surplus (̂q).

Then �̂ξ ′ imitates�ξ upwards.

Proof. We prove that the resulting partition �̂ξ ′ fulfills the conditions:

(0) q (ξ ) � ∈ ℘∗�(ξ ) holds if and only if q̂ [ξ ′] � ∈ ℘∗�̂[ξ ′];
(1)

⋃
�̂[ξ

′] ∈ q̂ [ξ ′] if and only if
⋃

�(ξ ) ∈ q (ξ );
(2) if � ∈ Q holds, then ℘∗�̂[ξ ′] ⊆ ⋃

P̂[ξ ′];
(3′) if q ∈ F , then

∣∣̂q [ξ ′]
∣∣ = ∣∣q (ξ )∣∣.

Along the verification of properties (0)-(3′) we refer to (i)-(x) of Def. 29.
(0) By the fact that the two partitions have the same targets;
(1) In case

⋃
�̂[ξ

′] ∈ q̂ [ξ
′] , assuming that it is distributed strictly before m,

then GE(�) < k′ . Indeed, if not so, by (vi) Def. 29, since
⋃

�(GE (�)) ∈
�(GE (�))(q), we get

⋃
�̂[ξ

′] =
⋃

�̂[γ (GE (�))]∈ �[γ (GE (�))]q̂,

which is impossible, due to the fact that
⋃

�̂[ξ
′] ∈ q̂ [ξ

′] is already
in q̂ [γ (GE (�))], and �[γ (GE (�))]̂q , by definition, is made of elements of
℘∗(�̂[γ (GE (�)]) \ ⋃

q∈� q
[γ (GE (�))]. Then, using the fact that �̂m weakly

simulates �k′ , the result follows. Concerning the right implication, we
are left to prove the case when

⋃
�̂[ξ

′] is distributed after or in m. Let
j be such an index. By hypothesis, j cannot be outside γ [k′, ξ ], and so
j = γ (k) for some k. We show that k = GE(�). By contradiction, let us
assume k > GE(�). Then, by (vi) Def. 29,

⋃
�̂[γ (GE (�))]∈ �[γ (GE (�))]q̂.

Observe that, after γ (GE(�)), �̂ cannot change inside the range of γ ,
on account of (ii) and (iii) of Def. 29. It cannot change for an index j
outside, since GE(�) is greater than the greatest ordinal β such that β ∈
γ [k′, ξ ]∧ β ≤ j . On the other hand, k cannot be strictly less than GE(�),
since in this case the same argument used for

⋃
�̂[ξ

′] distributed before m
and GE(�) ≥ k′ applies. Therefore k = GE(�), and we are done. We
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now show the left implication in the case GE(�) < k′ . The hypothesis
implies that

⋃
�̂[m] ∈ q̂ [m]. Reasoning as before, we conclude that �̂

cannot change along the process after m. Finally, assuming GE(�) ≥ k′ ,
by (vi) (29) there holds

⋃
�̂[γ (GE (�))]∈ �[γ (GE (�))]q̂.

Again �̂ cannot change in the sequel of the process, either along the
imitated process, or outside.

(2) Follows plainly from (iv) (29). Indeed, � ∈ Q, therefore

℘∗(�̂[γ (GE (�))]) ⊆
⋃

P̂[γ (GE (�))].

As observed in the previous point, after [γ (GE(�))], �̂ cannot change
either along the imitating process, by (ii) and (iii) (29), or outside, by
hypothesis. Thus ℘∗(�̂[ξ ′]) ⊆ ⋃

P̂[ξ ′] .
(3′) The red places cannot belong to C. Hence, by the property (viii), they

cannot have Surplus part, which in turns implies that Minus (̂q [ξ
′]) = q̂ [ξ

′] .
This, combined with |Minus [γ (ξ )](q)| = |q (ξ )|, due to (i) (29), leads to the
thesis. �

The following theorem summarizes the previous results and shows which
properties two formative processes have to share in order to model the same
literals. The proof is a straight application of Corollary 15.

Theorem 34. Let (
({q (μ)}q∈P

)
μ≤ξ

, (•), T , F , Q) be a colored P-process.

Moreover, let
({̂q [α]}̂q∈̂P

)
α≤ξ ′ be another formative process, equipped of a

Minus-Surplus partitioning. Assume that, for some k′ ≤ ξ and m ≤ ξ ′,

• �̂m weakly imitates �k′ upwards;
• the process

({̂q [α]}̂q∈̂P

)
α∈γ [k′,ξ ] imitates

({q (μ)}q∈P

)
k′≤μ≤ξ

, where γ is an
injective map from [k′, ξ ] to [m, ξ ′];

• �̂ξ ′ has the same targets of �ξ ;
• for all μ > m ∧ μ /∈ γ [k′, ξ ] the following holds: �[μ](̂q) ⊆

�[μ]Surplus (̂q);
• if β is the greatest ordinal such that β ∈ γ [k′, ξ ] ∧ β ≤ μ, if q is a local

trash of Aμ , and if GE(Aμ) > γ −1(β), then
⋃
Âμ

[ξ ′]
/∈ �[μ]Surplus (̂q).

Consider a formula � ∈ MLSSPF, a set-valued assignment M ∈ {sets}X�

defined on the collection X� of variables in � assuming that (
({q (μ)}q∈P

)
μ≤ξ

,
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(•), T , F , Q) is a colored P-process for the �X�
-board then, letting M′(v) =⋃

[�M(̂v)], for every literal in �, the following conditions are fulfilled:

• if the literal is satisfied by M, then it is satisfied by M′ too;
• if the literal is satisfied by M′, and does not involve ℘ or the construct

{−, . . . ,− }, then it is satisfied by M too.

Remark 35. The same result holds even in more relaxed conditions, revealing
its strength when we are looking for small models. Namely, when we prune
the process instead of prolongate it. In fact, the previous theorem holds, with
an identical proof, provided that the domain of γ contains the following two
collections of salient ordinals:

Marrow = {μ | k′ ≤ μ < ξ ∧ ∃q ∈ Pq (μ) ∩ ℘∗(A(μ)μ ) = ∅ ∧ �(μ)(q) �= ∅}
and

MGE = {μ | k′ ≤ μ < ξ ∧
⋃

A(μ)μ =
⋃

A(•)μ ∈
⋃

P (•)}.

4. Using the Two Structural Lemmas into Set Computable Examples.

Assume that M is a finite set assignment to the variables of an assigned
formula � of MLSSPF, which contains literals of the type ¬Finite(x ). Ob-
viously, M cannot be a model for �, although it could happen that it satisfies
every other literal, except those of that kind. The question is: in this situation
could M witness the satisfiability of �? The answer is positive, as we will
show, and the core argument for proving this lies inside a possible history ofM.
Indeed, given a formative process for the Venn partition � inherited from M,
if we can find an “engine” capable to pump elements inside at least one Venn
region for each variable x , such that ¬Finite(x ) lies in � without affecting the
satisfiability of other literals, we reach the desired conclusion.

We will be more precise on the exact meaning of “engine”, and how
profitably the results of the previous sections can be used in order to preserve
the satisfiability of the other literals even though the size of the assignment of
some variables is infinitely increased.

Definition 36. In a P-board G, a path is an ordered vertex list W1, . . . ,Wk ,
in which places and nodes are so alternate that Wi ,Wi+1 is an edge of G, for
i = 1, . . . , k − 1. A path is said to be simple if neither places nor nodes occur
twice (i. e., Wi �= Wj when 0 < i < j ≤ k and i ≡ j ( mod 2 ) ).
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Definition 37. In a colored P-board G = (T , F , Q), a path

C ≡ C0, q0,C1, . . . , qn,Cn+1

where the piece C0, q0,C1, . . . , qn, is simple and n ≥ 0, devoid of red places,
and such that Cn+1 = C0 , is said to be a simple pumping cycle.

Given a path D in a P-board G, we denote by (D)places and (D)nodes the
collections of places and nodes occurring inD, respectively. Moreover, given a
node B in G, we denote byN (B) the collection of all nodes which have nonnull
intersection with B .

The following is to be regarded as the engine which increases the size of
some places without affecting the validity of the formula.

Definition 38. Let C be a simple pumping cycle relative to a given colored P-
process

(
�μ

)
μ≤�

, [•], T , F , Q, with � finite. Then < q0, i0, C > is called a
simple pumping event whenever we have

(i) q [i0]0 \ ⋃ ⋃
P[i0] �= ∅, q0 ∈ Cplaces ;

(ii) GE(N (((C)places )) ≥ i0 ;
(iii) ℘∗(B [i0]) �= ∅ (i. e., ∅ /∈ B [i0]), for B ∈ Cnodes .

If � is a particular Venn partition�X�
, the variables that contain the places

involved in the pumping cycle can be considered potential infinite variables.

Theorem 39. Assume that M is a finite transitive set assignment to the vari-
ables X� of an assigned formula � of MLSSPF, that satisfies every other lit-
erals except those of the type ¬Finite(x ). Consider the transitive �X�

-board
G = (T , F , Q), and an associated colored P-process

((
�μ

)
μ≤�

, (•), T , F , Q
)
,

with � finite. Then there exists a model for�, provided there is a simple pumping
event < q, i0, C > such that (C)places is contained in a closed set C satisfying
the statement:

For each variable x such that ¬ Finite(x ) ∈ �, �M(x ) ∩ Cplaces is not empty.

Proof. Let < q0, i0, C > be our simple pumping event, where C is equal to

{C0, q0 . . . qn,Cn+1}.

We build a new formative process
((

�̂μ

)
μ≤�

, [•], T )
, using the original one

as an oracle. In the meanwhile, a Minus-Surplus refinement is done. We
first define the sequence of the nodes to be used in this new process. Denote
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by A� = {A0 . . . A�} the sequence of nodes used along the given process((
�μ

)
μ≤�

, (•), T , F , Q
)
. The following sequence serves to our scope:

A1, . . . Ai0−1 C1 . . .Cn+1︸ ︷︷ ︸
ℵ0−t imes

, Aγ (i0 ) . . . Aγ (�),

where, for all j , Aγ ( j) = Aj and the cycle C is repeated ℵ0 − t imes .
In order to define a formative process, we just need to exhibit the way

to distribute all the elements produced at each stage. Our strategy consists to
follow the old formative process up to the stage i0 − 1 = γ (i0 − 1), setting({̂q [ j]}q∈P

)
j≤i0−1

({q ( j)}q∈P

)
j≤i0−1. Along this segment, we define γ as the

identity map; then, we “pump” the cycle in order to create new elements and
distribute them. This procedure by transfinite induction increases the cardinality
of the blocks inside the cycle, preserving the cardinality of all the blocks not
involved in the pumping procedure. In order to do that, we distinguish the
elements reserved for the pumping procedure (Surplus portion) from those used
for mimicking the old process (Minus portion). The Minus-Surplus refinement
that we are about to define will serve such a scope.

Without loss of generality, we assume that at each step the cycle can
distribute at least three new elements (otherwise, we can pump the cycle to
give at least two elements to every block involved in the cycle). By Definition
of simple pumping event, q (i0) \ ⋃ ⋃

P(i0) �= ∅, which means that in q (i0) there
are unused elements. Let t0 be one of these, and define the partitions Surplus
and Minus as follows:

• For all q �= q0 put
Surplus [γ (i0−1)+1](̂q) = ∅ and Minus [γ (i0−1)+1](̂q) = q (i0);

• For q0 put
Surplus [γ (i0−1)+1](̂q0) = {t0} Minus [γ (i0−1)+1](̂q0) = q (i0)0 \ {t0};

Since every block involved in the cycle has at least two elements, the set

℘∗
({
Surplus [γ (i0−1)+1](̂q0)

} ∪ Ĉ1
[γ (i0−1)+1]) \

{⋃
Ĉ1

[γ (i0−1)+1]}

is not empty. Moreover, by Lemma 22, it is made of unused elements only.
Thus,

℘∗({Surplus [γ (i0−1)+1](̂q0)} ∪ Ĉ1
[γ (i0−1)+1]) \ {

⋃
Ĉ1

[γ (i0−1)+1]} =

= (℘∗({Surplus [γ (i0−1)+1](̂q0)} ∪ Ĉ1
[γ (i0−1)+1]) \ {

⋃
Ĉ1

[γ (i0−1)+1]})\
⋃
q∈�

q̂ [γ (i0−1)+1],
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so that the position
�[γ (i0−1)+1](Surplus (̂q1)) =

= ℘∗({Surplus [γ (i0−1)+1](̂q0)} ∪ Ĉ1
[γ (i0−1)+1]) \ {

⋃
Ĉ1

[γ (i0−1)+1]}
makes sense. The other �-set are left empty. Observe that, in particular, for all
q �= q0 this yields

Minus [γ (i0−1)+2](̂q) = Minus [γ (i0−1)+1](̂q) = q (i0).

We then continue defining

�[γ (i0−1)+2](Surplus (̂q2)) =

= ℘∗({�[γ (i0−1)+1](Surplus (̂q1))} ∪ Ĉ2
[γ (i0−1)+2])\

{
⋃

Ĉ2
[γ (i0−1)+2]},

and all the argument used in the previous step can be repeated.
This procedure will prosecuted until the end of the cycle is reached,

that is, the node Cn+1 . At this step we introduce a slight modification in
the construction of the �-sets. Namely, we have to restore the cardinality
of Minus (̂q), which was pertubed moving t0 from the Minus to the Surplus
portion, in order to trigger off the pumping procedure. Hence, pick an element
t1 inside

℘∗({�(Surplus [γ (i0−1)+n+1](̂qn)} ∪ Ĉn+1
[γ (i0−1)+n+1]) \ {

⋃
Ĉn+1

[γ (i0−1)+n+1]}.

Since we are assuming that at each step the cycle can distribute at least 3 new
elements, the set

�[γ (i0−1)+n+1](Surplus (̂q0)) =
= ℘∗({�(Surplus [γ (i0−1)+n+1](̂qn)} ∪ Ĉn+1

[γ (i0−1)+n+1])\
{
⋃

Ĉn+1
[γ (i0−1)+n+1]} \ {t1}

is certainly not empty. Then define

�[γ (i0−1)+1](Minus (̂q0)) = {t1}.

Notice that t1 is unused, and so will be kept along the entire pumping procedure
of pumping, since it lies in the Minus portion of q̂0, which is untouched in this
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segment of the new formative process. As before, the procedure can prosecute
ℵ0-times.

Since q (λ) = ⋃
ν<λ q

(ν) for every q ∈ P and every limit ordinal λ ≤ ξ , it
is clear that q̂ [ω=γ (i0)] is equal to

⋃
i∈N

q̂ [(i0−1)+i] for all q ∈ P , consistently the
Minus-Surplus partition is defined for the stage ω.

By construction, for all q ∈ P such that q �= q0 (Minusγ (i0)(̂q)) is equal to
q (i0) while (Minus [γ (i0)](̂q0)) is equal to (q

(i0)
0 \ {t0}) ∪ {t1}.

Our aim is to show that the transitive partitions �i0 and �̂γ (i0) verify the
conditions to apply subsequently Lemma 32 and Corollary 34, so proving the
satisfiability of �.

Concerning the application of Lemma 32, we have to show properties (i),
(vii), (viii), (x), and (a)-(c). This is just a bookkeeping argument, and we detail
it in the Appendix.

Now the formative process [•] has copied the original one along the
segment [i0, �]. In order to apply Lemma 34, we need to show that �̂γ (�) has
the same target as �� . We simply observe that, if q (�) is a target of �(�) , there
must exist a step i such that � = Ai and �i (q) �= ∅. Since both the segment
[0, (i0 − 1)] is equal to [0, γ (i0 − 1)], and the segment [i0, �] is imitated by
one application of Lemma 32, then �[γ (i)](̂q) �= ∅ too. On the other side, if
�[α](̂q) �= ∅ for some α, q has to be a target of Âα , so that we are done.

At this point Corollary 34 applies, therefore all literals except those of
Finite-type are satisfied. Finally, the literals as Finite(x ) are satisfied as well.
Indeed, every block q contained in �M(x ) lies in F , and the formative process
[•] does not change size of such a block. Also, by hypothesis, for each variable
x such that ¬Finite(x )∈ �, �M(x )∩Cplaces is not empty, and the blocks in the
pumping cycle are infinitely increased during the pumping procedure. Hence
all of them are of infinite size, as well as all the variables containing at least one
of them. This in turns implies that all ¬Finite(x ) ∈ � are satisfied by the new
model. �

The above technique provides a valid tool to solve problems which require
to build an infinite model. In [8] it is shown that there is a computable function
f (n) such that, if a formula � in MLSSPF is satisfiable, then there is an
assignment rank bounded by f (|X�|) which satisfies a slight modification of
the properties described in Theorem 39. But then MLSSPF has the witness
small property, and is therefore decidable. A similar argument it is used to
prove the witness small property for MLSSPU.
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5. Open Problems.

2.5. A Decidability Problem. Even if all the problems related to the literals
which force the infinity are treatable by the present approach, the decidability
of MLSSP extended by the cartesian product binary operator [x = y× z] is still
an open question. Observe that this language forces the infinity. This problem
is originally due to M. Davis, who proposed it as a set computable version of
the Tenth Hilbert Problem (see [11]).

5.2. A Complexity Problem. Decidability of MLSSP is NP-complete, there-
fore there is no hope to find a polynomial time bound for our problems. Never-
theless, the witness small model property furnishes double exponential decision
algorithms. An exponential bound could be a good platform to perform polyno-
mial time for special cases.

Appendix.

Here we exhibit a complete verification of the properties requested for the
application of Lemma 32 within the proof of Theorem 39.

(i) First assume q �= q0. By construction, only Surplus sides are increased
along pumping procedure. Therefore q (i0) = Minus [γ (i0)]q̂ . Other-
wise, observe that Minus [γ (i0)]q̂ = (q (i0) \ {t0}) ∪ {t1}, hence |q (i0)| =
|Minus [γ (i0)]q̂|.

(vii) Observe that C is composed of green blocks only. Therefore, if q ∈ F , by
hypothesis q cannot belong to Cplaces , but the only blocks whose size is
increased are inside Cplaces , hence q (i0) = Minus [γ (i0)]q̂ = q̂ [γ (i0)] .

(viii) Trivial.
(x) Assume q0 /∈ �. In this case, Minus [γ (i0)]�̂ = Minus [γ (i0−1)]�̂. There-

fore, for all block q ,

℘∗(Minus [γ (i0−1)](�̂))∩q [γ (i0−1)+1] = ℘∗(Minus [γ (i0)](�̂))∩q [γ (i0−1)+1].
Along the pumping procedure, only the Surplus nodes are used. Since
℘∗ of the Surplus nodes are always disjoint from the Minus ones, we can
prolongate the previous chain of equalities with

℘∗(Minus [γ (i0)](�̂)) ∩ q [γ (i0−1)+1] = ℘∗(Minus [γ (i0)](�̂)) ∩ q [γ (i0)].

On the other hand,

℘∗(�(i0−1)) ∩ q (i0) = ℘∗(�(i0)) ∩ q (i0).
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Finally, by construction,

℘∗(�(i0−1)) ∩ q (i0) = ℘∗(Minus [γ (i0−1)](�̂)) ∩ q̂ [γ (i0−1)+1].

In the other case, observe that t1 is new at the step γ (i0 − 1) + n + 1.
Thus everything created from t1 cannot be inside any block q before its
distribution, neither in the segment [γ (i0 − 1) + n + 1, γ (i0)], for only
the Surplus nodes are used, and t1 is in the Minus side of block q0. This
yields

℘∗(Minus [γ (i0−1)](�̂))∩q [γ (i0−1)+1] = ℘∗(Minus [γ (i0)](�̂))∩q [γ (i0−1)+1].

The prosecution of the argument follows exactly the one of the former
case.

(a) If q0 ∈ �, the property trivially holds since t0 is new at the step i0;
therefore

⋃
� cannot have been distributed at the stage i0 . On the

other hand t1, which belongs to Minus [γ (i0−1)+n+1](�̂)), is new at the
step γ (i0 − 1) + n + 1. Hence

⋃
Minus [γ (i0−1)+n](�̂) cannot have been

distributed at the stage γ (i0−1)+n]. Again, the Minus nodes are unused
along the pumping procedure, hence

⋃
Minus [γ (i0)](�̂)) is not distributed

at the limit step γ (i0) as well. Conversely, if q0 /∈ �, the result easily
follow by standard arguments from the fact that the Minus portion of �

and the original � are equal at the stage γ (i0), and the Minus nodes are
unused along the pumping procedure.

(b) Surplus [γ (i0)](q) �= ∅ and q ∈ �, therefore the node � is changed along
the pumping procedure. By construction,

⋃
� is never distributed along

pumping procedure, so

⋃
�̂[γ (i0)] ∈ ℘∗(�̂[γ (i0)]) \

⋃
q∈�

q̂ [γ (i0)].

(c) Easily follows from the fact that after a grand event nothing changes
in the formative process, and from (ii) of Def. 38, which asserts that
GE(N ((Cplaces )) ≥ i0 .
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