LE MATEMATICHE Vol. LXXI (2016) – Fasc. II, pp. 215–217 doi: 10.4418/2016.71.2.14

ADDENDUM TO "THE CONVEX-HULL LIKE PROPERTY AND SUPPORTED IMAGES OF OPEN SETS"

BIAGIO RICCERI

A function $\psi : \mathbf{R}^n \to \mathbf{R}$ is said to be quasi-convex if, for each $r \in \mathbf{R}$, the set $\psi^{-1}(] - \infty, r]$ is convex.

In the sequel, $\Omega \subset \mathbf{R}^n$ is a non-empty open bounded set.

Let $f: \Omega \to \mathbf{R}^n$ be a continuous function.

In [2], we introduced the following definition: the function f is said to satisfy the convex hull-like property if, for every continuous and quasi-convex function $\psi : \mathbf{R}^n \to \mathbf{R}$, there exists $x^* \in \partial \Omega$ such that

$$\limsup_{x \to x^*} \psi(f(x)) = \sup_{x \in \Omega} \psi(f(x)) \; .$$

In [2], we also remarked that, given a continuous function $g: \overline{\Omega} \to \mathbb{R}^n$, the function $g_{|\Omega}$ satisfies the convex hull-like property if and only if

$$g(\Omega) \subseteq \operatorname{conv}(g(\partial \Omega))$$
,

 $\operatorname{conv}(g(\partial \Omega))$ being the convex hull of $g(\partial \Omega)$.

Further, we recall that a set $S \subseteq \mathbf{R}^n$ is said to be supported at the point $y_0 \in S$ if there exists a non-zero linear function $\varphi : \mathbf{R}^n \to \mathbf{R}$ such that $\varphi(y_0) \leq \varphi(y)$ for all $y \in S$.

If this happens, of course $y_0 \in \partial S$.

The basic result of [2] is as follows:

Keywords: Convex hull-like property; Jacobian; topological dimension

Entrato in redazione: 14 settembre 2016

AMS 2010 Subject Classification: 26B10

Theorem 0.1 ([2], Theorem 1.5). For any continuous function $f : \Omega \to \mathbb{R}^n$, at least one of the following assertions holds:

- (i) f satisfies the convex hull-like property in Ω .
- (ii) There exists a non-empty open set $X \subseteq \Omega$, with $\overline{X} \subseteq \Omega$, satisfying the following property: for every continuous function $g: \Omega \to \mathbb{R}^n$, there exists $\tilde{\lambda} \ge 0$ such that, for each $\lambda > \tilde{\lambda}$, the set $(g + \lambda f)(X)$ is supported at one of its points.

Next, if $A \subseteq \mathbb{R}^n$ is a non-empty open set, $x \in A$ and $\varphi : A \to \mathbb{R}^n$ is a C^1 function, we denote by $\det(J_{\varphi}(x))$ the Jacobian determinant of φ at x.

Always in [2], as a joint application of Theorem 0.1 and the classical local inverse function theorem, we obtained the following result:

Theorem 0.2 ([2], Theorem 3.3). Let $f : \Omega \to \mathbb{R}^n$ be a C^1 function. Then, at least one of the following assertions holds:

- (a_1) f satisfies the convex hull-like property in Ω .
- (a₂) There exists a non-empty open set $X \subseteq \Omega$, with $\overline{X} \subseteq \Omega$, satisfying the following property: for every continuous function $g : \Omega \to \mathbb{R}^n$ which is C^1 in X, there exists $\tilde{\lambda} \ge 0$ such that, for each $\lambda > \tilde{\lambda}$, the set

$$\{x \in X : \det(J_{g+\lambda f}(x)) = 0\}$$

is non-empty.

The aim of the present addendum is to remark that, using Theorem 0.1 jointly with a very recent result by J. Saint Raymond [3], Theorem 0.2 can be improved in a very remarkable way. Actually, Saint Raymond proved the fol-

lowing very interesting result (for anything concerning topological dimension, we refer to [1]):

Theorem 0.3 ([3], Theorem 3.4). Let $A \subseteq \mathbf{R}^n$ be a non-empty open set and $\varphi : A \to \mathbf{R}^n \ a \ C^1$ function such that the topological dimension of the set

$$\{x \in A : \det(J_{\varphi}(x)) = 0\}$$

is not positive. Then, the function φ is open.

Finally, the improvement of Theorem 0.2, object of this addendum, is as follows:

Theorem 0.4. Let $f : \Omega \to \mathbf{R}^n$ be a C^1 function. Then, at least one of the following assertions holds:

- (a₁) f satisfies the convex hull-like property in Ω .
- (a₂) There exists a non-empty open set $X \subseteq \Omega$, with $\overline{X} \subseteq \Omega$, satisfying the following property: for every continuous function $g: \Omega \to \mathbb{R}^n$ which is C^1 in X, there exists $\tilde{\lambda} \ge 0$ such that, for each $\lambda > \tilde{\lambda}$, the topological dimension of the set

$$\{x \in X : \det(J_{g+\lambda f}(x)) = 0\}$$

is greater than or equal 1.

Proof. Assume that (a_1) does not hold. Let *X* be an open set as in point (ii) of Theorem 0.1. Let $g: \Omega \to \mathbb{R}^n$ be a continuous function which is C^1 in *X*. Then, there is some $\tilde{\lambda} \ge 0$ such that, for each $\lambda > \tilde{\lambda}$, there exists $\hat{x} \in X$ such that the set $(g + \lambda f)(X)$ is supported at $g(\hat{x}) + \lambda f(\hat{x})$. As already remarked, this implies that $g(\hat{x}) + \lambda f(\hat{x}) \in \partial(g + \lambda f)(X)$ and so $(g + \lambda f)(X)$ is not open. Now, (a_2) is a direct consequence of Theorem 0.3.

REFERENCES

- [1] R. Engelking, Theory of dimensions, finite and infinite, Heldermann Verlag, 1995.
- [2] B.Ricceri, *The convex hull-like property and supported images of open sets*, Ann. Funct. Anal., **7** (2016), 150-157.
- [3] J. Saint Raymond, *Open differentiable mappings*, Le Matematiche, **71** (2016) 197-208.

BIAGIO RICCERI Department of Mathematics University of Catania Viale A. Doria 6 95125 Catania, Italy e-mail: ricceri@dmi.unict.it