LE MATEMATICHE Vol. LXXII (2017) – Fasc. I, pp. 185–200 doi: 10.4418/2017.72.1.15

ON THE MINIMAL SUBMODULES OF A MODULE

H. ANSARI-TOROGHY - S. S. POURMORTAZAVI

For any module M over a commutative ring R, $Spec_R^s(M)$ (resp., $Min_R(M)$) is the collection of all second (resp., minimal) submodules of M. In this article we investigate the interplay between the topological properties of $Min_R(M)$ and module theoretic properties of M. Also, for various types of modules M, we obtain some conditions under which $Min_R(M)$ is homeomorphic with the maximal ideal space of some ring.

1. Introduction

Throughout this article, *R* denotes a commutative ring with identity and all modules are unitary. Also \mathbb{P} and \mathbb{Z} denote the set of prime integers and the ring of integers, respectively. If *N* is a subset of an *R*-module *M*, then $N \leq M$ denotes *N* is an *R*-submodule of *M*. For any ideal *I* of *R* containing $Ann_R(M)$, \overline{R} and \overline{I} denote $R/Ann_R(M)$ and $I/Ann_R(M)$, respectively. The *colon ideal of M into N* is defined to be $(N : M) = \{r \in R : rM \subseteq N\} = Ann_R(M/N)$. Also we use the notation $(0 :_M I)$ to denote the set $\{m \in M \mid rm = 0 \text{ for every } r \in I\}$.

Let *M* be an *R*-module. A non-zero submodule *N* of *M* is said to be *second* if for each $a \in R$ the homomorphism $N \xrightarrow{a} N$ is either surjective or zero. This implies that $Ann_R(N) = p$ is a prime ideal of *R* and *S* is said to be *p*-second (see [10]).

Entrato in redazione: 13 ottobre 2016

AMS 2010 Subject Classification: 13C13; 13C99

Keywords: Second submodule, minimal submodule, Zariski topology, spectral space.

M is said to be a *comultiplication module* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that $N = (0 :_M I)$ (see [3]).

For a submodule N of M, the second socle (or second radical) of N is defined as the sum of all second submodules of M contained in N and denoted by soc(N)(or sec(N)). In case N does not contain any second submodule, the socle of N is defined to be (0). Also, $N \neq (0)$ is said to be a *socle submodule* of M if soc(N) = N (see [2, 6]).

The second spectrum of *M* is defined as the set of all second submodules of *M* and denoted by $Spec_R^s(M)$ or X^s . We call the map $\psi: X^s \to Spec(\overline{R})$ given by $S \mapsto \overline{Ann_R(S)}$ as the *natural map* of X^s .

M is said to be *X^s*-injective (resp. secondful) if the natural map of *X^s* is injective (resp. surjective). Equivalently, *M* is *X^s*-injective if and only if $Ann_R(S_1) = Ann_R(S_2), S_1, S_2 \in X^s$, implies that $S_1 = S_2$ if and only if for every $p \in Spec(R), |Spec_p^s(M)| \le 1$ (see [4, 7]).

The Zariski topology on $Spec_R^s(M)$ is the τ^s described by taking the set $\zeta^s(M) := \{V^s(N) : N \le M\}$ as the set of closed sets of $Spec_R^s(M)$, where

$$V^{s}(N) = \{S \in Spec_{R}^{s}(M) : Ann_{R}(N) \subseteq Ann_{R}(S)\}$$

(see [1]).

There exists a topology on $Min_R(M)$ (we recall that $Min_R(M)$ is the collection of all minimal submodules of M. Of course, each element of $Min_R(M)$ is a non-zero submodule). having $\zeta^{sm}(M) := \{V^{sm}(N) : N \leq M\}$ as the set of closed sets of $Min_R(M)$, where

$$V^{sm}(N) = \{S \in Min_R(M) : Ann_R(N) \subseteq Ann_R(S)\}.$$

We denote this topology by τ^{sm} . In fact τ^{sm} is the same as the subspace topology induced by τ^s on $Min_R(M)$. In the rest of this article $Spec_R^s(M)$ (resp. $Min_R(M)$) is always equipped with the Zariski topology τ^s (resp. τ^{sm}).

In this article, we investigate the interplay between the topological properties of $Min_R(M)$ and module theoretic properties of M (see Proposition 2.4, Theorem 2.9, Theorem 2.16, Corollary 2.18, Proposition 2.21, and Theorem 2.26). Also we consider the conditions under which $Min_R(M)$ is a Noetherian topological space (see Proposition 2.4, Theorem 2.9, Theorem 2.17, and Corollary 2.18). Moreover, we study the topological space $Min_R(M)$ from the point of view of *Max*-spectral spaces (see Theorem 2.26). It is shown that if M is a Min-injective module over a PID, then $Min_R(M)$ is a Max-spectral topological space (see Theorem 2.26 (g)). These results enable us to provide a large family of modules such that their minimal submodules are Max-spectral.

2. Main results

As it was mentioned before, $Spec_R^s(M)$ (resp. $Min_R(M)$) is always equipped with Zariski topology τ^s (resp. τ^{sm}).

Definition 2.1. Let *M* be an *R*-module.

- (a) The map $\phi : Min_R(M) \to Max(\overline{R})$ defined by $\phi(N) = \overline{Ann_R(N)}$ for every minimal submodule *N* of *M* is called the *natural map* of $Min_R(M)$. (Note that since *N* is minimal, $Ann_R(N)$ is a maximal ideal of *R* and hence $\overline{Ann_R(N)} \in Max(\overline{R})$.)
- (b) We say that *M* is a *Min-surjective* module if either M = 0, or $M \neq 0$ and the natural map of $Min_R(M)$ is surjective.
- (c) We say that *M* is *Min-injective* module if M = 0, or $M \neq 0$ and the natural map of $Min_R(M)$ is injective.
- **Example 2.2.** (a) Every finite length *R*-module is Min-surjective by [1, Example 3.10]. However, the converse is not true in general. To see this, let $M = \bigoplus_{p \in \mathbb{P}} \mathbb{Z}_p$. Then we have

$$Spec^{s}_{\mathbb{Z}}(M) = Min_{\mathbb{Z}}(M) = \left\{ \mathbb{Z}_{p} \oplus (\bigoplus_{p \neq q \in \mathbb{P}} (0)) \mid p \in \mathbb{P} \right\}.$$

Clearly, *M* is a Min-surjective \mathbb{Z} -module while it is not a finite length \mathbb{Z} -module.

(b) Every X^s -injective module is Min-injective . However, the converse is not true in general. To see this, let $M = \mathbb{Z}(p^{\infty}) \oplus \mathbb{Z}(q^{\infty})$, where *p* and *q* are prime number. Then we have

$$Spec_{\mathbb{Z}}^{s}(M) = \{ \mathbb{Z}(p^{\infty}) \oplus (0), (0) \oplus \mathbb{Z}(q^{\infty}), \mathbb{Z}(p^{\infty}) \oplus \mathbb{Z}(q^{\infty}), \\ < 1/p + \mathbb{Z} > \oplus(0), (0) \oplus < 1/q + \mathbb{Z} > \}$$

and

$$Min_{\mathbb{Z}}(M) = \{ < 1/p + \mathbb{Z} > \oplus(0), (0) \oplus < 1/q + \mathbb{Z} > \}.$$

Clearly, *M* is a Min-injective \mathbb{Z} -module while it is not an X^s -injective \mathbb{Z} -module.

For an ideal *I* of *R*, we will denote V(I) by the set $\{p \in Spec(R) \mid I \subseteq p\}$. Also we define $V^m(I)$ as $V^m(I) = V(I) \cap Max(R)$.

Lemma 2.3. Let M be an R-module and let $\phi : (Min_R(M), \tau^{sm}) \to (Max(\overline{R}), \tau)$ be the natural map of $Min_R(M)$. Then the following hold. (We recall that $(Max(\overline{R}), \tau)$ is the subspace topology induced by Zariski topology on $Spec(\overline{R})$.)

- (a) ϕ is a continuous map.
- (b) If M is Min-surjective, then ϕ is a closed and open mapping.
- *Proof.* (a) This follows from the fact that $\phi^{-1}(V^m(\overline{I})) = V^{sm}((0:_M I))$ for every ideal *I* of *R* containing $Ann_R(M)$.
 - (b) Let N be a submodule of M and let $V^{sm}(N)$ be a closed subset of $Min_R(M)$. Then as in the proof part (a), we have

$$\phi^{-1}(V^m(\overline{Ann_R(N)})) = V^{sm}(N).$$

Hence $\phi(V^{sm}(N)) = V^m(\overline{Ann_R(N)})$ because ϕ is surjective. Similarly, ϕ is open and the proof is completed.

Proposition 2.4. Let *R* be a ring such that the intersection of every infinite collection of maximal ideals of *R* is zero (for example, when *R* is PID or one dimensional Noetherian domain) and let *M* be an *R*-module. Then $Min_R(M)$ is a Noetherian topological space.

Proof. Assume that $(Min_R(M), \tau^{sm})$ is not a Noetherian topological space. It turns out that there exists a descending chain of closed subsets of $Min_R(M)$.

$$V^{sm}(N_1) \supseteq V^{sm}(N_2) \supseteq \cdots \supseteq V^{sm}(N_k) \supseteq \cdots$$

For each $i \in \mathbb{N}$, we set

$$I_i := \{ m \in Max(R) \mid \exists S \in Min_R(M) \ s.t. \ Ann_R(S) = m, Ann_R(N_i) \subseteq Ann_R(S) \}.$$

Clearly, we have $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_k \supseteq \cdots$. If for $i \in \mathbb{N}$, I_i is a finite set, then the above mentioned chain of closed subsets becomes eventually constant, a contradiction. Otherwise, for each $i \in \mathbb{N}$, we have $Ann_R(N_i) = 0$ and hence $V^{sm}(N_i) = Min_R(M)$, a contradiction. So the proof is completed.

Note 2.5. Let *M* be an *R*-module and let *W* be a subset of $Min_R(M)$. We will denote the sum of all elements in *W* by T(W) and the closure of *W* in $Min_R(M)$ (resp. $Spec_R^s(M)$) by $cl^m(W)$ (resp. cl(W)).

Lemma 2.6. Let M be an R-module and W be a subset of $Min_R(M)$. Then $cl^m(W) = V^{sm}(T(W))$. Hence, W is closed if and only if $V^{sm}(T(W)) = W$.

Proof. By [1, Proposition 5.1], we have $cl(W) = V^s(\sum_{S \in W} S)$. Hence $cl^m(W) = V^{sm}(T(W))$.

Remark 2.7. For a proper ideal *I* of *R*, we recall that the *J*-radical of *I*, denoted by $J_R^m(I)$, is the intersection of all maximal ideals containing *I*. An ideal *I* of *R* is a *J*-radical ideal if $I = J_R^m(I)$ (see [9]).

Definition 2.8. Let *M* be an *R*-module. The *socle* of a submodule *N* of *M*, denoted by Soc(N), is the summation of all members of $V^{sm}(N)$. In case that $V^{sm}(N) = \emptyset$, we define Soc(N) = 0. Asubmodule *N* of *M* is said to be a *socle* submodule if N = Soc(N).

Theorem 2.9. Let *M* be an *R*-module. Then the following statements are equivalent:

- (a) $Min_R(M)$ is a Noetherian topological space.
- (b) The descending chain for socle submodules of M holds.

Proof. (a) \Rightarrow (b). Straightforward. (b) \Rightarrow (a). Let

$$V^{sm}(N_1) \supseteq V^{sm}(N_2) \supseteq \cdots \supseteq V^{sm}(N_i) \supseteq \cdots$$

be a descending chain of closed subsets of $Min_R(M)$, where N_i is a submodule of M. Hence

$$Soc(N_1) \supseteq Soc(N_2) \supseteq \cdots \supseteq Soc(N_i) \supseteq \cdots$$

is an descending chain of socle submodules of *M*. So by hypothesis, there exists a $k \in \mathbb{N}$ such that for all $n \ge 1$, we have $Soc(N_{k+n}) = Soc(N_k)$ and the proof is completed.

Corollary 2.10. Let M be a Noetherian R-module. Then $Min_R(M)$ is a Noetherian topological space.

We recall that if *I* is an ideal of *R*, then the *J*-components of *I* are the minimal members of the family of *J*-radical prime ideals containing *I* (see [9, p. 631]).

Definition 2.11. Let *M* be an *R*-module and *L* a submodule of *M*. A submodule *K* of *M* is a *S*-component of *L*, if $Ann_R(K)$ is a *J*-component of $Ann_R(L)$.

Definition 2.12. An *R*-module *M* is said to have property (*SFC*) if every closed subset of $Min_R(M)$ has a finite number of irreducible components.

Example 2.13. Let *M* be an *R*-module. Then *M* has property (*SFC*) in each the following cases.

- (a) $Min_R(M)$ is a Noetherian topological space
- (b) *R* is a semi-local or *PID* (see Proposition 2.4 and part (a)).
- (c) *M* is Noetherian (see Corollary 2.10 and part (a)).

When M = R, then R has property (*SFC*) if and only if every ideal of R has a finite number of *J*-components (see [9, p. 632]).

Lemma 2.14. *Let M be a Min-surjective R-module. Then the following hold.*

(a) If N is a submodule of M, then

$$J_R^m(Ann_R(N)) = Ann_R(Soc(N))$$

(b) If q is a J-radical ideal of R containing $Ann_R(M)$, then there exists a submodule K of M such that $Ann_R(K) = q$.

Proof. (a) We have

$$J_R^m(Ann_R(N)) = \bigcap_{m \in V^m(Ann_R(N))} m$$

and

$$Ann_{R}(Soc(N)) = Ann_{R}(\sum_{S \in V^{sm}(N)} S) = \bigcap_{S \in V^{sm}(N)} Ann_{R}(S)$$

Since *M* is Min-surjective, for every $m \in V^m(Ann_R(N))$, there exists $S_m \in Min_R(M)$ such that $Ann_R(S_m) = m$. So we have

$$\bigcap_{m\in V^m(Ann_R(N))}m=\bigcap_{S\in V^{sm}(N)}Ann_R(S).$$

(b) Since *M* is Min-surjective, for every $m \in V^m(Ann_R(N))$, there exists $S_m \in Min_R(M)$ such that $Ann_R(S_m) = m$. So we have

$$q = J_R^m(q) = \bigcap_{m \in V^m(q)} m = \bigcap_{m \in V^m(q)} Ann_R(S_m) = Ann_R(\sum_{m \in V^m(q)} S_m). \quad \Box$$

Remark 2.15. If *S* is a commutative ring with a non-zero identity, then there exists a one-to-one correspondence between the *J*-radical prime ideals of ring *S* and irreducible closed subsets of Max(S) (see [9, p. 632]).

Theorem 2.16. Let *M* be a Min-surjective *R*-module. Then the following hold.

- (a) If $Y \subseteq Min_R(M)$, then Y is an irreducible closed subset of $Min_R(M)$ if and only if $Y = V^{sm}(N)$ for some submodule N of M such that $Ann_R(N)$ is a J-radical prime ideal of R.
- (b) If $W \subseteq Min_R(M)$ and L is a submodule of M, then W is an irreducible component of $V^{sm}(L)$ if and only if $W = V^{sm}(N')$ for some S-component N' of L.
- (c) If $Z \subseteq Min_R(M)$, then Z is an irreducible component of $Min_R(M)$ if and only if $Z = V^{sm}((0:_M p))$ for some J-component ideal p of $Ann_R(M)$.

- (d) *M* has property (SFC) if and only if every submodule of *M* has only finitely many of S-components.
- *Proof.* (a) Let Y be an irreducible closed subset of $Min_R(M)$. Since Y is closed, $Y = V^{sm}(N)$ for some submodule N of M. It turns out that $\phi(V^{sm}(N)) = V^m(\overline{Ann_R(N)})$ is an irreducible closed subset of $Max(\overline{R})$ by Lemma 2.3. Now by Remark 2.15 and Lemma 2.14,

$$J_{\overline{R}}^{m}(Ann_{R}(N)) = Ann_{R}(Soc(N))$$

is a *J*-radical prime ideal of \overline{R} so that $Ann_R(Soc(N))$ is a *J*-radical prime ideal of *R*. Conversely, let $V^{sm}(K)$ be a closed subset of $Min_R(M)$, where *K* is a submodule of *M* such that $Ann_R(K)$ is a *J*-radical prime ideal of *R*. We show that $V^{sm}(K)$ is irreducible. To see this, let *E* and *E'* be submodules of *M* with

$$V^{sm}(K) \subseteq V^{sm}(E) \cup V^{sm}(E').$$

Hence as in the proof of Lemma 2.3 (b), we have

$$V^{m}(\overline{Ann_{R}(K)}) \subseteq V^{m}(\overline{Ann_{R}(E)}) \cup V^{m}(\overline{Ann_{R}(E')}).$$

Since $Ann_R(K)$ is a *J*-radical prime ideal of *R*, it is easy to check that $\overline{Ann_R(K)}$ is a *J*-radical prime ideal of \overline{R} . Therefore $V^m(\overline{Ann_R(K)})$ is an irreducible closed subset of $Max(\overline{R})$ by Remark 2.15. Hence

$$V^{m}(\overline{Ann_{R}(K)}) \subseteq V^{m}(\overline{Ann_{R}(E)}) \lor V^{m}(\overline{Ann_{R}(K)}) \subseteq V^{m}(\overline{Ann_{R}(E')}).$$

Suppose that $V^m(\overline{Ann_R(K)}) \subseteq V^m(\overline{Ann_R(E)})$. This implies that $V^{sm}(K) \subseteq V^{sm}(E)$. By similar arguments, $V^{sm}(K) \subseteq V^{sm}(E')$ when $V^m(\overline{Ann_R(K)}) \subseteq V^m(\overline{Ann_R(E')})$.

(b) (\Rightarrow) . Let *W* be an irreducible component of $V^{sm}(L)$. Then *W* is an irreducible closed subset of $Min_R(M)$. So by part (a), $W = V^{sm}(N')$ for some submodule *N'* of *M* such that $Ann_R(N')$ is a *J*-radical prime ideal of *R*. We claim that *N'* is an *S*-component of *L* or equivalently, $Ann_R(N')$ is a *J*-component of $Ann_R(L)$. Clearly $Ann_R(L) \subseteq Ann_R(N')$ by using Lemma 2.14 (a). So by the above arguments, it is enough to show that $Ann_R(N')$ is a minimal member of the family of *J*-radical prime ideals containing $Ann_R(L)$. To see this, let *q* be a *J*-radical prime ideal of *R* with

$$Ann_R(L) \subseteq q \subseteq Ann_R(N').$$

Since *M* is Min-surjective, there exists a submodule *Q* of *M* such that $q = Ann_R(Q)$ by Lemma 2.14 (b). Hence

$$V^{sm}(N') \subseteq V^{sm}(Q) \subseteq V^{sm}(L).$$

Also $V^{sm}(Q)$ is an irreducible closed subset of $V^{sm}(L)$ by part (a). Since $W = V^{sm}(N')$ is an irreducible component of $V^{sm}(L)$, by the above arguments, we have $V^{sm}(Q) = V^{sm}(N')$. Now by using Lemma 2.14 (a), $q = Ann_R(N')$ as desired.

(\Leftarrow). Let N' be an S-component of L. Then $V^{sm}(N')$ is an irreducible closed subset of $V^{sm}(L)$ by part (a). Let L' be a submodule of M such that $Ann_R(L')$ is a J-radical prime ideal of R and $V^{sm}(N') \subseteq V^{sm}(L') \subseteq V^{sm}(L)$. Hence

$$Ann_R(Soc(L)) \subseteq Ann_R(Soc(L')) \subseteq Ann_R(Soc(N')).$$

By using Lemma 2.14 (a), we have

$$Ann_{R}(L) \subseteq J_{R}^{m}(Ann_{R}(L)) \subseteq J_{R}^{m}(Ann_{R}(L')) \subseteq J_{R}^{m}(Ann_{R}(N')).$$

Since $Ann_R(L')$ and $Ann_R(N')$ are *J*-radical prime ideals,

$$Ann_R(L) \subseteq Ann_R(L') \subseteq Ann_R(N').$$

Since N' be an S-component of L, we have $Ann_R(L') = Ann_R(N')$. Hence $V^{sm}(N') = V^{sm}(L')$.

(c) This follows from part (b) and Lemma 2.14 (b) and the fact that if *N* is a submodule of *M*, then

$$V^{sm}((0:_MAnn_R(N))) = V^{sm}(N).$$

(d) This follows from part (b).

Let *X* be a topological space. We consider strictly decreasing chain $Z_0 \subsetneq Z_1 \subsetneq, \dots \subsetneq Z_r$ of length *r* of irreducible closed subsets Z_i of *X*. The supremum of the lengths, taken over all such chains, is called the combinatorial dimension of *X* and denoted by dim(X). For the empty set \emptyset , the combinatorial dimension of \emptyset is defined to be -1.

Theorem 2.17. Let M be a Min-surjective R-module. Then the following hold

(a) $Min_R(M)$ is a Noetherian topological space if and only if $Max(\overline{R})$ is a Noetherian topological space.

- (b) $Min_R(M)$ is a connected topological space if and only if $Max(\overline{R})$ is a connected topological space.
- (c) $Min_R(M)$ is an irreducible topological space if and only if $Max(\overline{R})$ is an irreducible topological space.
- (d) $Min_R(M)$ is a quasi-compact topological space.
- (e) $dim((Min_R(M), \tau^{sm})) = dim((Max(\overline{R}), \tau))$, where $(Max(\overline{R}), \tau)$ is the subspace topology induced by Zariski topology on $Spec(\overline{R})$.
- *Proof.* (a) The necessity is clear. To show the converse, by Theorem 2.9, it is enough to show that the descending chain condition for socle submodules of *M* holds. To see this, let $N_1 \supseteq N_2 \supseteq \cdots \supseteq N_i \cdots$ be an descending chain of socle submodules of *M*. Then by Lemma 2.14 (a),

$$\overline{Ann_R(N_1)} \subseteq \overline{Ann_R(N_2)} \subseteq \cdots \subseteq \overline{Ann_R(N_i)} \subseteq \cdots$$

be an ascending chain of *J*-radical ideals of \overline{R} . Now since $Max(\overline{R})$ is a Noetherian topological space, there exists a $k \in \mathbb{N}$ such that for all $n \in \mathbb{N}$,

$$\overline{Ann_R(N_{k+n})} = \overline{Ann_R(N_k)}.$$

Hence for all $n \in \mathbb{N}$,

$$V^{sm}(N_{k+n}) = V^{sm}((0:_M Ann_R(N_{k+n})))$$

= $V^{sm}((0:_M Ann_R(N_k))) = V^{sm}(N_k).$

So for all $n \in \mathbb{N}$, we have

$$N_{k+n} = Soc(N_{k+n}) = Soc(N_k) = N_k,$$

as desired.

(b) First assume that $Min_R(M)$ is a connected topological space. Then $Max(\overline{R}) = \phi(Min_R(M))$ is connected by Lemma 2.3. To see the reverse implication, we assume that $Max(\overline{R})$ is a connected topological space. If $Min_R(M)$ is a disconnected topological space, then there exist submodules N and K of M such that

$$Min_R(M) = V^{sm}(N) \cup V^{sm}(K)$$

and

$$V^{sm}(N)\cap V^{sm}(K)=\emptyset,$$

where $V^{sm}(N) \neq \emptyset$, and $V^{sm}(K) \neq \emptyset$. Hence as in the proof of Lemma 2.3 we have

$$Max(\overline{R}) = V^m(\overline{Ann_R(N)}) \cup V^m(\overline{Ann_R(K)}).$$

On the other hand we have

$$V^m(\overline{Ann_R(N)}) \cap V^m(\overline{Ann_R(K)}) = \emptyset,$$

 $V^{m}(\overline{Ann_{R}(N)}) \neq \emptyset$, and $V^{m}(\overline{Ann_{R}(K)}) \neq \emptyset$ (Note that if $m \in V^{m}(\overline{Ann_{R}(N)}) \cap V^{m}(\overline{Ann_{R}(K)})$, then $Ann_{R}(N) \subseteq m$ and $Ann_{R}(K) \subseteq m$. Since M is Minsurjective, there exists $S \in Min_{R}(M)$ such that $Ann_{R}(S) = m$. It follows that $S \in V^{m}(\overline{Ann_{R}(N)}) \cap V^{m}(\overline{Ann_{R}(K)})$, a contradiction). Therefore $Max(\overline{R})$ is a disconnected topological space, a contradiction. Hence $Min_{R}(M)$ is a connected topological space.

- (c) We have similar argument as in part (b).
- (d) Let {Vsm(N_α) | α ∈ Λ} be a family of closed subset of Min_R(M) such that ∩_{α∈Λ}Vsm(N_α) = Ø, where N_α is a submodule of M for every α ∈ Λ. Then {Ø(Vsm(N_α)) | α ∈ Λ} is a family of closed subset of Max(R) because Ø is closed by Lemma 2.3 (b). Since Ø is surjective, it is easy to see that ∩_{α∈Λ}Ø(Vsm(N_α)) = Ø (Note that if m ∈ ∩_{α∈Λ}Ø(Vsm(N_α)), then since Ø is surjective, there exists Q ∈ Min_R(M) such that Ann_R(Q) = m. Hence Q ∈ ∩_{α∈Λ}Vsm(N_α), a contradiction). As Max(R) is quasi-compact by [5, Exercise 7, p. 64], there exists a finite subset Γ of Λ such that ∩_{α∈Γ}Ø(Vsm(N_α)) = Ø. This implies that ∩_{α∈Γ}Vsm(N_α) = Ø and hence Min_R(M) is quasi-compact.
- (e) Let Z₀ ⊋ Z₁ ⊋ ··· ⊋ Z_n be a descending chain of irreducible closed subset of *Min_R(M)*. Then by Theorem 2.16 (a), for *i*(1 ≤ *i* ≤ *n*), there exists submodule L_i of *M* such that *Ann_R(L_i)* is a *J*-radical prime ideal of *R* and Z_i = Vsm(L_i). It follows that

$$V^{m}(\overline{Ann_{R}(L_{0})}) \supseteq V^{m}(\overline{Ann_{R}(L_{1})}) \supseteq \cdots \supseteq V^{m}(\overline{Ann_{R}(L_{n})})$$

is a descending chain of irreducible closed subset of $Max(\overline{R})$ by Remark 2.15. Hence $dim(Min_R(M), \tau^{sm}) \leq dim(Max(\overline{R}), \tau)$. Now let $A_0 \supseteq A_1 \supseteq \cdots \supseteq A_t$ be a descending chain of irreducible closed subset of $Max(\overline{R})$. By Remark 2.15, for each $i(1 \leq i \leq t)$, there exists a *J*-radical prime ideal $\overline{p_i}$ of \overline{R} such that $A_i = V(\overline{p_i})$. This yields that $p_0 \subseteq p_1 \subseteq \cdots \subseteq p_t$ is an ascending chain of *J*-radical prime ideal of *R*. Since *M* is Min-surjective, by Lemma 2.14 (b), for every p_i $(1 \leq i \leq t)$, there exists a submodule Q_i of *M* such that $p_i = Ann_R(Q_i)$. Hence by Theorem 2.16 (a),

$$V^{sm}(Q_0) \supseteq V^{sm}(Q_1) \supseteq \cdots \supseteq V^{sm}(Q_t)$$

is a descending chain of irreducible closed subset of $Min_R(M)$. It follows that $dim(Min_R(M), \tau^{sm}) \ge dim(Max(\overline{R}))$ and the proof is completed. \Box

Corollary 2.18. Let M be a Min-surjective R-module. Then the following hold.

- (a) If R is Noetherian, then $Min_R(M)$ is a Noetherian topological space.
- (b) If D is the family of all J-radical prime ideal of R, then we have

 $dim(Min_R(M), \tau^{sm}) = sup\{n \mid p_0 \subsetneq \cdots \subsetneq p_n \text{ is an ascending chain of } D\}.$

Proof. (a) This follows from Theorem 2.17 (a).

(b) Apply the technique of Theorem 2.17 (e).

We recall that a topological space *X* is spectral if it is homeomorphic to the prime spectrum Spec(S) of some ring *S*, endowed with the Zariski topology (see [8]).

Definition 2.19. We say that a topological space W is a *Max-spectral space* if W is homeomorphic with the maximal ideal space of some ring S (with the topology inherited from Spec(S)).

Remark 2.20. Max-spectral spaces have been characterized by Hochster [8, p. 57, Proposition 11] as the topological spaces *W* which satisfy the following conditions:

- (a) W is a T_1 -space.
- (b) W is quasi-compact.

Proposition 2.21. Let M be an R-module. Then the following are equivalent.

- (a) M is Min-injective.
- (b) $Min_R(M)$ is a T_0 -space.
- (c) $Min_R(M)$ is a T_1 -space.

Proof. (c) \Rightarrow (b). This is clear.

(b) \Rightarrow (a). We assume that M is not Min-injective. Hence there exist $S_1, S_2 \in Min_R(M)$ such that $\overline{Ann_R(S_1)} = \overline{Ann_R(S_2)}$ and $S_1 \neq S_2$. Since $(Min_R(M), \tau^{sm})$ is T_0 , there exists a submodule N of M such that $S_1 \in Min_R(M) \setminus V^{sm}(N)$ and $S_2 \notin Min_R(M) \setminus V^{sm}(N)$. But this is a contradiction because $Ann_R(S_1) = Ann_R(S_2)$

implies that $S_1, S_2 \in Min_R(M) \setminus V^{sm}(N)$. (a) \Rightarrow (c). Let $S_1, S_2 \in Min_R(M)$, where $S_1 \neq S_2$. Clearly,

 $S_2 \notin Min_R(M) \setminus V^{sm}(S_2).$

We show that $S_1 \in Min_R(M) \setminus V^{sm}(S_2)$. To see this, let $S_1 \notin Min_R(M) \setminus V^{sm}(S_2)$. Since $Ann_R(S_1), Ann_R(S_2) \in Max(R)$ and $Ann_R(S_2) \subseteq Ann_R(S_1)$, we have $Ann_R(S_2) = Ann_R(S_1)$. Since *M* is Min-injective, $S_1 = S_2$ which is a contradiction. Similarly, we have

$$S_1 \notin Min_R(M) \setminus V^{sm}(S_1)$$
 and $S_2 \notin Min_R(M) \setminus V^{sm}(S_1)$. \Box

Corollary 2.22. Let M be an R-module.

- (a) If $Min_R(M)$ is a Max-spectral topological space, then M is Min-injective.
- (b) If M is secondful and $Spec_R^s(M)$ is a Max-spectral topological space, then $Spec_R^s(M) = Min_R(M)$.

Proof. This follows from Remark 2.20, Proposition 2.21, and from [1, Theorem 2.10]. \Box

Remark 2.23. (a) Let $(M_i)_{i \in I}$ be a family of *R*-modules and let $M = \bigoplus_{i \in I} M_i$. If *M* is an *X^s*-injective module, then

$$Spec^{s}(M) = \left\{ S \oplus \left(\bigoplus_{j \neq i \in I} (0) \right) \mid j \in I, S \in Spec^{s}(M_{j}) \right\}$$

[4, Proposition 3.13 (ii)].

(b) Let M = Z(p[∞]) ⊕ (⊕_{p≠q∈P} Z_q), where P is the set of all prime integers. Then M is a secondful X^s-injective Z-module and so it is a spectral space by [1, Theorem 6.5]. But

$$Spec_{\mathbb{Z}}^{s}(M) = \left\{ \mathbb{Z}(p^{\infty}) \oplus \left(\oplus_{p \neq q \in \mathbb{P}}(0) \right), (1/p + \mathbb{Z}) \oplus \left(\oplus_{q \neq p \in \mathbb{P}}(0) \right) \right\} \\ \bigcup \left\{ (0) \oplus \mathbb{Z}_{q} \mid q \in \mathbb{P}, q \neq p \right\}.$$

and

$$Min_{\mathbb{Z}}(M) = \left\{ (1/p + \mathbb{Z}) \oplus \left(\oplus_{q \neq p \in \mathbb{P}}(0) \right), (0) \oplus \mathbb{Z}_{q} \mid q \in \mathbb{P}, q \neq p \right\}$$

by Remark 2.23 (a). This shows that part (b) in Corollary 2.22 is not valid in general if the word "max-spectral" is replaced with "spectral".

Example 2.24. (a) $Min_{\mathbb{Z}}(\bigoplus_{i=1}^{n} \mathbb{Z}_{p_i})$ is a Max-spectral topological space by Remark 2.23 (a) and Remark 2.20.

(b) Min_ℤ(ℤ_p ⊕ ℤ_p) is not a max-spectral topological space because ℤ_p ⊕ (0) and (0) ⊕ ℤ_p are minimal submodules of the ℤ-module ℤ_p ⊕ ℤ_p with Ann_ℤ(ℤ₁ ⊕ (0)) = Ann_ℤ((0) ⊕ ℤ_p) = pℤ, while ℤ_p ⊕ (0) ≠ (0) ⊕ ℤ_p. Thus Min_ℤ(ℤ_p ⊕ ℤ_p) is not Max-spectral by Corollary 2.22 (a).

Let *M* be an *R*-module such that $Min_R(M)$ is a Max-spectral topological space. For a submodule *N* of *M*, it is natural to ask the following question: Is $Min_R(N)$ a Max-spectral topological space? In Proposition 2.25 (b), we give a positive answer to this question under some additional conditions.

Proposition 2.25. Let M be an R-module and let N be a submodule of M. Then the following hold. Let $Min_R(M)$ be a Max-spectral space. Then $Min_R(N)$ is a Max-spectral space in the following cases:

- (a) The subspace $Min_R(N)$ of $Min_R(M)$ is closed.
- (b) *R* is a ring such that the intersection of every infinite collection of maximal ideals of *R* is zero (for example, when *R* is PID or one dimensional Noetherian domain).

Proof. (a) By part (a) and Remark 2.20.

(b) This follows from Proposition 2.4, Remark 2.20, and part (a). \Box

The next theorem is an important result about an *R*-module *M* for which $Min_R(M)$ is Max-spectral.

Theorem 2.26. Let M be a Min-injective R-module. Then $Min_R(M)$ is a Maxspectral topological space in each of the following cases.

- (a) M is Min-surjective.
- (b) $Im(\phi)$ is quasi-compact, where $\phi : Min_R(M) \to Max(\overline{R})$ is the natural map of $Min_R(M)$.
- (c) $Ann_R(M)$ is a maximal ideal of R.
- (d) $Min_R(M)$ is a finite set.
- (e) Max(R) is a finite set.
- (f) Max(R) is Noetherian, in particular when R is Noetherian.
- (g) The intersection of every infinite of maximal ideals of R is zero, in particular when R is PID or one dimensional Noetherian domain.
- (h) The descending chain condition for Socle submodules of M holds.

- *Proof.* (a) This is clear because the natural map of $Min_R(M)$ is a homeomorphism by Lemma 2.3.
 - (b) By Lemma 2.3 (a), $\phi \mid_{Im(\phi)}$ is a homeomorphism because

$$V^{m}(\overline{Ann_{R}(N)}) \cap Im(\phi) = \phi(\phi^{-1}(V^{m}(\overline{Ann_{R}(N)}))) = \phi(V^{sm}(N)).$$

Hence, $(Min_R(M), \tau^{sm})$ is a Max-spectral space by Remark 2.20 and Proposition 2.21.

- (c) We claim that $Min_R(M)$ has at most one element. To see this let $S_1, S_2 \in Min_R(M)$. Then since $Ann_R(M)$ is a maximal ideal, we have $Ann_R(M) = Ann_R(S_1) = Ann_R(S_2)$. It follows that $S_1 = S_2$ because *M* is Min-injective. The claim follows from Remark 2.20 and Proposition 2.21.
- (d) This follows from Remark 2.20 and Proposition 2.21.
- (e) Follows from part (d). (Note that $Min_R(M)$ is a finite set by hypothesis.)
- (f) Since every subspace of a Noetherian topological space is Noetherian, Im(φ) is a Noetherian topological space and hence the claim follows part (b).
- (g) By Proposition 2.4, Remark 2.20, and Proposition 2.21.
- (h) By Theorem 2.9.

A family $(M_i)_{i \in I}$ of *R*-modules is said to be *second-compatible* if for all $i \neq j$ in *I*, there doesn't exist a prime ideal *p* in *R* with $Spec_p^s(M_i)$ and $Spec_p^s(M_j)$ both nonempty [4, Definition 3.14]. (We recall that if *M* is an *R*-module, then $Spec_p^s(M) = \{S \in Spec^s(M) \mid Ann_R(S) = p\}$.)

- **Remark 2.27.** (a) Let $(M_i)_{i \in I}$ be a family of *R*-modules and let $M = \bigoplus_{i \in I} M_i$. Then *M* is an X^s -injective *R*-module if and only if $(M_i)_{i \in I}$ is a family of second-compatible X^s -injective *R*-modules [4, Theorem 3.15].
 - (b) Let $M = \bigoplus_{p \in \mathbb{P}} \mathbb{Z}_p$, where \mathbb{P} is the set of all prime integers. Then by Remark 2.23 (a) and part (a), M is an X^s -injective and $Spec_{\mathbb{Z}}^s(M) = \{\mathbb{Z}_p \oplus (\bigoplus_{p \neq q \in \mathbb{P}}(0)) \mid p \in \mathbb{P}\}$. On the other hand we see that $(Spec_{\mathbb{Z}}^s(M), \tau^s)$ is irreducible which contains no generic point. Hence $(Spec_{\mathbb{Z}}^s(M), \tau^s)$ is not spectral by Hochster characterizations. This shows that the words "Mininjective", " $Min_R(M)$ ", and "Max-spectral" in part (g) of Theorem 2.26, can not be replaced with " X^s -injective", " $Spec_R^s(M)$ ", and "spectral", respectively.

Corollary 2.28. Let M be an R-module. Then $Min_R(M)$ is a Max-spectral topological space in each of the following cases.

- (a) M is secondful and X^s -injective.
- (b) M is a comultiplication R-module with a finite length.
- (c) M is X^s -injective and R is PID.

Proof. This follows from parts (a) and (g) of Theorem 2.26 and taking into account the following fact from [1, Example 3.10].

Fact. Let denote the class of comultiplication, X^s -injective, Min-injective, finite length, secondful, and Min-surjective modules respectively by A_1 , A_2 , A_3 , A_4 , A_5 , and A_6 , then

- (i) $A_1 \subseteq A_2 \subseteq A_3$ and $A_4 \subseteq A_5$.
- (ii) If *M* is X^s -injective, then $A_5 \subseteq A_6$.

Acknowledgements

The authors would like to thank the referee for the careful reading of our manuscript and helpful comments that considerably improved this article.

REFERENCES

- [1] H. Ansari-Toroghy and F. Farshadifar, *The Zariski topology on the second spectrum of a module*, Algebra Colloq. (4) 21 (2014), 671–688.
- [2] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules, Algebra Colloq. 19 (Spec 1)(2012), 1109–1116.
- [3] H. Ansari-Toroghy and F. Farshadifar, *The dual notion of multiplication modules*, Taiwanese J. Math. (4) 11 (2007), 1189–1201.
- [4] H. Ansari-Toroghy and S. S. Pourmortazavi, A module whose second spectrum has the surjective or injective natural map, Eur. J. Pure Appl. Math. (2) 10 (2017), 211–230.
- [5] F. Halter-Koch, *Ideal Systems: An Introduction to Multiplicative Ideal Theory*, Vol. 211, CRC Press, 1998.
- [6] S. Ceken, M. Alkan, and P. F. Smith, *The dual notion of the prime radical of a module*, Journal of Algebra 392 (2013), 265–275.
- [7] F. Farshadifar, *Modules with Noetherian second spectrum*, Journal of Algebra and related topics. (1) 1 (2013), 19–30.

- [8] M. Hochster, *Prime ideal structure in commutative rings*, Trans. Amer. Math. Soc. 142 (1969,) 43–60.
- [9] J. Ohm and R.L. Pendelton, *Rings with Noetherian spectrum*, Duke Math. J. 35 (1968), 631–640.
- [10] S. Yassemi, *The dual notion of prime submodules*, Arch. Math. (Brno) 37 (2001), 273–278.

H. ANSARI-TOROGHY Department of pure Mathematics, Faculty of mathematical Sciences University of Guilan P. O. Box 41335-19141 Rasht, Iran e-mail: ansari@guilan.ac.ir

S. S. POURMORTAZAVI Department of pure Mathematics, Faculty of mathematical Sciences University of Guilan P. O. Box 41335-19141 Rasht, Iran e-mail: mortazavi@phd.guilan.ac.ir