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ON THE MINIMAL SUBMODULES OF A MODULE

H. ANSARI-TOROGHY - S. S. POURMORTAZAVI

For any module M over a commutative ring R, Specs
R(M) (resp.,

MinR(M)) is the collection of all second (resp., minimal) submodules
of M. In this article we investigate the interplay between the topologi-
cal properties of MinR(M) and module theoretic properties of M. Also,
for various types of modules M, we obtain some conditions under which
MinR(M) is homeomorphic with the maximal ideal space of some ring.

1. Introduction

Throughout this article, R denotes a commutative ring with identity and all mod-
ules are unitary. Also P and Z denote the set of prime integers and the ring of
integers, respectively. If N is a subset of an R-module M, then N ≤M denotes
N is an R-submodule of M. For any ideal I of R containing AnnR(M), R̄ and Ī
denote R/AnnR(M) and I/AnnR(M), respectively. The colon ideal of M into N
is defined to be (N : M) = {r ∈ R : rM ⊆ N} = AnnR(M/N). Also we use the
notation (0 :M I) to denote the set {m ∈M | rm = 0 for everyr ∈ I }.

Let M be an R-module. A non-zero submodule N of M is said to be second
if for each a ∈ R the homomorphism N a→ N is either surjective or zero. This
implies that AnnR(N) = p is a prime ideal of R and S is said to be p-second (see
[10]).
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M is said to be a comultiplication module if for every submodule N of M
there exists an ideal I of R such that N = (0 :M I) (see [3]).

For a submodule N of M, the second socle (or second radical) of N is defined
as the sum of all second submodules of M contained in N and denoted by soc(N)
(or sec(N)). In case N does not contain any second submodule, the socle of N
is defined to be (0) . Also, N 6= (0) is said to be a socle submodule of M if
soc(N) = N (see [2, 6]).

The second spectrum of M is defined as the set of all second submodules of
M and denoted by Specs

R(M) or X s. We call the map ψ : X s→ Spec(R) given
by S 7→ AnnR(S) as the natural map of X s.

M is said to be X s-injective (resp. secondful) if the natural map of X s

is injective (resp. surjective). Equivalently, M is X s-injective if and only if
AnnR(S1) = AnnR(S2), S1,S2 ∈ X s, implies that S1 = S2 if and only if for every
p ∈ Spec(R), |Specs

p(M)| ≤ 1 (see [4, 7]).
The Zariski topology on Specs

R(M) is the τs described by taking the set
ζ s(M) := {V s(N) : N ≤M} as the set of closed sets of Specs

R(M), where

V s(N) = {S ∈ Specs
R(M) : AnnR(N)⊆ AnnR(S)}

(see [1]).
There exists a topology on MinR(M) (we recall that MinR(M) is the collec-

tion of all minimal submodules of M. Of course, each element of MinR(M) is a
non-zero submodule). having ζ sm(M) := {V sm(N) : N ≤M} as the set of closed
sets of MinR(M), where

V sm(N) = {S ∈MinR(M) : AnnR(N)⊆ AnnR(S)}.

We denote this topology by τsm. In fact τsm is the same as the subspace topology
induced by τs on MinR(M). In the rest of this article Specs

R(M) (resp. MinR(M))
is always equipped with the Zariski topology τs (resp. τsm).

In this article, we investigate the interplay between the topological prop-
erties of MinR(M) and module theoretic properties of M (see Proposition 2.4,
Theorem 2.9, Theorem 2.16, Corollary 2.18, Proposition 2.21, and Theorem
2.26). Also we consider the conditions under which MinR(M) is a Noetherian
topological space (see Proposition 2.4, Theorem 2.9, Theorem 2.17, and Corol-
lary 2.18). Moreover, we study the topological space MinR(M) from the point
of view of Max-spectral spaces (see Theorem 2.26). It is shown that if M is a
Min-injective module over a PID, then MinR(M) is a Max-spectral topological
space (see Theorem 2.26 (g)). These results enable us to provide a large family
of modules such that their minimal submodules are Max-spectral.
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2. Main results

As it was mentioned before, Specs
R(M) (resp. MinR(M)) is always equipped

with Zariski topology τs (resp. τsm).

Definition 2.1. Let M be an R-module.

(a) The map φ : MinR(M)→ Max(R) defined by φ(N) = AnnR(N) for ev-
ery minimal submodule N of M is called the natural map of MinR(M).
(Note that since N is minimal, AnnR(N) is a maximal ideal of R and hence
AnnR(N) ∈Max(R).)

(b) We say that M is a Min-surjective module if either M = 0, or M 6= 0 and
the natural map of MinR(M) is surjective.

(c) We say that M is Min-injective module if M = 0, or M 6= 0 and the natural
map of MinR(M) is injective.

Example 2.2. (a) Every finite length R-module is Min-surjective by [1, Ex-
ample 3.10]. However, the converse is not true in general. To see this, let
M =

⊕
p∈PZp. Then we have

Specs
Z(M) = MinZ(M) =

{
Zp⊕ (

⊕
p6=q∈P

(0)) | p ∈ P
}
.

Clearly, M is a Min-surjective Z-module while it is not a finite length
Z-module.

(b) Every X s-injective module is Min-injective . However, the converse is not
true in general. To see this, let M = Z(p∞)⊕Z(q∞), where p and q are
prime number. Then we have

Specs
Z(M) ={Z(p∞)⊕ (0),(0)⊕Z(q∞),Z(p∞)⊕Z(q∞),

< 1/p+Z>⊕(0),(0)⊕< 1/q+Z>}

and
MinZ(M) = {< 1/p+Z>⊕(0),(0)⊕< 1/q+Z>}.

Clearly, M is a Min-injective Z-module while it is not an X s-injective
Z-module.

For an ideal I of R, we will denote V (I) by the set {p ∈ Spec(R) | I ⊆ p}.
Also we define V m(I) as V m(I) =V (I)∩Max(R).

Lemma 2.3. Let M be an R-module and let φ : (MinR(M),τsm)→ (Max(R),τ)
be the natural map of MinR(M). Then the following hold. (We recall that
(Max(R),τ) is the subspace topology induced by Zariski topology on Spec(R).)
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(a) φ is a continuous map.

(b) If M is Min-surjective, then φ is a closed and open mapping.

Proof. (a) This follows from the fact that φ−1(V m(I)) = V sm((0 :M I)) for
every ideal I of R containing AnnR(M).

(b) Let N be a submodule of M and let V sm(N) be a closed subset of MinR(M).
Then as in the proof part (a), we have

φ
−1(V m(AnnR(N))) =V sm(N).

Hence φ(V sm(N)) = V m(AnnR(N)) because φ is surjective. Similarly, φ

is open and the proof is completed.

Proposition 2.4. Let R be a ring such that the intersection of every infinite
collection of maximal ideals of R is zero (for example, when R is PID or one
dimensional Noetherian domain) and let M be an R-module. Then MinR(M) is
a Noetherian topological space.

Proof. Assume that (MinR(M),τsm) is not a Noetherian topological space. It
turns out that there exists a descending chain of closed subsets of MinR(M).

V sm(N1))V sm(N2)) · · ·)V sm(Nk)) · · · .

For each i ∈ N, we set

Ii := {m ∈Max(R) | ∃S ∈MinR(M)s.t. AnnR(S) = m, AnnR(Ni)⊆ AnnR(S)}.

Clearly, we have I1 ) I2 ) · · · ) Ik ) · · · . If for i ∈ N, Ii is a finite set, then
the above mentioned chain of closed subsets becomes eventually constant, a
contradiction. Otherwise, for each i ∈ N, we have AnnR(Ni) = 0 and hence
V sm(Ni) = MinR(M), a contradiction. So the proof is completed.

Note 2.5. Let M be an R-module and let W be a subset of MinR(M). We will
denote the sum of all elements in W by T (W ) and the closure of W in MinR(M)
(resp. Specs

R(M)) by clm(W ) (resp. cl(W )).

Lemma 2.6. Let M be an R-module and W be a subset of MinR(M). Then
clm(W ) =V sm(T (W )). Hence, W is closed if and only if V sm(T (W )) =W.

Proof. By [1, Proposition 5.1], we have cl(W ) =V s(∑S∈W S). Hence clm(W ) =
V sm(T (W )).

Remark 2.7. For a proper ideal I of R, we recall that the J-radical of I, denoted
by Jm

R (I), is the intersection of all maximal ideals containing I. An ideal I of R
is a J-radical ideal if I = Jm

R (I) (see [9]).
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Definition 2.8. Let M be an R-module. The socle of a submodule N of M,
denoted by Soc(N), is the summation of all members of V sm(N). In case that
V sm(N) = /0, we define Soc(N) = 0. Asubmodule N of M is said to be a socle
submodule if N = Soc(N).

Theorem 2.9. Let M be an R-module. Then the following statements are equiv-
alent:

(a) MinR(M) is a Noetherian topological space.

(b) The descending chain for socle submodules of M holds.

Proof. (a)⇒(b). Straightforward.
(b)⇒(a). Let

V sm(N1)⊇V sm(N2)⊇ ·· · ⊇V sm(Ni)⊇ ·· ·

be a descending chain of closed subsets of MinR(M), where Ni is a submodule
of M. Hence

Soc(N1)⊇ Soc(N2)⊇ ·· · ⊇ Soc(Ni)⊇ ·· ·

is an descending chain of socle submodules of M. So by hypothesis, there exists
a k ∈ N suth that for all n > 1, we have Soc(Nk+n) = Soc(Nk) and the proof is
completed.

Corollary 2.10. Let M be a Noetherian R-module. Then MinR(M) is a Noethe-
rian topological space.

We recall that if I is an ideal of R, then the J-components of I are the minimal
members of the family of J-radical prime ideals containing I (see [9, p. 631]).

Definition 2.11. Let M be an R-module and L a submodule of M. A submodule
K of M is a S-component of L, if AnnR(K) is a J-component of AnnR(L).

Definition 2.12. An R-module M is said to have property (SFC) if every closed
subset of MinR(M) has a finite number of irreducible components.

Example 2.13. Let M be an R-module. Then M has property (SFC) in each the
following cases.

(a) MinR(M) is a Noetherian topological space

(b) R is a semi-local or PID (see Proposition 2.4 and part (a)).

(c) M is Noetherian (see Corollary 2.10 and part (a)).

When M = R, then R has property (SFC) if and only if every ideal of R has
a finite number of J-components (see [9, p. 632]).
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Lemma 2.14. Let M be a Min-surjective R-module. Then the following hold.

(a) If N is a submodule of M, then

Jm
R (AnnR(N)) = AnnR(Soc(N)).

(b) If q is a J-radical ideal of R containing AnnR(M), then there exists a
submodule K of M such that AnnR(K) = q.

Proof. (a) We have

Jm
R (AnnR(N)) =

⋂
m∈V m(AnnR(N))

m

and
AnnR(Soc(N)) = AnnR( ∑

S∈V sm(N)

S) =
⋂

S∈V sm(N)

AnnR(S).

Since M is Min-surjective, for every m ∈V m(AnnR(N)), there exists Sm ∈
MinR(M) such that AnnR(Sm) = m. So we have⋂

m∈V m(AnnR(N))

m =
⋂

S∈V sm(N)

AnnR(S).

(b) Since M is Min-surjective, for every m ∈V m(AnnR(N)), there exists Sm ∈
MinR(M) such that AnnR(Sm) = m. So we have

q = Jm
R (q) =

⋂
m∈V m(q)

m =
⋂

m∈V m(q)

AnnR(Sm) = AnnR( ∑
m∈V m(q)

Sm).

Remark 2.15. If S is a commutative ring with a non-zero identity, then there
exists a one-to-one correspondence between the J-radical prime ideals of ring S
and irreducible closed subsets of Max(S) (see [9, p. 632]).

Theorem 2.16. Let M be a Min-surjective R-module. Then the following hold.

(a) If Y ⊆MinR(M), then Y is an irreducible closed subset of MinR(M) if and
only if Y = V sm(N) for some submodule N of M such that AnnR(N) is a
J-radical prime ideal of R.

(b) If W ⊆ MinR(M) and L is a submodule of M, then W is an irreducible
component of V sm(L) if and only if W = V sm(N′) for some S-component
N′ of L.

(c) If Z ⊆MinR(M), then Z is an irreducible component of MinR(M) if and
only if Z =V sm((0 :M p)) for some J-component ideal p of AnnR(M).
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(d) M has property (SFC) if and only if every submodule of M has only
finitely many of S-components.

Proof. (a) Let Y be an irreducible closed subset of MinR(M). Since Y is
closed, Y = V sm(N) for some submodule N of M. It turns out that
φ(V sm(N)) = V m(AnnR(N)) is an irreducible closed subset of Max(R)
by Lemma 2.3. Now by Remark 2.15 and Lemma 2.14,

Jm
R (AnnR(N)) = AnnR(Soc(N))

is a J-radical prime ideal of R so that AnnR(Soc(N)) is a J-radical prime
ideal of R. Conversely, let V sm(K) be a closed subset of MinR(M), where
K is a submodule of M such that AnnR(K) is a J-radical prime ideal of
R. We show that V sm(K) is irreducible. To see this, let E and E ′ be
submodules of M with

V sm(K)⊆V sm(E)∪V sm(E ′).

Hence as in the proof of Lemma 2.3 (b), we have

V m(AnnR(K))⊆V m(AnnR(E))∪V m(AnnR(E ′)).

Since AnnR(K) is a J-radical prime ideal of R, it is easy to check that
AnnR(K) is a J-radical prime ideal of R. Therefore V m(AnnR(K)) is an
irreducible closed subset of Max(R) by Remark 2.15. Hence

V m(AnnR(K))⊆V m(AnnR(E))∨V m(AnnR(K))⊆V m(AnnR(E ′)).

Suppose that V m(AnnR(K))⊆V m(AnnR(E)). This implies that V sm(K)⊆
V sm(E). By similar arguments, V sm(K)⊆V sm(E ′) when V m(AnnR(K))⊆
V m(AnnR(E ′)).

(b) (⇒). Let W be an irreducible component of V sm(L). Then W is an irre-
ducible closed subset of MinR(M). So by part (a), W =V sm(N′) for some
submodule N′ of M such that AnnR(N′) is a J-radical prime ideal of R.
We claim that N′ is an S-component of L or equivalently, AnnR(N′) is a
J-component of AnnR(L). Clearly AnnR(L)⊆ AnnR(N′) by using Lemma
2.14 (a). So by the above arguments, it is enough to show that AnnR(N′)
is a minimal member of the family of J-radical prime ideals containing
AnnR(L). To see this, let q be a J-radical prime ideal of R with

AnnR(L)⊆ q⊆ AnnR(N′).
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Since M is Min-surjective, there exists a submodule Q of M such that
q = AnnR(Q) by Lemma 2.14 (b). Hence

V sm(N′)⊆V sm(Q)⊆V sm(L).

Also V sm(Q) is an irreducible closed subset of V sm(L) by part (a). Since
W = V sm(N′) is an irreducible component of V sm(L), by the above ar-
guments, we have V sm(Q) = V sm(N′). Now by using Lemma 2.14 (a),
q = AnnR(N′) as desired.
(⇐). Let N′ be an S-component of L. Then V sm(N′) is an irreducible
closed subset of V sm(L) by part (a). Let L′ be a submodule of M such that
AnnR(L′) is a J-radical prime ideal of R and V sm(N′)⊆V sm(L′)⊆V sm(L).
Hence

AnnR(Soc(L))⊆ AnnR(Soc(L′))⊆ AnnR(Soc(N′)).

By using Lemma 2.14 (a), we have

AnnR(L)⊆ Jm
R (AnnR(L))⊆ Jm

R (AnnR(L′))⊆ Jm
R (AnnR(N′)).

Since AnnR(L′) and AnnR(N′) are J-radical prime ideals,

AnnR(L)⊆ AnnR(L′)⊆ AnnR(N′).

Since N′ be an S-component of L, we have AnnR(L′) = AnnR(N′). Hence
V sm(N′) =V sm(L′).

(c) This follows from part (b) and Lemma 2.14 (b) and the fact that if N is a
submodule of M, then

V sm((0 :M AnnR(N))) =V sm(N).

(d) This follows from part (b).

Let X be a topological space. We consider strictly decreasing chain Z0 (
Z1 (, · · · ( Zr of length r of irreducible closed subsets Zi of X . The supremum
of the lengths, taken over all such chains, is called the combinatorial dimension
of X and denoted by dim(X). For the empty set /0, the combinatorial dimension
of /0 is defined to be −1.

Theorem 2.17. Let M be a Min-surjective R-module. Then the following hold

(a) MinR(M) is a Noetherian topological space if and only if Max(R) is a
Noetherian topological space.
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(b) MinR(M) is a connected topological space if and only if Max(R) is a
connected topological space.

(c) MinR(M) is an irreducible topological space if and only if Max(R) is an
irreducible topological space.

(d) MinR(M) is a quasi-compact topological space.

(e) dim((MinR(M),τsm)) = dim((Max(R),τ)), where (Max(R),τ) is the sub-
space topology induced by Zariski topology on Spec(R).

Proof. (a) The necessity is clear. To show the converse, by Theorem 2.9, it is
enough to show that the descending chain condition for socle submodules
of M holds. To see this, let N1 ⊇ N2 ⊇ ·· · ⊇ Ni · · · be an descending chain
of socle submodules of M. Then by Lemma 2.14 (a),

AnnR(N1)⊆ AnnR(N2)⊆ ·· · ⊆ AnnR(Ni)⊆ ·· ·

be an ascending chain of J-radical ideals of R. Now since Max(R) is a
Noetherian topological space, there exists a k ∈ N such that for all n ∈ N,

AnnR(Nk+n) = AnnR(Nk).

Hence for all n ∈ N,

V sm(Nk+n) =V sm((0 :M AnnR(Nk+n)))

=V sm((0 :M AnnR(Nk))) =V sm(Nk).

So for all n ∈ N, we have

Nk+n = Soc(Nk+n) = Soc(Nk) = Nk,

as desired.

(b) First assume that MinR(M) is a connected topological space. Then
Max(R) = φ(MinR(M)) is connected by Lemma 2.3. To see the reverse
implication, we assume that Max(R) is a connected topological space. If
MinR(M) is a disconnected topological space, then there exist submod-
ules N and K of M such that

MinR(M) =V sm(N)∪V sm(K)

and
V sm(N)∩V sm(K) = /0,
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where V sm(N) 6= /0, and V sm(K) 6= /0. Hence as in the proof of Lemma 2.3
we have

Max(R) =V m(AnnR(N))∪V m(AnnR(K)).

On the other hand we have

V m(AnnR(N))∩V m(AnnR(K)) = /0,

V m(AnnR(N)) 6= /0, and V m(AnnR(K)) 6= /0 (Note that if m∈V m(AnnR(N))
∩V m(AnnR(K)), then AnnR(N)⊆ m and AnnR(K)⊆ m. Since M is Min-
surjective, there exists S ∈ MinR(M) such that AnnR(S) = m. It follows
that S ∈ V m(AnnR(N)) ∩ V m(AnnR(K)), a contradiction). Therefore
Max(R) is a disconnected topological space, a contradiction. Hence
MinR(M) is a connected topological space.

(c) We have similar argument as in part (b).

(d) Let {V sm(Nα) | α ∈ Λ} be a family of closed subset of MinR(M) such
that

⋂
α∈ΛV sm(Nα) = /0, where Nα is a submodule of M for every α ∈

Λ. Then {φ(V sm(Nα)) | α ∈ Λ} is a family of closed subset of Max(R)
because φ is closed by Lemma 2.3 (b). Since φ is surjective, it is easy to
see that

⋂
α∈Λ φ(V sm(Nα)) = /0 (Note that if m ∈

⋂
α∈Λ φ(V sm(Nα)), then

since φ is surjective, there exists Q ∈MinR(M) such that AnnR(Q) = m.
Hence Q∈

⋂
α∈ΛV sm(Nα), a contradiction). As Max(R) is quasi-compact

by [5, Exercise 7, p. 64], there exists a finite subset Γ of Λ such that⋂
α∈Γ φ(V sm(Nα)) = /0. This implies that

⋂
α∈ΓV sm(Nα) = /0 and hence

MinR(M) is quasi-compact.

(e) Let Z0 ) Z1 ) · · ·) Zn be a descending chain of irreducible closed subset
of MinR(M). Then by Theorem 2.16 (a), for i(1 ≤ i ≤ n), there exists
submodule Li of M such that AnnR(Li) is a J-radical prime ideal of R and
Zi =V sm(Li). It follows that

V m(AnnR(L0)))V m(AnnR(L1))) · · ·)V m(AnnR(Ln))

is a descending chain of irreducible closed subset of Max(R) by Remark
2.15. Hence dim(MinR(M),τsm) ≤ dim(Max(R),τ). Now let A0 ) A1 )
· · · ) At be a descending chain of irreducible closed subset of Max(R).
By Remark 2.15, for each i(1≤ i≤ t), there exists a J-radical prime ideal
pi of R such that Ai = V (pi). This yields that p0 ( p1 ( · · · ( pt is an
ascending chain of J-radical prime ideal of R. Since M is Min-surjective,
by Lemma 2.14 (b), for every pi (1≤ i≤ t), there exists a submodule Qi

of M such that pi = AnnR(Qi). Hence by Theorem 2.16 (a),

V sm(Q0))V sm(Q1)) · · ·)V sm(Qt)



ON THE MINIMAL SUBMODULES OF A MODULE 195

is a descending chain of irreducible closed subset of MinR(M). It follows
that dim(MinR(M),τsm)≥ dim(Max(R)) and the proof is completed.

Corollary 2.18. Let M be a Min-surjective R-module. Then the following hold.

(a) If R is Noetherian, then MinR(M) is a Noetherian topological space.

(b) If D is the family of all J-radical prime ideal of R, then we have

dim(MinR(M),τsm)= sup{n | p0 ( · · ·( pn is an ascending chain of D}.

Proof. (a) This follows from Theorem 2.17 (a).

(b) Apply the technique of Theorem 2.17 (e).

We recall that a topological space X is spectral if it is homeomorphic to the
prime spectrum Spec(S) of some ring S, endowed with the Zariski topology (see
[8]).

Definition 2.19. We say that a topological space W is a Max-spectral space
if W is homeomorphic with the maximal ideal space of some ring S (with the
topology inherited from Spec(S)).

Remark 2.20. Max-spectral spaces have been characterized by Hochster [8,
p. 57, Proposition 11] as the topological spaces W which satisfy the following
conditions:

(a) W is a T1-space.

(b) W is quasi-compact.

Proposition 2.21. Let M be an R-module. Then the following are equivalent.

(a) M is Min-injective.

(b) MinR(M) is a T0-space.

(c) MinR(M) is a T1-space.

Proof. (c)⇒ (b). This is clear.
(b) ⇒ (a). We assume that M is not Min-injective. Hence there exist S1, S2 ∈
MinR(M) such that AnnR(S1) = AnnR(S2) and S1 6= S2. Since (MinR(M),τsm) is
T0, there exists a submodule N of M such that S1 ∈MinR(M)\V sm(N) and S2 /∈
MinR(M)\V sm(N). But this is a contradiction because AnnR(S1) = AnnR(S2)
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implies that S1,S2 ∈MinR(M)\V sm(N).
(a)⇒ (c). Let S1,S2 ∈MinR(M), where S1 6= S2. Clearly,

S2 /∈MinR(M)\V sm(S2).

We show that S1 ∈MinR(M)\V sm(S2). To see this, let S1 /∈MinR(M)\V sm(S2).
Since AnnR(S1),AnnR(S2) ∈ Max(R) and AnnR(S2) ⊆ AnnR(S1), we have
AnnR(S2) = AnnR(S1). Since M is Min-injective, S1 = S2 which is a contra-
diction. Similarly, we have

S1 /∈MinR(M)\V sm(S‘) and S2 /∈MinR(M)\V sm(S1).

Corollary 2.22. Let M be an R-module.

(a) If MinR(M) is a Max-spectral topological space, then M is Min-injective.

(b) If M is secondful and Specs
R(M) is a Max-spectral topological space, then

Specs
R(M) = MinR(M).

Proof. This follows from Remark 2.20, Proposition 2.21, and from [1, Theorem
2.10].

Remark 2.23. (a) Let (Mi)i∈I be a family of R-modules and let M =
⊕

i∈I Mi.
If M is an X s-injective module, then

Specs(M) =

{
S⊕
(⊕

j 6=i∈I

(0)
)
| j ∈ I, S ∈ Specs(M j)

}
[4, Proposition 3.13 (ii)].

(b) Let M = Z(p∞)
⊕(⊕

p6=q∈PZq
)
, where P is the set of all prime integers.

Then M is a secondful X s-injective Z-module and so it is a spectral space
by [1, Theorem 6.5]. But

Specs
Z(M) =

{
Z(p∞)⊕

(
⊕p6=q∈P(0)

)
,(1/p+Z)⊕ (⊕q6=p∈P(0))

)}⋃{
(0)⊕Zq | q ∈ P,q 6= p

}
.

and

MinZ(M) =
{
(1/p+Z)⊕

(
⊕q6=p∈P(0)

)
,(0)⊕Zq | q ∈ P,q 6= p

}
by Remark 2.23 (a). This shows that part (b) in Corollary 2.22 is not valid
in general if the word “max-spectral” is replaced with “spectral”.

Example 2.24. (a) MinZ
(⊕n

i=1Zpi) is a Max-spectral topological space by
Remark 2.23 (a) and Remark 2.20.
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(b) MinZ(Zp⊕Zp) is not a max-spectral topological space because Zp⊕ (0)
and (0)⊕Zp are minimal submodules of the Z-module Zp ⊕Zp with
AnnZ(Zp⊕(0)) =AnnZ((0)⊕Zp) = pZ, while Zp⊕(0) 6= (0)⊕Zp. Thus
MinZ(Zp⊕Zp) is not Max-spectral by Corollary 2.22 (a).

Let M be an R-module such that MinR(M) is a Max-spectral topological
space. For a submodule N of M, it is natural to ask the following question: Is
MinR(N) a Max-spectral topological space? In Proposition 2.25 (b), we give a
positive answer to this question under some additional conditions.

Proposition 2.25. Let M be an R-module and let N be a submodule of M. Then
the following hold. Let MinR(M) be a Max-spectral space. Then MinR(N) is a
Max-spectral space in the following cases:

(a) The subspace MinR(N) of MinR(M) is closed.

(b) R is a ring such that the intersection of every infinite collection of maxi-
mal ideals of R is zero (for example, when R is PID or one dimensional
Noetherian domain).

Proof. (a) By part (a) and Remark 2.20.

(b) This follows from Proposition 2.4, Remark 2.20, and part (a).

The next theorem is an important result about an R-module M for which
MinR(M) is Max-spectral.

Theorem 2.26. Let M be a Min-injective R-module. Then MinR(M) is a Max-
spectral topological space in each of the following cases.

(a) M is Min-surjective.

(b) Im(φ) is quasi-compact, where φ : MinR(M)→ Max(R) is the natural
map of MinR(M).

(c) AnnR(M) is a maximal ideal of R.

(d) MinR(M) is a finite set.

(e) Max(R) is a finite set.

(f) Max(R) is Noetherian, in particular when R is Noetherian.

(g) The intersection of every infinite of maximal ideals of R is zero, in partic-
ular when R is PID or one dimensional Noetherian domain.

(h) The descending chain condition for Socle submodules of M holds.
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Proof. (a) This is clear because the natural map of MinR(M) is a homeomor-
phism by Lemma 2.3.

(b) By Lemma 2.3 (a), φ |Im(φ) is a homeomorphism because

V m(AnnR(N))∩ Im(φ) = φ(φ−1(V m(AnnR(N)))) = φ(V sm(N)).

Hence, (MinR(M),τsm) is a Max-spectral space by Remark 2.20 and
Proposition 2.21.

(c) We claim that MinR(M) has at most one element. To see this let S1,S2 ∈
MinR(M). Then since AnnR(M) is a maximal ideal, we have AnnR(M) =
AnnR(S1) = AnnR(S2). It follows that S1 = S2 because M is Min-injective.
The claim follows from Remark 2.20 and Proposition 2.21.

(d) This follows from Remark 2.20 and Proposition 2.21.

(e) Follows from part (d). (Note that MinR(M) is a finite set by hypothesis.)

(f) Since every subspace of a Noetherian topological space is Noetherian,
Im(φ) is a Noetherian topological space and hence the claim follows part
(b).

(g) By Proposition 2.4, Remark 2.20, and Proposition 2.21.

(h) By Theorem 2.9.

A family (Mi)i∈I of R-modules is said to be second-compatible if for all i 6= j
in I, there doesn’t exist a prime ideal p in R with Specs

p(Mi) and Specs
p(M j)

both nonempty [4, Definition 3.14]. (We recall that if M is an R-module, then
Specs

p(M) = {S ∈ Specs(M) | AnnR(S) = p}.)

Remark 2.27. (a) Let (Mi)i∈I be a family of R-modules and let M =
⊕

i∈I Mi.
Then M is an X s-injective R-module if and only if (Mi)i∈I is a family of
second-compatible X s-injective R-modules [4, Theorem 3.15].

(b) Let M =
⊕

p∈PZp, where P is the set of all prime integers. Then by Re-
mark 2.23 (a) and part (a), M is an X s-injective and Specs

Z(M) = {Zp⊕(
⊕p6=q∈P(0)

)
| p ∈ P}. On the other hand we see that (Specs

Z(M),τs) is
irreducible which contains no generic point. Hence (Specs

Z(M),τs) is not
spectral by Hochster characterizations. This shows that the words “Min-
injective”, “MinR(M)”, and “Max-spectral” in part (g) of Theorem 2.26,
can not be replaced with “X s-injective”, “Specs

R(M)”, and “spectral”, re-
spectively.
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Corollary 2.28. Let M be an R-module. Then MinR(M) is a Max-spectral topo-
logical space in each of the following cases.

(a) M is secondful and X s-injective.

(b) M is a comultiplication R-module with a finite length.

(c) M is X s-injective and R is PID.

Proof. This follows from parts (a) and (g) of Theorem 2.26 and taking into
account the following fact from [1, Example 3.10].
Fact. Let denote the class of comultiplication, X s-injective, Min-injective, finite
length, secondful, and Min-surjective modules respectively by A1, A2, A3, A4,
A5, and A6, then

(i) A1 ⊆ A2 ⊆ A3 and A4 ⊆ A5.

(ii) If M is X s-injective, then A5 ⊆ A6.
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