CHARACTERIZATION OF THE ABSOLUTELY SUMMING OPERATORS IN A BANACH SPACE USING \(\mu \)-APPROXIMATE \(l_1 \) SEQUENCES

N. L. BRAHA

In this paper we will give a characterization of 1-absolutely summing operators using \(\mu \)-approximate \(l_1 \) sequences. Exactly if \((x_n)_{n=1}^{\infty} \) is \(\mu \)-approximate \(l_1 \), basic and normalized sequence in Banach space \(X \) then every bounded linear operator \(T \) from \(X \) into Banach space \(Y \) is 1-absolutely summing if and only if \(Y \) is isomorphic to Hilbert space.

Introduction.

In the following we will denote by \(X \) a Banach space with norm \(||.|| \).

Some notations which are useful in the sequel.

Definition 1. [3] Let \((x_i)_{i \in \mathbb{N}} \) be a sequence of unit vectors in a Banach space \(X \) (where \(I = \{1, 2, ..., n\} \) or \(I = \mathbb{N} \)), and let \(\mu \geq 0 \). We say that \((x_i) \) is a \(\mu \)-approximate \(l_1 \) system if

\[
\left\| \sum_{i \in A} \pm x_i \right\| \geq k(A) - \mu
\]

for all finite sets \(A \subset I \) and for all choices of signs, where \(k(A) \) denotes the cardinal number of the set \(A \).

Entrato in redazione il 24 Ottobre 2004.
Definition 2. [1] An operator \(T \in L(X, Y) \) is called \(p \)-absolutely summing if there is a constant \(K \) so that, for every choice of an integer \(n \) and vectors \((x_i)_{i=1}^n \) in \(X \), we have

\[
\left(\sum_{i=1}^n \|Tx_i\|^p \right)^{\frac{1}{p}} \leq K \sup_{\|x^*\| \leq 1} \left(\sum_{i=1}^n |x^*(x_i)|^p \right)^{\frac{1}{p}}
\]

All other notations are like as in [1].

Theorem 1. [4] Every bounded linear operator \(T \) from \(l_1 \) into \(l_2 \) is absolutely summing and \(\pi_1(T) \leq KG \|T\| \).

Theorem 2. [5] (Ideal property of \(p \)-summing operators) Let \(1 \leq p < \infty \) and let \(v \in \Pi_p(X, Y) \), then the composition of \(v \) with any bounded linear operator is \(p \)-summing.

Results.

Lemma 3. Let \((x_i)_{i=1}^n \) be a sequence of unit vectors in Banach space \(X \). Then for any finite number of scalars \(\{a_1, a_2, \ldots, a_n\} \), the following is true

\[(1) \quad \|a_1 \cdot x_1 + \cdots + a_n \cdot x_n\| \leq \max_{1 \leq i \leq n} \{|a_i|\}\|x_1 + \cdots + x_n\|\]

Proof. In the sequel we will prove the above fact using the mathematical induction and it’s enough to prove it for two terms. Let us consider vectors \(x \) and \(y \) from \(X \) and \(a, b \) scalars such that \(a > b \), then from Hahn-Banach Theorem there exists \(x^* \in X^* \) such that

\[\|x^*\| = 1\]

and

\[x^*(a \cdot x + b \cdot y) = \|a \cdot x + b \cdot y\| .\]

On the other hand

\[|x^*(x + y)| \leq ||x^*|| \cdot ||x + y||\]

From the above relations we will have

\[|ax^*(x) + ax^*(y)| \leq |a| \cdot ||x + y|| \Rightarrow |ax^*(x) + ax^*(y) + bx^*(y) - bx^*(y)|\]
\[\leq |a| \cdot |x + y| \]

Respectively

(2) \[\|ax + by\| + (a - b)x^*(y) \leq |a| \cdot |x + y| \]

In the following we will distinguish two cases

I) \(0 < x^*(y) < 1\), then relation (1) follows directly from (2)

II) \(-1 < x^*(y) < 0\), then from relation (2) we will have this estimate

\[\|ax + by\| - |(a - b)||x^*(y)| \leq \|ax + by\| + (a - b)x^*(y) \]

from which again it follows that (1) is valid.

Lemma 4. Let \((x_n)_{n \in \mathbb{N}}\) be sequence of normalized and \(\mu\)-approximate \(l_1\) vectors in Banach space \(X\). Then the relation

\[\left\| \sum_{i=1}^{n} a_i x_i \right\| \geq K \sum_{i=1}^{n} |a_i| \]

is true for any finite sequence \((a_i)\) of scalars and \(K\) positive constant.

Proof. Let us start from the relation

\[\left\| \sum_{i=1}^{n} a_i x_i \right\| = \left\| \sum_{i=1}^{n} |a_i| \cdot \text{sgn}(a_i) \cdot x_i \right\| \]

Then from Hanh-Banach Theorem there exists a functional \(f \in X^*\), such that

\[f \left(\sum_{i=1}^{n} |a_i| \cdot \text{sgn}(a_i) \cdot x_i \right) = \left\| \sum_{i=1}^{n} |a_i| \cdot \text{sgn}(a_i) \cdot x_i \right\| \]

and \(\|f\| = 1\). From this it follows that

\[\sum_{i=1}^{n} |a_i| \cdot f(\text{sgn}(a_i) \cdot x_i) = \left\| \sum_{i=1}^{n} |a_i| \cdot y_i \right\| \]

where \(y_i = \text{sgn}(a_i) \cdot x_i\). On the other hand, let us consider \(|a_i| \neq 0\), \(\forall i \in \{1, 2, \cdots, n\}\)

\[\left\| \sum_{i=1}^{n} \pm x_i \right\| = \left\| \sum_{i=1}^{n} \pm a_i \cdot x_i \cdot \frac{1}{a_i} \right\| = \]
\[\left\| \sum_{i=1}^{n} |a_i| \cdot x_i \cdot \frac{\text{sgn}(a_i)}{\pm a_i} \right\| \leq \max_{1 \leq i \leq n} \frac{1}{\pm a_i} \cdot \left\| \sum_{i=1}^{n} |a_i| |y_i| \right\| \]

(from lemma 3)

\[\leq \max_{1 \leq i \leq n} \frac{1}{|a_i|} \cdot \sum_{i=1}^{n} |a_i| \cdot f(y_i) \leq \max_{1 \leq i \leq n} \frac{1}{|a_i|} \cdot \max_{1 \leq i \leq n} |a_i| \cdot \sum_{i=1}^{n} f(y_i) \]

(again from lemma 3) so it is true that

\[\left\| \sum_{i=1}^{n} \pm x_i \right\| \leq M \cdot \sum_{i=1}^{n} f(y_i) \]

where \(M = \max_{1 \leq i \leq n} \frac{1}{|a_i|} \cdot \max_{1 \leq i \leq n} |a_i| \).

Now we will have this estimate

\[M \cdot \sum_{i=1}^{n} f(y_i) \geq \left\| \sum_{i=1}^{n} \pm x_i \right\| \geq n - \mu \]

The last relation is possible if and only if

\[f(y_i) \geq \frac{1 - \delta_i}{M}, \quad \forall i \in \{1, 2, \ldots, n\}, \sum_{i=1}^{n} \delta_i = \mu \]

and \(0 < \delta_i < 1 \). From this it follows

\[f(y_i) \geq \frac{1 - \delta_i}{M} \geq \frac{1 - \delta}{M}, \quad \text{where } \delta = \max_{1 \leq i \leq n} \delta_i. \]

Finally

\[\left\| \sum_{i=1}^{n} a_i x_i \right\| = \sum_{i=1}^{n} |a_i| \cdot f(y_i) \geq \sum_{i=1}^{n} |a_i| \cdot \frac{1 - \delta}{M} = K \cdot \sum_{i=1}^{n} |a_i| \]

where \(K \) is constant and \(K = \frac{1 - \delta}{M} \).

Theorem 5. Let \((x_n)_{n \in \mathbb{N}}\) be a normalized, basic sequence in \(X \) that is a \(\mu \)-approximate \(l_1 \) system, too. Then every bounded linear operator from \(X \) into \(l_2 \) is 1-absolutely summing.
Proof. Let H be the operator defined from l_1 into X as follows

$$H : x = \sum_i a_i e_i \rightarrow \sum_i a_i x_i$$

from the above it follows that H is bijective and bounded with its inverse. Boundedness follows from

$$\|Hx\| = \left\| \sum_i a_i x_i \right\| \leq \sum_i |a_i| \leq \frac{1}{K} \left\| \sum_i a_i x_i \right\| = \frac{1}{K} \|x\|$$

(from lemma 4). H is onto, let $y = \sum_i b_i x_i$ any element from X, then $z = \sum_i b_i e_i$ belongs to l_0^1, indeed,

$$\left\| \sum_i b_i e_i \right\| = \sum_i |b_i| < \frac{1}{K} \left\| \sum_i b_i x_i \right\| < \infty,$$

from which it also follows that $H(z) = y$. From the above it follows that H^{-1} also is bounded: let $t = \sum_i t_i x_i \in X$, then

$$\|H^{-1}t\| = \left\| H^{-1}\left(\sum_i t_i x_i\right) \right\| = \left\| \sum_i t_i e_i \right\| = \sum_i |t_i| \leq \frac{1}{K} \left\| \sum_i t_i x_i \right\|$$

$$= \frac{1}{K} \|t\|$$

Let us denote by T any bounded linear operator from Banach space X into l_2, then operator $K = T \cdot H$ is defined from l_1 into l_2 and is bounded, so 1-absolutely summing (from Theorem 1). Finally using the ideal properties of operators in Theorem 2 and the fact that $K \cdot H^{-1} = T$, it follows that T is an absolutely summing operator.

Lemma 6. Let $x_n \in X$ be a normalized, basic sequence in X that is, a μ-approximate l_1 system, too. Then $(x_n)_{n \in \mathbb{N}}$ is an unconditional basic sequence in X.

Proof. It’s enough to prove that for any x, y and any finite disjoint subsets $A, B \in \mathbb{N}$ relation

$$\|x + y\| \sim \|x - y\|$$

is true for $x \in \text{span} \{x_i : i \in A\}$ and $y \in \text{span} \{x_j : i \in B\}$, where $a \sim b$ means that there exists constant c_1 and c_2 such that $c_1 \cdot a \leq b \leq c_2 \cdot a$ (see [7]). From the definition of μ-approximate l_1 sequences it follows that

$$\|x + y\| = \left\| \sum_{i \in A} a_i x_i + \sum_{i \in B} b_i x_i \right\| \geq \left\| \sum_{i \in A} a_i x_i \right\| - \left\| \sum_{i \in B} b_i x_i \right\| \geq \ldots$$
\[K \left(\sum_{i \in A} |a_i| \right) - \sum_{i \in B} |b_i| \]

\[\|x + y\| \leq \sum_{i \in A} |a_i| + \sum_{i \in B} |b_i| ; \]

from the other hand

\[\|x - y\| = \left\| \sum_{i \in A} a_i x_i - \sum_{i \in B} b_i x_i \right\| \geq \left\| \sum_{i \in A} a_i x_i \right\| - \left\| \sum_{i \in B} b_i x_i \right\| \geq \]

\[K \left(\sum_{i \in A} |a_i| \right) - \sum_{i \in B} |b_i| \]

and

\[\|x + y\| \leq \sum_{i \in A} |a_i| + \sum_{i \in B} |b_i| \]

from the above relations it follows that \((x_n)_{n \in \mathbb{N}}\) is an unconditional sequence in \(X\).

Theorem 7. Let \((x_n)_{n \in \mathbb{N}}\) be normalized, basic and \(\mu\)-approximate \(l_1\) sequence in \(X\), such that every bounded linear operator \(T\) from \(X\) into \(Y\) is \(1\)-absolutely summing. Then \(X\) is isomorphic to \(l_1\) and \(Y\) is isomorphic to Hilbert space.

Proof. From Lemma 6 it follows that \((x_n)_{n \in \mathbb{N}}\) is an unconditional basis in \(X\). Now the proof of Theorem is similar to that of Theorem 4.2 in [6].

Theorem 8. Let \(X\) and \(Y\) be two infinite dimensional Banach spaces and \((x_n)_{n \in \mathbb{N}}\) basic, normalized and \(\mu\)-approximate \(l_1\) sequence in \(X\). Then every bounded linear operator \(T\) from \(X\) into \(Y\) is \(1\)-absolutely summing if and only if \(Y\) is isomorphic to a Hilbert space.

Proof. The forward direction follows from Theorem 7 and converse direction from Theorem 5.

Proposition 9. Let \((x_n)_{n \in \mathbb{N}}\) be basic, normalized and \(\mu\)-approximate \(l_1\) sequence of vectors in \(X\). Regardless of the measure \(\mu\), every bounded linear operator \(T\) from \(X\) into \(L_2(\mu)\), is \(1\)-absolutely summing.

Proof. Let us show that \(X\) is an \(L_{1,\nu}\) space for some \(\nu\). For any finite dimensional subspace \(E\) of \(X\), let us say that \(\dim E = n\), \(E = \text{span}\{x_i : i = 1, \ldots, n\}\). There exist a finite dimensional subspace \(F\) of \(X\), such that
$F = \text{span}\{x_i : i = 1, \ldots, n + 1\}, E \subset F$ and an isomorphism $H : x = \sum_{i=1}^{n+1} a_i x_i \in F \to \sum_{i=1}^{n+1} a_i e_i \in l_1^1$ such that $\|H\| \cdot \|H^{-1}\| \leq \nu$. Hence

$$\|Hx\| = \left\| \sum_i a_i x_i \right\| \leq \sum_i |a_i| \leq \frac{1}{K} \left\| \sum_i a_i x_i \right\| = \frac{1}{K} \|x\|$$

so $\|H\| \leq \frac{1}{K}$ and a similar estimate $\|H^{-1}\| \leq \frac{1}{K}$ holds, where K is like as in Lemma 4. $\nu = \left(\frac{1}{K}\right)^2 > 1$, because

$$M = \max_{1 \leq i \leq n} \frac{1}{|a_i|} \cdot \max_{1 \leq i \leq n} |a_i| = \frac{\max_{1 \leq i \leq n} |a_i|}{\min_{1 \leq i \leq n} |a_i|} \geq 1,$$

$K = \frac{1}{\min_{1 \leq i \leq n} |a_i|} \leq 1$ and with this was proved that X is an $L_{1,\nu}$-space. Now proof of the Theorem follows from Theorems 3.1, 3.2 and 3.4 in [5].

Proposition 10. Let $(x_n)_{n \in \mathbb{N}}$ be basic, normalized and μ-approximate l_1 sequence of vectors in X. Then every infinite dimensional subspace Y of X is isomorphic to X and complemented in X.

Proof. Let H be an operator defined from the Banach space X into the space l_1 by

$$H : x = \sum_i a_i x_i \to \sum_i a_i e_i.$$

This operator is invertible (exactly as in Theorem 5). Let Y be any infinite dimensional subspace of X and let us denote by $Y_1 = H(Y)$, a subspace of l_1. From the decomposition method of Pelczynski (see [2]) it follows that

$$l_1 = Y_1 \oplus B$$

for some Banach space B. Let $x \in X$, then $H(x) = y \in l_1$ and y has unique representation

$$y = a + b$$

for suitable $a \in Y_1$ and $b \in B$. From this there is a $a_1 \in Y, H(a_1) = a$

$$y = H(a_1) + b \Rightarrow H^{-1}(y) = H^{-1}(H(a_1) + H^{-1}(b)) \Rightarrow$$

$$x = a_1 + H^{-1}(b)$$
and the last representation of \(x \) is unique, because if we will use another one \(x = a'_1 + H^{-1}(b') \), then \(H(x) = H(a'_1) + b' \Rightarrow \\
(5) \ y = H(a'_1) + b' \\
But relation (5) is in contradiction with relation (3). So every \(x \in X \) has unique representation through space \(Y \), and we can use notation \\
\(X = Y \oplus C \)

for some Banach space \(C \), with \(Y \) isomorphic to \(X \). \(H(Y) = Y_1 \) is isomorphic to \(l_1 \); let us denote by \(A \) that isomorphism between them, then \(A(l_1) = AH(X) = Y_1 \Rightarrow AH(X) = H(Y) \) and from this follows that \(H^{-1} \cdot A \cdot H \) is isomorphism between spaces \(X \) and \(Y \), with which was proved proposition.

Corollary 11. Let \((x_n)_{n \in \mathbb{N}}\) be basic, normalized and \(\mu \)-approximate \(l_1 \) sequence of vectors in \(X \). Then \(X \) is a prime space.

Proof. of corollary follows directly from the above proposition.

REFERENCES

Department of Mathematics and Computer Sciences,
University of Pristina-Kosova
e-mail: nbraha@yahoo.com