CHARACTERIZATION OF THE ABSOLUTELY SUMMING OPERATORS IN A BANACH SPACE USING μ-APPROXIMATE \boldsymbol{l}_{1} SEQUENCES

N. L. BRAHA

In this paper we will give a characterization of 1-absolutely summing operators using μ-approximate l_{1} sequences. Exactly if $\left(x_{n}\right)_{n=1}^{\infty}$ is μ approximate l_{1}, basic and normalized sequence in Banach space X then every bounded linear operator T from X into Banach space Y is 1 -absolutely summing if and only if Y is isomorphic to Hilbert space

Introduction.

In the following we will denote by X a Banach space with norm \|.\|. Some notations which are usefull in the sequel.

Definition 1. [3] Let $\left(x_{i}\right)_{i \in \mathbb{N}}$ be a sequence of unit vectors in a Banach space X (where $I=\{1,2, \ldots, n\}$ or $I=N$), and let $\mu \geq 0$. We say that $\left(x_{i}\right)$ is a μ-approximate l_{1} system if

$$
\left\|\sum_{i \in A} \pm x_{i}\right\| \geq k(A)-\mu
$$

for all finite sets $A \subset I$ and for all choices of signs, where $\mathrm{k}(\mathrm{A})$ denotes the cardinal number of the set A .

Entrato in redazione il 24 Ottobre 2004.

Definition 2. [1] An operator $T \in L(X, Y)$ is called p-absolutely summing if there is a constant K so that, for every choice of an integer n and vectors $\left(x_{i}\right)_{i=1}^{n}$ in X , we have

$$
\left(\sum_{i=1}^{n}\left\|T x_{i}\right\|^{p}\right)^{\frac{1}{p}} \leq K \sup _{\left\|x^{*}\right\| \leq 1}\left(\sum_{i=1}^{n}\left|x^{*}\left(x_{i}\right)\right|^{p}\right)^{\frac{1}{p}}
$$

All other notations are like as in [1].
Theorem 1. [4] Every bounded linear operator T from l_{1} into l_{2} is absolutely summing and $\pi_{1}(T) \leq K_{G}\|T\|$.

Theorem 2. [5] (Ideal property of p -summing operators) Let $1 \leq p<\infty$ and let $v \in \Pi_{p}(X, Y)$, then the composition of v with any bounded linear operator is p-summing.

Results.

Lemma 3. Let $\left(x_{i}\right)_{i=1}^{n}$ be a sequence of unit vectors in Banach space X. Then for any finite number of scalars $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, the following is true

$$
\begin{equation*}
\left\|a_{1} \cdot x_{1}+\cdots+a_{n} \cdot x_{n}\right\| \leq \max _{1 \leq i \leq n}\left\{\left|a_{i}\right|\right\}\left\|x_{1}+\cdots+x_{n}\right\| \tag{1}
\end{equation*}
$$

Proof. In the sequel we will prove the above fact using the mathematical induction and it's enough to prove it for two terms. Let us consider vectors x and y from X and a, b scalars such that $a>b$, then from Hahn-Banach Theorem there exists $x^{*} \in X^{*}$ such that

$$
\left\|x^{*}\right\|=1
$$

and

$$
x^{*}(a \cdot x+b \cdot y)=\|a \cdot x+b \cdot y\| .
$$

On the other hand

$$
\left|x^{*}(x+y)\right| \leq\left\|x^{*}\right\| \cdot\|x+y\|
$$

From the above relations we will have

$$
\left|a x^{*}(x)+a x^{*}(y)\right| \leq|a| \cdot| | x+y| | \Rightarrow\left|a x^{*}(x)+a x^{*}(y)+b x^{*}(y)-b x^{*}(y)\right|
$$

$$
\leq|a| \cdot\|x+y \mid\|
$$

Respectively

$$
\begin{equation*}
\left|\|a x+b y\|+(a-b) x^{*}(y)\right| \leq|a| \cdot\|x+y\| \tag{2}
\end{equation*}
$$

In the following we will distinguish two cases
I) $0<x^{*}(y)<1$, then relation (1) follows directly from (2)
II) $-1<x^{*}(y)<0$,then from relation (2) we will have this estimate

$$
\|a x+b y\|-\left|(a - b) \left\|x ^ { * } (y) \left|\leq\left|\|a x+b y\|+(a-b) x^{*}(y)\right|\right.\right.\right.
$$

from which again it follows that (1) is valid .
Lemma 4. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be sequence of normalized and μ-approximate l_{1} vectors in Banach space X. Then the relation

$$
\left\|\sum_{i \leq n} a_{i} x_{i}\right\| \geq K \sum_{i \leq n}\left|a_{i}\right|
$$

is true for any finite sequence $\left(a_{i}\right)$ of scalars and K positive constant.
Proof. Let us start from the relation

$$
\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|=\left\|\sum_{i=1}^{n}\left|a_{i}\right| \cdot \operatorname{sgn}\left(a_{i}\right) \cdot x_{i}\right\|
$$

Then from Hanh-Banach Theorem there exists a functional $f \in X^{*}$, such that

$$
f\left(\sum_{i=1}^{n}\left|a_{i}\right| \cdot \operatorname{sgn}\left(a_{i}\right) \cdot x_{i}\right)=\left\|\sum_{i=1}^{n}\left|a_{i}\right| \cdot \operatorname{sgn}\left(a_{i}\right) \cdot x_{i}\right\|
$$

and $\|f\|=1$. From this it follows that

$$
\sum_{i=1}^{n}\left|a_{i}\right| \cdot f\left(\operatorname{sgn}\left(a_{i}\right) \cdot x_{i}\right)=\left\|\sum_{i=1}^{n}\left|a_{i}\right| y_{i}\right\|
$$

where $y_{i}=\operatorname{sgn}\left(a_{i}\right) \cdot x_{i}$. On the other hand , let us consider $\left|a_{i}\right| \neq 0$, $\forall i \in\{1,2, \cdots, n\}$

$$
\left\|\sum_{i=1}^{n} \pm x_{i}\right\|=\left\|\sum_{i=1}^{n} \pm a_{i} \cdot x_{i} \cdot \frac{1}{a_{i}}\right\|=
$$

$$
=\left\|\sum_{i=1}^{n}\left|a_{i}\right| \cdot x_{i} \cdot \frac{\operatorname{sgn}\left(a_{i}\right)}{ \pm a_{i}}\right\| \leq \max _{1 \leq i \leq n} \frac{1}{\left| \pm a_{i}\right|} \cdot\left\|\sum_{i=1}^{n}\left|a_{i}\right| y_{i}\right\|
$$

(from lemma 3)

$$
=\max _{1 \leq i \leq n} \frac{1}{\left|a_{i}\right|} \cdot \sum_{i=1}^{n}\left|a_{i}\right| \cdot f\left(y_{i}\right) \leq \max _{1 \leq i \leq n} \frac{1}{\left|a_{i}\right|} \cdot \max _{1 \leq i \leq n}\left|a_{i}\right| \sum_{i=1}^{n} f\left(y_{i}\right)
$$

(again from lemma 3) so it is true that

$$
\left\|\sum_{i=1}^{n} \pm x_{i}\right\| \leq M \cdot \sum_{i=1}^{n} f\left(y_{i}\right)
$$

where $M=\max _{1 \leq i \leq n} \frac{1}{\left|a_{i}\right|} \cdot \max _{1 \leq i \leq n}\left|a_{i}\right|$.
Now we will have this estimate

$$
M \cdot \sum_{i=1}^{n} f\left(y_{i}\right) \geq\left\|\sum_{i=1}^{n} \pm x_{i}\right\| \geq n-\mu
$$

The last relation is possible if and only if

$$
f\left(y_{i}\right) \geq \frac{1-\delta_{i}}{M}, \quad \forall i \in\{1,2, \cdots, n\}, \sum_{i=1}^{n} \delta_{i}=\mu
$$

and $0<\delta_{i}<1$. From this it follows

$$
f\left(y_{i}\right) \geq \frac{1-\delta_{i}}{M} \geq \frac{1-\delta}{M}, \text { where } \delta=\max _{1 \leq i \leq n} \delta_{i} .
$$

Finally

$$
\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|=\sum_{i=1}^{n}\left|a_{i}\right| \cdot f\left(y_{i}\right) \geq \sum_{i=1}^{n}\left|a_{i}\right| \cdot \frac{1-\delta}{M}=K \cdot \sum_{i=1}^{n}\left|a_{i}\right|
$$

where K is constant and $K=\frac{1-\delta}{M}$.
Theorem 5. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a normalized, basic sequence in X that is,a μ approximate l_{1} system, too. Then every bounded linear operator from X into l_{2} is 1-absolutely summing .

Proof. Let H be the operator defined from l_{1} into X as follows

$$
H: x=\sum_{i} a_{i} e_{i} \rightarrow \sum_{i} a_{i} x_{i}
$$

from the above it follows that H is bijective and bounded with it's inverse. Boundedness follows from

$$
\|H x\|=\left\|\sum_{i} a_{i} x_{i}\right\| \leq \sum_{i}\left|a_{i}\right| \leq \frac{1}{K}\left\|\sum_{i} a_{i} x_{i}\right\|=\frac{1}{K}\|x\|
$$

(from lemma 4). H is onto ,let $y=\sum_{i} b_{i} x_{i}$ any element from X , then $z=\sum_{i} b_{i} e_{i}$ belongs to l_{1}^{0}, indeed,

$$
\left\|\sum_{i} b_{i} e_{i}\right\|=\sum_{i}\left|b_{i}\right|<\frac{1}{K}\left\|\sum_{i} b_{i} x_{i}\right\|<\infty
$$

from which it also follows that $H(z)=y$. From the above it follows that H^{-1} also is bounded: let $t=\sum_{i} t_{i} x_{i} \in X$, then

$$
\begin{aligned}
\left\|H^{-1} t\right\|=\left\|H^{-1}\left(\sum_{i} t_{i} x_{i}\right)\right\| & =\left\|\sum_{i} t_{i} e_{i}\right\|=\sum_{i}\left|t_{i}\right| \leq \frac{1}{K}\left\|\sum_{i} t_{i} x_{i}\right\| \\
& =\frac{1}{K}\|t\|
\end{aligned}
$$

Let us denote by T any bounded linear operator from Banach space X into l_{2}, then operator $K=T \cdot H$ is defined from l_{1} into l_{2} and is bounded, so 1 -absolutely summing (from Theorem 1). Finaly using the ideal propertis of operators in Theorem 2 and the fact that $K \cdot H^{-1}=T$, it follows that T is an absolutely summing operator.
Lemma 6. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a normalized, basic sequence in X that is, a μ approximate l_{1} system, too. Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ is an unconditional basic sequence in X.

Proof. It's enough to prove that for any x, y and any finite disjoint subsets $A, B \in \mathbb{N}$ relation

$$
\|x+y\| \sim\|x-y\|
$$

is true for $x \in \operatorname{span}\left\{x_{i}: i \in A\right\}$ and $y \in \operatorname{span}\left\{x_{i}: i \in B\right\}$, where $a \sim b$ means that there exists constant c_{1} and c_{2} such that $c_{1} \cdot a \leq b \leq c_{2} \cdot a$ (see [7]). From the definition of μ-approximate l_{1} sequences it follows that

$$
\|x+y\|=\left\|\sum_{i \in A} a_{i} x_{i}+\sum_{i \in B} b_{i} x_{i}\right\| \geq\left\|\sum_{i \in A} a_{i} x_{i}\right\|-\left\|\sum_{i \in B} b_{i} x_{i}\right\| \geq
$$

$$
\begin{gathered}
K\left(\sum_{i \in A}\left|a_{i}\right|\right)-\sum_{i \in B}\left|b_{i}\right| \\
\|x+y\| \leq \sum_{i \in A}\left|a_{i}\right|+\sum_{i \in B}\left|b_{i}\right| ;
\end{gathered}
$$

from the other hand

$$
\begin{gathered}
\|x-y\|=\left\|\sum_{i \in A} a_{i} x_{i}-\sum_{i \in B} b_{i} x_{i}\right\| \geq\left\|\sum_{i \in A} a_{i} x_{i}\right\|-\left\|\sum_{i \in B} b_{i} x_{i}\right\| \geq \\
K\left(\sum_{i \in A}\left|a_{i}\right|\right)-\sum_{i \in B}\left|b_{i}\right|
\end{gathered}
$$

and

$$
\|x+y\| \leq \sum_{i \in A}\left|a_{i}\right|+\sum_{i \in B}\left|b_{i}\right|
$$

from the above relations it follows that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is an unconditional sequence in X.

Theorem 7. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be normalized, basic and μ-approximate l_{1} sequence in X, such that every bounded linear operator T from X into Y is 1 -absolutely summing. Then X is isomorphic to l_{1} and Y is isomorphic to Hilbert space .

Proof. From Lemma 6 it follows that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is an unconditional basis in X . Now the proof of Theorem is similar to that of Theorem 4.2 in [6].

Theorem 8. Let X and Y be two infinite dimensional Banach spaces ,and $\left(x_{n}\right)_{n \in \mathbb{N}}$ basic, normalized and μ-approximate l_{1} sequence in X. Then every bounded linear operator T from X into Y is 1-absolutely summing if and only if Y is isomorphic to a Hilbert space.
Proof. The forward direction follows from Theorem 7 and converse direction from Theorem 5.

Proposition 9. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be basic, normalized and μ-approximate l_{1} sequence of vectors in X. Regardless of the measure μ, every bounded linear operator T from X into $L_{2}(\mu)$, is 1-absolutely summing.
Proof. Let us show that X is an $L_{1, v}$ space for some v. For any finite dimensional subspace E of X , let us say that $\operatorname{dim} E=n, E=\operatorname{span}\left\{x_{i}\right.$: $i=1, \cdots, n\}$. There exist a finite dimensional subspace F of X , such that
$F=\operatorname{span}\left\{x_{i}: i=1, \ldots, n+1\right\}, E \subset F$ and an isomorphism $H: x=$ $\sum_{i=1}^{n+1} a_{i} x_{i} \in F \rightarrow \sum_{i=1}^{n+1} a_{i} e_{i} \in l_{1}^{\operatorname{dim} F}$ such that $\|H\| \cdot\left\|H^{-1}\right\| \leq v$. Hence

$$
\|H x\|=\left\|\sum_{i} a_{i} x_{i}\right\| \leq \sum_{i}\left|a_{i}\right| \leq \frac{1}{K}\left\|\sum_{i} a_{i} x_{i}\right\|=\frac{1}{K}\|x\|
$$

so $\|H\| \leq \frac{1}{K}$ and a similar estimate $\left\|H^{-1}\right\| \leq \frac{1}{K}$ holds, where K is like as in Lemma 4. $v=\left(\frac{1}{K}\right)^{2}>1$, because

$$
M=\max _{1 \leq i \leq n} \frac{1}{\left|a_{i}\right|} \cdot \max _{1 \leq i \leq n}\left|a_{i}\right|=\frac{\max _{1 \leq i \leq n}\left|a_{i}\right|}{\min _{1 \leq i \leq n}\left|a_{i}\right|} \geq 1
$$

$K=\frac{1-\delta}{M} \leq 1$ and with this was proved that X is an $L_{1, v}$-space. Now proof of the Theorem follows from Theorems 3.1, 3.2 and 3.4 in [5].

Proposition 10. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be basic, normalized and μ-approximate l_{1} sequence of vectors in X. Then every infinite dimensional subspace Y of X is isomorphic to X and complemented in X.
Proof. Let H be an operator defined from the Banach space X into the space l_{1} by

$$
H: x=\sum_{i} a_{i} x_{i} \rightarrow \sum_{i} a_{i} e_{i}
$$

This operator is invertible (exactly as in Theorem 5). Let Y be any infinite dimensional subspace of X and let us denote by $Y_{1}=H(Y)$, a subspace of l_{1}. From the decomposition method of Pelczynski (see [2]) it follows that

$$
l_{1}=Y_{1} \oplus B
$$

for some Banach space B. Let $x \in X$, then $H(x)=y \in l_{1}$ and y has unique representation

$$
\begin{equation*}
y=a+b \tag{3}
\end{equation*}
$$

for suitable $a \in Y_{1}$ and $b \in B$. From this there is a $a_{1} \in Y, H\left(a_{1}\right)=a$

$$
\begin{gather*}
y=H\left(a_{1}\right)+b \Rightarrow H^{-1}(y)=H^{-1}\left(H a_{1}\right)+H^{-1}(b) \Rightarrow \\
x=a_{1}+H^{-1}(b) \tag{4}
\end{gather*}
$$

and the last representation of x is unique, because if we will use another one $x=a_{1}^{\prime}+H^{-1}\left(b^{\prime}\right)$, then $H(x)=H\left(a_{1}^{\prime}\right)+b^{\prime} \Rightarrow$

$$
\begin{equation*}
y=H\left(a_{1}^{\prime}\right)+b^{\prime} \tag{5}
\end{equation*}
$$

But relation (5) is in contradiction with relation (3). So every $x \in X$ has unique representation through space Y , and we can use notation

$$
X=Y \oplus C
$$

for some Banach space C , with Y isomorphic to $\mathrm{X} . H(Y)=Y_{1}$ is isomorphic to l_{1}; let us denote by A that isomorphism between them, then $A\left(l_{1}\right)=A H(X)=$ $Y_{1} \Rightarrow A H(X)=H(Y)$ and from this follows that $H^{-1} \cdot A \cdot H$ is isomorphism between spaces X and Y , with which was proved proposition.

Corollary 11. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be basic, normalized and μ-approximate l_{1} sequence of vectors in X. Then X is a prime space.
Proof. of corollary follows directly from the above proposition.

REFERENCES

[1] J. Lindenstrauss - L. Tzafriri, Classical Banach Spaces, Part I, Springer-Verlag Berlin Heildelberg New York (1979).
[2] A. Pelczynski, Projections in certain Banach spaces, Studia Math. 19, (1960) pp. 209-228.
[3] S.J. Dilworth - D. Kutzarova - P. Wojtaszczyk, On Approximate l_{1} systems in Banach Spaces, J. Approx. Theory, 114 (2002), pp. 214-241.
[4] A. Grothendieck, Resumé de la theorie metrique des produits tensoriels topologiques, Bol. Soc. Mat. Sao Paulo, 8 (1956), pp. 1-79.
[5] J. Diestel - H. Jarchow - A. Tonge, Absolutely summing operators, Cambrige University Press, (1995).
[6] J. Lindenstrauss - A. Pelczynski, Apsolutely summing operators in L_{p}-spaces and their applications, Studia Math. T., 29 (1968) pp. 275-326.
[7] Lihua Yang, Unconditional basic sequences in $L_{p}(\mu)$ and its l_{p} stability, Proc. Amer. Math. Soc, 127 (1999), pp. 455-464.

Department of Mathematics and Computer Sciences,
University of Prishtina-Kosova
e-mail: nbraha@yahoo.com

