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LOW CODIMENSION STRATA OF THE SINGULAR LOCUS
OF MODULI OF LEVEL CURVES

SEPIDEH TASHVIGHI

We further analyze the moduli space of stable curves with level struc-
ture provided by Chiodo and Farkas in [2]. Their result builds upon Harris
and Mumford analysis of the locus of singularities of the moduli space of
curves and shows in particular that for levels 2, 3, 4, and 6 the locus of
noncanonical singularities is completely analogous to the locus described
by Harris and Mumford, it has codimension 2 and arises from the invo-
lution of elliptic tails carrying a trivial level structure. For the remaining
levels (5, 7, and beyond), the picture also involves components of higher
codimension. We show that there exists a component of codimension 3
for levels ` = 5 and ` > 7 with the only exception of level 12. We also
show that there exists a component of codimension 4 for `= 12.

1. Introduction

LetMg be the moduli space of smooth curves of genus g. We denote byMg

the compactification of Mg. Its objects are nodal curves satisfying Deligne-
Mumford stability condition. Recall that to a stable curve one can attach a
graph, the so-called stable graph. A graph is called stable if for all of its vertices
v, the following inequality holds 2gv− 2+ `v > 0, where `v is the valence, i.e
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the number of entering edges and gv is the geometric genus of the normalization
of the irreducible component corresponding to v.
LetRg,` be the moduli space of level structures of all triples (C,L,φ), where C is
a smooth curve of genus g equipped with a line bundle L and a trivialization mor-
phism φ : L⊗` ∼−→O. We refer to these as level-` curves. We consider Rg,`, a
compactification of the moduli spaceRg,`. Similarly to the moduli space of sta-
ble curvesMg (see [6]), the locusRg,`\Rg,` can be described by the dual graph
of nodal curves. We determine its vertices, V by connected components and its
edges, E by nodes of nodal curves. The dual graph Γ is a stable graph decorated
by M = {me}e∈E (Z`-valued 1-cochain from the set of branches of each node of
C) lying in the kernel of the cochain homomorphism ∂ : C1(Γ,Z`)−→C0(Γ,Z`).
This means that M adds up to zero modulo ` along each circuit of Γ.
Recall thatMg is locally isomorphic to Def(C,L,φ)/Aut(C) where Def(C,L,φ)
is the deformation space of the stack-theoretic curve. Note that a level struc-
ture (C,L,φ) is smooth if and only if each element of Aut(C) operates on
Def(C,L,φ) as a product of quasireflections (i.e., an automorphism whose fixed
locus is hyperplane).
We consider the automorphisms which are given by twisting each node. If we
specify a coefficient in Z` for every edge, then every choice of coefficient deter-
mines an automorphism a of the stack-theoretic curve C. Note that the automor-
phisms preserve the line bundle if and only if the action of the automorphism a
on M lies in the image of δ : C0(Γ,Z`)−→C1(Γ,Z`) (see [2]).
Then we consider the existence of noncanonical singularities of Def(C,L,φ)/
Aut(C). It is known that the noncanonical singularities occur if and only if
there exists a junior automorphism (i.e., an automorphism less than one) on
Def(C,L,φ) over the group of automorphism mod out by quasireflections [2].
Using this fact, we prove that there exists a codimension 3 locus of noncanonical
singularities for all levels `= 5 and `> 7 with the only exception of level 12. We
also show that there exists a codimension 4 locus of noncanonical singularities
for `= 12.

2. Preliminaries

Assume that k is an algebraically closed field. Assume k is C, the field of
complex number. Let us recall some useful definitions.

Definition 2.1. Let V be the set of connected components of normalization of
stack-theoretic curve, C. Let E be the set of nodes of C. The pair (V,E) is called
the dual graph of normalization of C, i.e. Cν (see for instance [1]).

Now for every nodal curve we are able to draw its dual graph. We define
C0(Γ,Z`) = {a : V → Z}=

⊕
υ∈V Z as the set of Z-valued functions on V . We
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define C1(Γ,Z`) = {b : E→ Z | b(e) =−b(e)} (i.e. E is the set of branches of
each node of C) as the set of antisymmetric Z`-valued functions on E, where e
and e are oriented edges with opposite orientations.

Let us recall that δ : C0(Γ,Z`)→ C1(Γ,Z`) is defined by sending a to δa,
with δa(e) = a(e+)−a(e−) and the map ∂ : C1(Γ,Z`)−→C0(Γ,Z`) is defined
by sending b to ∂b, with ∂b(v) = Σe∈Eb(e) [2].

Let a be an automorphism of stack-theoretic curve C and M be the multiplic-
ity cochain, then we can define a as a multiple of gcd(M, `), where a is defined
as follows:

a�M =
aM

gcd(M, `)
,

(see [2, pages 35 and 36]).

We recall that, age(a) = Σe∈E

{
a(e)
`

}
.

Definition 2.2. Let AutC(C) be the group of automorphisms of C. We say that
an automorphism a in AutC(C), which operates nontrivially on the curve, is
junior on C if 0 < age(a)< 1, (see [2, Definition 2.35]).

According to the Reid–Shepherd-Barron–Tai criterion, the scheme theoretic
quotient V/G, where G is a finite group operates on V without quasireflection,
has a noncanonical singularity at the origin if and only if the image of ageV

intersects ]0,1[, see [3–5]. As above, the point is that, the quotient C3g−3/
Aut(C) has a noncanonical singularities if and only if there exists an element
a ∈ AutC(C) which is junior on C.

Theorem 2.3. ([2]) There exist a junior ghost a if the following conditions are
satisfied:

(i) age(a)< 1 (i.e., a is junior);

(ii) M = Σi∈IKi, where I is a finite set of circuits (i.e., M ∈ Ker ∂ );

(iii) a�M(K)≡ 0 for any circuit K (i.e. a�M ∈ Im δ ).

3. Classifying the noncanonical singularities

In this section our aim is to analyse the existence of strata in the locus of non-
canonical singularities of codimension 3. First of all, we show that there is a
codimension 3 locus of noncanonical singularities for all levels 5,7, and higher
except `= 12. This is done in three steps.

Step1. Let ` be a prime number bigger than 3. Consider a level curve whose
dual graph has multiplicity M. Let m1 = m3 = n and m2 = 2n, where n can
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be chosen in Z/` (see Figure 1). Let a1 = a3 = 1 and a2 =
`−1

2
in a. Hence

the sum of the values of a�M along every circuit is zero modulo `. Indeed
(a1�m1)+(a2�m2) and (a1�m1)− (a3�m3) add up to zero modulo `.

•

m1

��

m3

>> •
m2oo

Figure 1. Graph M with two vertices and three edges.

On the other hand, since ` > 3, age(a) =
a1

`
+

a2

`
+

a3

`
=

`+3
2`

< 1.

Notice that if we find a junior a our problem for a given `, then every multi-
ple can also be solved similarly. In fact, if for a given ` we find m1,m2 and m3
in M, as well as a1,a2 and a3 in a which satisfy in our conditions, then we can
set `

′
= k`, m

′
1 = km1,m

′
2 = km2 and m

′
3 = km3 in M, also a

′
1 = ka1,a

′
2 = ka2

and a
′
3 = ka3 in a for every integer k. Hence the sum along every circuit is zero

modulo `
′

and (a
′
1�m

′
1) + (a

′
2�m

′
2) , (a

′
1�m

′
1)− (a

′
3�m

′
3) add up to zero

modulo `
′
.

According to the above argument, there exists a codimension 3 locus of
noncanonical singularities for prime numbers ` > 3. This settles the cases ` 6=
2a3b. We now focus on `= 2a3b.

Step 2: if ` = 8, take m1 = 1,m2 = 3,m3 = 2 and a1 = a2 = a3 = 2. Then,
there exists a junior ghost automorphism.

If ` = 9, take m1 = 1,m2 = 2,m3 = 1 and a1 = a3 = 1 and a2 = 4. Then,
there exists a junior ghost automorphism.

Step 3. [2] show that there is no junior ghost a for any stable graph for
which M ∈ Ker ∂ and a�M ∈ Im δ for ` = 2,3,4,6. We also show that for
` = 12 if there are only 3 edges. To do this we provide a table. In the first
row, we write the possible values of M, i.e., 0, . . . , `−1. In the first column, we
write the possible values of a, i.e., 0, . . . , `− 1 such that a may take at an edge
e of multiplicity M. We take a(e) = i if i satisfies the compatibility condition
gcd(M, `) | i. Then, we fill the slot in the ith row and jth column of the table
with the corresponding values of a�M if and only if a = i is compatible with
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M = j. For clarity we run the check for `= 6 as well.

`= 6 0 1 2 3 4 5
0 0 0 0 0 0 0
1 1 5
2 2 2 4 4
3 3 3 3
4 4 4 2 2
5 5 1

`= 12 0 1 2 3 4 5 6 7 8 9 10 11
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 5 7 11
2 2 2 10 2 10 10
3 3 3 3 9 9 9
4 4 4 4 8 4 8 8 8
5 5 1 11 7
6 6 6 6 6 6 6 6 6 6
7 7 11 1 5
8 8 8 8 4 8 4 4 4
9 9 9 9 3 3 3
10 10 10 2 10 2 2
11 11 7 5 1

Table 2. Multiplication tables for � and `= 6 and 12.

Notice that we fill the table with the corresponding values of a�M, if a is a
multiple of M. Without loss of generality, we arrange a1,a2 and a3 in unordered
3-tuple (a1,a2,a3) and consider all possible cases such that a1 +a2 +a3 < ` =
12. Then, the following cases are obtained:

(1,2,3), (1,2,4), (1,2,5), (1,2,6), (1,2,7), (1,2,8), (1,3,4), (1,3,5), (1,3,6), (1,3,7),
(1,4,5), (1,4,6), (2,3,4), (2,3,5), (2,3,6), (1,1,1), (1,2,1), (1,3,1), (1,4,1), (1,5,1),
(1,6,1), (1,7,1), (1,8,1), (1,9,1), (2,1,2), (2,2,2), (2,3,2), (2,4,2), (2,5,2), (2,6,2),
(2,7,2), (3,1,3), (3,2,3), (3,3,3), (3,4,3), (3,5,3), (4,1,4), (4,2,4), (4,3,4), (5,1,5).

On the other hand the action of automorphism a on M should be in the image
of δ . Therefore, we look for two numbers in the table such that they are equal
and we also look for the two numbers in the table such that the sum of them is
`= 12 simultaneously. Then, the following cases of automorphism a remain:

(1,1,1), (1,5,1), (1,7,1), (2,2,2), (3,3,3), (5,1,5).
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If take (1,1,1), then we can choose m1,m2 and m3 as the following list:
(m1 = 1,m2 = 11,m3 = 1), (m1 = 11,m2 = 1,m3 = 11), (m1 = 7,m2 = 5,m3 =
7) and (m1 = 5,m2 = 7,m3 = 5).
If take (1,5,1) or (3,3,3) or (5,1,5), then we can choose m1,m2 and m3 as the
following list:
(m1 = 1,m2 = 7,m3 = 1), (m1 = 7,m2 = 1,m3 = 7), (m1 = 5,m2 = 11,m3 = 5)
and (m1 = 11,m2 = 5,m3 = 11).
Finally If take (1,7,1) or (2,2,2), then we can choose m1,m2 and m3 as the
following list:
(m1 = 1,m2 = 5,m3 = 1),(m1 = 5,m2 = 1,m3 = 5),(m1 = 7,m2 = 11,m3 = 7)
and (m1 = 11,m2 = 7,m3 = 11).
For these remaining cases, m1 +m3 6= m2. It means that M doesn’t lie in the
Ker ∂ . This implies the claim that there is no junior ghost a for any stable graph
for which M ∈ Ker ∂ and a�M ∈ Im δ for `= 12.

Now we want to show there exists a codimension 4 locus of noncanonical
singularities for ` = 12. Hence it suffices to take m1 = 1,m2 = 5,m3 = m4 = 2
and a1 = a2 = a3 = a4 = 2. Then, there exists a junior ghost automorphism.

•

m1=1

��

m3=2
>>

m4=2

CC•
m2=5oo

Figure 3. Graph M with two vertices and four edges.
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