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A UNIVERSAL INEQUALITY FOR RIESZ POTENTIALS ON
DOMAINS ON N-SPHERES

SEYED M. ZOALROSHD

In this short note we give a universal inequality between the largest
eigenvalue of the Riesz potentials and non-zero Neumann eigenvalue for
domains on hemispheres of Sn.

1. Introduction

Inequalities for the eigenvalues of the Laplace operator have been extensively
studied during the past several decades. Pólya[9], Szegö[14], Payne[8],
Weinberger[7] have done outstanding work on comparison theorems for the
eigenvalues of the Laplace operator with variety of boundary conditions. Many
of the classical results have been generalized to the case of Laplace-Beltrami
operator on Riemannian manifolds (see[2], [4], [6], [5] and [12]). Very recently
Rozenblum, Ruzhansky and Suragan established isoperimetric inequalities for
the Riesz operators [11]. In this short note we address a question raised by
J. Anderson, D. Khavinson and V. Lomonosov in [1] regarding the universal
inequalities of the norm of certain potential operators.
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2. Main Results

For a bounded domain Ω with sufficiently smooth boundary, by λ N
1 (Ω) and

λ D
1 (Ω) we denote the least non-zero Neumann eigenvalue and the least Dirichlet

eigenvalue of Laplace operator on Ω, respectively.
Let Ω⊂Rn, n = 3,4, · · · be a domain with piecewise smooth boundary. The

Newtonian potential NΩ is the integral transform on L2(Ω,dy) defined by

(NΩ f )(x) =
1

(n−2)ωn

∫
Ω

f (y)
‖x− y‖n−2 dy,

where ωn is the surface area of the unit sphere Sn−1. In [1], the authors ask the
following question:

“Does there exist a universal constant C such that

‖NΩ‖ ≤C
1

λ D
1 (Ω)

for all bounded domains Ω with smooth boundary? ”

We provide a universal inequality for the Riesz potentials and in particular for
the Newtonian potentials on domains in n−spheres in terms if the least non-
zero eigenvalue of the Neumann Laplacian. Our result reveals more than what
Anderson-Khavinson-Lomonosov[1] had suspected and gives a comparison be-
tween the norm of Riesz potentials and the least non-zero Neumann eigenvalue
on any two domains of equal Riemannian measure. The similar results for the
logarithmic and the Newtonian potentials in the Euclidean setting will be subject
of investigation on a forthcoming article.

For a bounded domain Ω ⊂ Sn and 0 < α < n, the Riesz transform Rα,Ω :
L2(Ω,dy)→ L2(Ω,dy) is defined by

Rα,Ω f (x) =
∫

Ω

f (y)
dα(x,y)

dy, f ∈ L2(Ω,dy),

where dy is the Riemannian measure on Sn and d(x,y) is the geodesic distance
between points x and y.

Let C be the class of all domains with smooth boundaries in Sn which are
proper subset of only one hemisphere of Sn.

Theorem 2.1. For any two domains Ω and Ω̃ belonging to the class C with
|Ω|= |Ω̃| the following inequality holds

‖Rα,Ω‖ ≤ cα,n
1

λ N
1 (Ω̃)

,

where cα,n only depends on α and n. In particular,

‖Rα,Ω‖ ≤ cα,n
1

λ N
1 (Ω)

.
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Proof. Let Ω∗ denote the geodesic ball(cap) in Sn with |Ω∗| = |Ω|. By the
Rayleigh-Faber-Krahn inequality for the Riesz potentials (see [13]) we have

0 < ‖Rα,Ω‖ ≤ ‖Rα,Ω∗‖. (1)

Since Ω∗ is a geodesic ball then the quantity λ N
1 (Ω∗)‖Rα,Ω∗‖ depends only on

n and α . If we denote this quantity with cα,n, then by the Szegö-Weinberger
type inequality of Ashbaugh and Levine [3],

‖Rα,Ω∗‖= cα,n
1

λ N
1 (Ω∗)

≤ cα,n
1

λ N
1 (Ω̃)

. (2)

The desired inequity follows from (1) and (2).

We immediately obtain the following inequality for the Newtonian poten-
tials.

Corollary 2.2. For any two domains Ω and Ω̃ belonging to the class C with
|Ω|= |Ω̃| the following inequality holds

‖NΩ‖ ≤Cn
1

λ N
1 (Ω̃)

,

where Cn only depends on n. In particular,

‖NΩ‖ ≤Cn
1

λ N
1 (Ω)

.
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