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REAL CURVES WITH FIXED GONALITY

AND EMPTY REAL LOCUS

EDOARDO BALLICO

Here we give two existence theorems for smooth genus g real curves
with fixed gonality and empty real locus.

1. Introduction.

For any a smooth and connected projective curve X of genus g ≥ 0 let
X (R) denote its set of real points and n(X ) the set number of the connected
component of X (R). Hence X (R) is the disjoint union of n(X ) circles. Set
a(X ) = 1 if X (C)\X (R) is connected and a(X ) = 0 if X (C)\X (R) is not
connected, i.e. if X (C)\X (R) has two connected components. The topological
pair (X (C), X (R)) is uniquely determined by the pair of integers (n(X ), a(X ))
and such a pair of integers (n, a) is associated to some smooth real genus g
curve if and only if either a = 0, n ≡ g + 1 (mod 2) and 1 ≤ n ≤ g + 1 or
a = 1 and 0 ≤ n ≤ g ([1], Prop. 3.1). There are two real types of smooth
real genus zero curves: P1

R
(i.e. the one with a non-zero real point, i.e. the one

whose real part is a circle) and the one, N , such that N (R) = ∅ ([1]).
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Theorem 1. Fix integers d, g such that d ≥ 2, g > 0 and d ≡ g + 1 (mod
2). Then there exists a smooth and connected genus g real curve X such that
X (R) = ∅ and a real degree d morphism f : X → N.

We will also give a sketch of a proof of the following result.

Theorem 2. Fix integers g, d such that g ≥ 0, d ≥ 2, and d is even. Then
there exist aa smooth and connected genus g real curve X such that X (R) = ∅
and a real degree d morphism f : X → P

1
R
.

Obviously, the assumption “ d even ” in Theorem 2 is necessary, because
f −1(P)(R) �= ∅ for any P ∈ P

1
R
(R) not in the branching set of f if deg( f ) is

odd.

Remark 1. Fix an integer k ≥ 2, a finite set S ⊂ P1(C) with �(S) ≥ 2 and
for any P ∈ S an integer aP > 0 and aP integers nP,i ≥ 2, 1 ≤ i ≤ aP . Set

g := 1−k+(∑
P∈S

aP∑

i=1
nP,i−1)/2. By Riemann Existence Theorem g is an integer

and there is a finite non-empty subset of pairs (X, f ) such that X is a smooth
and connected genus g complex curve, f is a degree k holomorphic map which
is unramified over X\ f −1(S) and such that for every P ∈ S exactly aP of the
points of f −1(P) are ramification points of f , say QP,i , 1 ≤ i ≤ aP , and f
has ramification order nP,i − 1. Hence we may count the dimension of such set
varying S among the subsets of P

1(C) with fixed cardinality. To compute the
dimension of the isomorphic classes of such pairs (X, f ) we will also use that
dim (Aut)(P1)) = 3 and that the group Aut(P1) acts 3-transitively on P

1(C). In
particular we get that we have the maximal possible dimension if and only if
aP = 1 and nP,i = 2 for all P, i .

Proof of Theorem 1. By assumption the integer d + g − 1 is even. Hence there
is a σ -invariant effective divisor D ⊂ N such that deg(D) = d + g − 1. Fix a
general such divisor D. By Remark 1 there is a smooth and connected real curve
X and a degree d real morphism f : X → N such that D is the ramification
divisor of f . Since N (R) = ∅ and f is real, X (R) = ∅. The curve X has genus
g by Riemann - Hurwitz formula.

Sketch of the proof of Theorem 2. First we assume g odd. Set S := P
1 × P

1

with the real structure σ obtained as the product real structure of P1
R
. Let

a > 0 be the minimal even integer such that g ≤ ad − a − d + 1. Hence
0 ≤ ad − a − d + 1 − g ≤ 2d − 2. Since d is even and g is odd, the integer
ad−a−d+1−g is even. By the adjunction formula we have ωS

∼= OS(−2, −2),
ωC

∼= OC (a− 2, d − 2) and pa(C) = ad − a − d + 1 for every C ∈ |OS(a, d)|.
Set x := (ad − a − d + 1)/2 and take x general Pi ∈ S , 1 ≤ i ≤ x . Set
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E :=
x⋃

i=1
Pi ∪

x⋃

i=1
σ (Pi ) and Z :=

x⋃

i=1
2Pi ∪

x⋃

i=1
σ (2Pi ). Hence E and Z are

real. Since a + d ≥ x , it is easy to check that h1(S, IZ (a, d)) = 0 and that a
general curve C ∈ |IZ (a, d)| is integral and with an ordinary node at each point
of E ∪ σ (E) as only singularities. Since both a and d are even and E ∪ σ (E) is
real, we may find C as above with C(R) = ∅ (use bihomogeneous coordinates
on S). Take as X the normalization of C . Now assume g even. We work on
the Hirzebruch surface F1 (i.e. the blowing - up of P2 at one real point) with its
unique real structure. Take the standard basis h, f of Pic(F1) with h2 = −1,
h · f = 1 and f 2 = 0. We have ωF1

∼= OF1(−2h − 3 f ). Let a be the minimal
integer such that a ≡ 1, 2 (mod 4) such that ad − (a2 + a)/2 − d − 1 ≥ g.
Hence 0 ≤ 1+ ad − (a2 + a)/2− g ≤ 3d − 1 and 1+ ad − (a2 + a)/2− g is
even. Copy the proof of the case g odd.
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