REAL CURVES WITH FIXED GONALITY AND EMPTY REAL LOCUS

EDOARDO BALLICO

Here we give two existence theorems for smooth genus g real curves with fixed gonality and empty real locus.

1. Introduction.

For any a smooth and connected projective curve X of genus $g \ge 0$ let $X(\mathbb{R})$ denote its set of real points and n(X) the set number of the connected component of $X(\mathbb{R})$. Hence $X(\mathbb{R})$ is the disjoint union of n(X) circles. Set a(X) = 1 if $X(\mathbb{C}) \setminus X(\mathbb{R})$ is connected and a(X) = 0 if $X(\mathbb{C}) \setminus X(\mathbb{R})$ is not connected, i.e. if $X(\mathbb{C}) \setminus X(\mathbb{R})$ has two connected components. The topological pair $(X(\mathbb{C}), X(\mathbb{R}))$ is uniquely determined by the pair of integers (n(X), a(X)) and such a pair of integers (n, a) is associated to some smooth real genus g curve if and only if either a = 0, $n \equiv g + 1 \pmod{2}$ and $1 \le n \le g + 1$ or a = 1 and $0 \le n \le g$ ([1], Prop. 3.1). There are two real types of smooth real genus zero curves: $\mathbb{P}^1_{\mathbb{R}}$ (i.e. the one with a non-zero real point, i.e. the one whose real part is a circle) and the one, N, such that $N(\mathbb{R}) = \emptyset$ ([1]).

Entrato in redazione il 16 Novembre 2004.

¹⁹⁹¹ Mathematics Subject Classification. 14H51, 14P99.

Key words and phrases. Real curves, Gonality real gonality.

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

Theorem 1. Fix integers d, g such that $d \ge 2$, g > 0 and $d \equiv g + 1 \pmod{2}$. 2). Then there exists a smooth and connected genus g real curve X such that $X(\mathbb{R}) = \emptyset$ and a real degree d morphism $f : X \to N$.

We will also give a sketch of a proof of the following result.

Theorem 2. Fix integers g, d such that $g \ge 0, d \ge 2$, and d is even. Then there exist as smooth and connected genus g real curve X such that $X(\mathbb{R}) = \emptyset$ and a real degree d morphism $f : X \to \mathbb{P}^1_{\mathbb{R}}$.

Obviously, the assumption "d even" in Theorem 2 is necessary, because $f^{-1}(P)(\mathbb{R}) \neq \emptyset$ for any $P \in \mathbb{P}^1_{\mathbb{R}}(\mathbb{R})$ not in the branching set of f if deg(f) is odd.

Remark 1. Fix an integer $k \ge 2$, a finite set $S \subset \mathbb{P}^1(\mathbb{C})$ with $\sharp(S) \ge 2$ and for any $P \in S$ an integer $a_P > 0$ and a_P integers $n_{P,i} \ge 2$, $1 \le i \le a_P$. Set $g := 1-k+(\sum_{P \in S} \sum_{i=1}^{a_P} n_{P,i}-1)/2$. By Riemann Existence Theorem g is an integer and there is a finite non-empty subset of pairs (X, f) such that X is a smooth and connected genus g complex curve, f is a degree k holomorphic map which is unramified over $X \setminus f^{-1}(S)$ and such that for every $P \in S$ exactly a_P of the points of $f^{-1}(P)$ are ramification points of f, say $Q_{P,i}$, $1 \le i \le a_P$, and f has ramification order $n_{P,i} - 1$. Hence we may count the dimension of such set varying S among the subsets of $\mathbb{P}^1(\mathbb{C})$ with fixed cardinality. To compute the dimension of the isomorphic classes of such pairs (X, f) we will also use that dim $(\operatorname{Aut})(\mathbb{P}^1)) = 3$ and that the group $\operatorname{Aut}(\mathbb{P}^1)$ acts 3-transitively on $\mathbb{P}^1(\mathbb{C})$. In particular we get that we have the maximal possible dimension if and only if $a_P = 1$ and $n_{P,i} = 2$ for all P, i.

Proof of Theorem 1. By assumption the integer d + g - 1 is even. Hence there is a σ -invariant effective divisor $D \subset N$ such that $\deg(D) = d + g - 1$. Fix a general such divisor D. By Remark 1 there is a smooth and connected real curve X and a degree d real morphism $f : X \to N$ such that D is the ramification divisor of f. Since $N(\mathbb{R}) = \emptyset$ and f is real, $X(\mathbb{R}) = \emptyset$. The curve X has genus g by Riemann - Hurwitz formula.

Sketch of the proof of Theorem 2. First we assume g odd. Set $S := \mathbb{P}^1 \times \mathbb{P}^1$ with the real structure σ obtained as the product real structure of $\mathbb{P}^1_{\mathbb{R}}$. Let a > 0 be the minimal even integer such that $g \le ad - a - d + 1$. Hence $0 \le ad - a - d + 1 - g \le 2d - 2$. Since d is even and g is odd, the integer ad - a - d + 1 - g is even. By the adjunction formula we have $\omega_S \cong \mathcal{O}_S(-2, -2)$, $\omega_C \cong \mathcal{O}_C(a - 2, d - 2)$ and $p_a(C) = ad - a - d + 1$ for every $C \in |\mathcal{O}_S(a, d)|$. Set x := (ad - a - d + 1)/2 and take x general $P_i \in S$, $1 \le i \le x$. Set $E := \bigcup_{i=1}^{x} P_i \cup \bigcup_{i=1}^{x} \sigma(P_i)$ and $Z := \bigcup_{i=1}^{x} 2P_i \cup \bigcup_{i=1}^{x} \sigma(2P_i)$. Hence *E* and *Z* are real. Since $a + d \ge x$, it is easy to check that $h^1(S, \mathcal{I}_Z(a, d)) = 0$ and that a general curve $C \in |\mathcal{I}_Z(a, d)|$ is integral and with an ordinary node at each point of $E \cup \sigma(E)$ as only singularities. Since both *a* and *d* are even and $E \cup \sigma(E)$ is real, we may find *C* as above with $C(\mathbb{R}) = \emptyset$ (use bihomogeneous coordinates on *S*). Take as *X* the normalization of *C*. Now assume *g* even. We work on the Hirzebruch surface F_1 (i.e. the blowing - up of \mathbb{P}^2 at one real point) with its unique real structure. Take the standard basis *h*, *f* of Pic(F_1) with $h^2 = -1$, $h \cdot f = 1$ and $f^2 = 0$. We have $\omega_{F_1} \cong \mathcal{O}_{F_1}(-2h - 3f)$. Let *a* be the minimal integer such that $a \equiv 1, 2 \pmod{4}$ such that $ad - (a^2 + a)/2 - d - 1 \ge g$. Hence $0 \le 1 + ad - (a^2 + a)/2 - g \le 3d - 1$ and $1 + ad - (a^2 + a)/2 - g$ is even. Copy the proof of the case *g* odd.

REFERENCES

 B.H. Gross - J. Harris, *Real algebraic curves*, Ann. Sci. École Norm. Sup. (4), 14 (1981), pp. 157–182.

> Dipartimento di Matematica, Università di Trento 38050 Povo (TN), (ITALY) e-mail: ballico@science.unitn.it